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Abstract. In this paper, we employed polynomial chaos
(PC) expansions to understand earthquake rupture model re-
sponses to random fault plane properties. A sensitivity anal-
ysis based on our PC surrogate model suggests that the
hypocenter location plays a dominant role in peak ground ve-
locity (PGV) responses, while elliptical patch properties only
show secondary impact. In addition, the PC surrogate model
is utilized for Bayesian inference of the most likely underly-
ing fault plane configuration in light of a set of PGV observa-
tions from a ground-motion prediction equation (GMPE). A
restricted sampling approach is also developed to incorporate
additional physical constraints on the fault plane configura-
tion and to increase the sampling efficiency.

1 Introduction

One of the most important challenges seismologists and
earthquake engineers face in designing large civil structures
(e.g., buildings, dams, bridges, power plants) and response
plans, especially in highly populated cities prone to large
damaging earthquakes, is the reliable estimation of ground-
motion characteristics at a given location. Ground-motion
prediction equations (GMPEs), which are one of the most
important elements for probabilistic seismic hazard analysis
(PSHA), are designed for this purpose. These are obtained
from regression analysis by fitting a dataset (empirical and
simulated) and are mainly expressed in terms of site condi-
tions, source–site distance (e.g., rupture distance or Joyner–
Boore distance, denoted as RJB distance hereafter1), magni-

1The Joyner–Boore distance is defined as the shortest distance
from a site to the surface projection of the rupture plane.

tude, and mechanism, although other terms such as directiv-
ity and hanging-wall effect are also considered (Abraham-
son et al., 2014). The equations can be derived for peak
ground displacement (PGD), peak ground velocity (PGV),
peak ground acceleration (PGA), and spectral acceleration
(SA) for a damping of 5 % at different periods. Ideally, an
optimal GMPE has to be robust and include physical terms
to avoid overfitting the data, which can result in the inclu-
sion of too many parameters. When other effects are consid-
ered (such as amplitude and duration of rupture directivity;
Somerville et al., 1997) or more data are available (Atkin-
son and Boore, 2011), GMPEs are modified to better explain
attenuation patterns.

Many efforts have been made to characterize the seis-
mic ground-motion considering both real and simulated data.
For example, using real data, five research groups under
the Pacific Earthquake Engineering Research Center Next
Generation Attenuation (PEER NGA) project derived GM-
PEs for shallow crustal earthquakes considering an extensive
database of recorded ground motion (Chiou et al., 2008).
Later, Arroyo and Ordaz (2010a, b) obtained GMPEs us-
ing both synthetic data and two subsets of accelerograms
of the NGA database (Chiou et al., 2008). Arroyo and Or-
daz (2010b) highlighted the necessity to merge finite fault
modeling (Atkinson and Silva, 2000) with observations to
obtain GMPEs that better predict the amplitudes in zones
where data are insufficient. Verification and validation stud-
ies (Maufroy et al., 2015, 2016) were also conducted in a
large effort to understand ground motion and showed the im-
portance of both accurate source parameters and the geologi-
cal description of the medium to reproduce observed ground
motion. Singh et al. (2017) improved the agreement between

Published by Copernicus Publications on behalf of the European Geosciences Union.



3072 H. Cruz-Jiménez et al.: Bayesian inference of earthquake rupture models

observed ground motion and GMPEs by including site ef-
fects of the area. Numerical simulations have also helped
to explain ground-motion characteristics. For instance, Fu-
rumura and Singh (2002) described attenuation patterns for
both deep in-slab and shallow interplate earthquakes, while
Cruz-Jiménez et al. (2009) explained ground-motion ampli-
fication due to a volcanic layer. Mahani and Atkinson (2012)
modeled the decay of spectral amplitudes in several locations
in North America.

In this study, we investigate the level of complexity needed
in kinematic rupture models of magnitude 6.5 strike-slip
events to produce ground motion similar to a reference
GMPE. To this end, we utilize the polynomial chaos (PC)
approach (Ghanem and Spanos, 1991; Xiu and Karniadakis,
2002; Le Maître and Knio, 2010) to build functional repre-
sentations of PGV responses of an original source model.
Thanks to the significant reduction in computational cost of
the PC surrogate models (in comparison with both the orig-
inal source model and a Bayesian analysis based on Markov
chain Monte Carlo (MCMC) sampling, which requires a pro-
hibitive number of model runs; Minson et al., 2014), it is
suitable to utilize the PC surrogates in a Bayesian inference
framework (Sudret and Mai, 2013; Sraj et al., 2016; Giraldi
et al., 2017). This enables us to quantitatively rank different
kinematic source models given by the PGVs they produce
and identify the most likely one that fits a chosen reference
GMPE (expectation). The ranking considers uncertainties in
both the GMPE and model parameters. This provides useful
insight on the level of complexity needed in kinematic source
models for ground-motion simulations to satisfy both obser-
vational constraints and engineering/design requirements for
seismic safety.

This paper is organized as follows. In Sect. 2, we provide
detailed descriptions of the source model configurations, in-
cluding the calculation of synthetic seismograms. In Sect. 3,
we present the PC analysis of PGVs as a function of random
variations of the kinematic models, including the validation
of PC surrogate models and discussions of various statistical
quantities. In Sect. 4, we conduct a PC-based Bayesian in-
ference analysis to identify the most likely kinematic rupture
model that best fits a chosen GMPE reference curve. Finally,
we conclude our key findings and propose potential improve-
ments for future work in Sect. 5.

2 Source model

A magnitude Mw = 6.5 strike-slip earthquake (seismic mo-
ment 6.31× 1018 Nm; rake= 0◦) on a single-segment ver-
tical fault plane is considered. The fault plane is chosen
to be a rectangle with fixed length L= 27 km and width
W = 10 km, which are the most frequent values among 100
sample realizations following scaling relations (e.g., Wells
and Coppersmith, 1994; Mai and Beroza, 2000; Thingbaijam
et al., 2017). The top of the fault plane is located 2 km below
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Figure 1. Example of fault plane configuration. The red star denotes
hypocenter location, and the ellipse is the asperity with Gaussian
slip distribution inside. The slip distribution is tapered in the area
between the dashed and solid rectangles.

the ground surface. Figure 1 shows an example configuration
of the fault plane, in which the red star denotes the hypocen-
ter and the ellipse is the asperity with Gaussian slip distri-
bution inside. The maximum slip Smax is chosen such that
the mean slip (over the entire fault plane) remains constant
(0.71 m) when varying the ellipse size (which ensures that the
moment magnitude remains constant, Mw = 6.5). The slip
between the elliptical patch boundary and dashed rectangle
(Fig. 1) is set to be Smax/e (where e is the Euler number),
the minimum value at the patch boundary from the Gaus-
sian slip distribution. The slip between the solid and dashed
rectangles (the horizontal and vertical gaps are 5 % of the
length and width of the fault plane, respectively) is tapered to
avoid non-physical slip patterns. The entire fault plane is dis-
cretized in along-strike and down-dip directions with a grid
size of 0.02 km. We use a regularized Yoffe function (Tinti
et al., 2005) with a rise time Tr= 1.25 s following source-
scaling relations (Somerville et al., 1999) and slip accelera-
tion time tacc = 0.225 s, as suggested by Tinti et al. (2005).
At each node of the discretized fault plane, we assign Tr, tacc,
slip-rate in along-strike and down-dip directions, and rupture
time. We consider a rupture speed of 0.75Vs (where the shear
wave speed Vs is listed in Table 1) in all source models.

PGVs at a virtual network of Nobs = 56 stations (Fig. 2)
are calculated from synthetic seismograms of the two hori-
zontal components of ground motion at each site for a large
set of source rupture models. We use COMPSYN (Spu-
dich and Xu, 2003), a code based on the discrete wavenum-
ber/finite element method proposed by Olson et al. (1984) to
calculate the synthetic seismograms up to a maximum fre-
quency of 1.5 Hz at each station of the virtual array. COMP-
SYN solves the equation of motion considering initial con-
ditions of zero displacement and velocity at a reference time
t0 and specifying traction or displacement on the bounding
surface of the medium (boundary conditions) using the unit
outward normal vector (details about the scheme can be seen
in Olson et al., 1984). The grid resolution used in COMP-
SYN is variable and uses a spacing of one-sixth of the mini-
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Figure 2. A virtual network of Nobs = 56 stations where PGV re-
sponses are reported by the source model. The solid black line at
the center denotes the length and location of the fault plane. Note
that the 56 stations are grouped into four sets (indicated by differ-
ent colors/symbols) according to their RJB distances (see details in
Sect. 4).

Table 1. Velocity model used in this study, modified from Boore
et al. (1997).

Depth (km) Vp (km s−1) Vs (km s−1)

0 2.4 1.5
0.5 4.4 2
1.5 5.3 2.7
2.5 5.5 2.9

4 5.7 3.3
8 6.1 3.5

14 6.8 3.9
16.6 7.1 4.1

27 8 4.6
350 8.2 4.65

mum shear wavelength at depth z. The grid extends to a total
depth that depends on the wavenumber, which means that the
maximum depth decreases when the wavenumber increases.
This approach considers a layered 1-D velocity structure. We
apply the velocity model shown in Table 1, which corre-
sponds to a slightly modified version of the generic model
by Boore et al. (1997) for California. The resulting PGVs
serve as our quantities of interest (QoIs, each denoted asQj ,
for j = 1,2, . . .,Nobs). We aim at understanding stochastic
source model PGV responses to random fault plane configu-
rations of the source process (slip distributions and hypocen-
ter location). To this end, we consider variations in seven
physical parameters listed in Table 2, which parameterize the
fault plane configurations, i.e., locations of both the hypocen-
ter and elliptical asperity patch, as well as its shape and ori-
entation. We restrict the hypocenter and elliptical patch to
be inside the fault plane and limit the area ratio (AR) of the
elliptical patch to the entire fault plane (L×W ) between 5
and 29 %. These restrictions lead to nonlinear dependency
between feasible ranges of different physical parameters (see
Appendix A for more details).

Table 2. Parameters governing fault plane configurations.

Index Parameter Physical interpretation

1 AR Area ratio, AR= πab
L×W ∈[0.05,0.29]

2 xh (km) x coordinate of the hypocenter xh ∈
[−13.5,13.5]

3 zh (km) z coordinate of the hypocenter zh ∈
[−5,5]

4 a (∗) (km) Semi-major axis a ∈[√
AR·L·W

π ,L/2
]

5 θ (∗) Inclination angle of the elliptical
patch

6 xc (∗) (km) x coordinate of the center of
elliptical patch

7 zc (∗) (km) z coordinate of the center of
elliptical patch

∗ denotes parameters whose feasible ranges are dependent on others.

3 Polynomial chaos framework

PC expansions (Ghanem and Spanos, 1991; Xiu and Kar-
niadakis, 2002; Le Maître and Knio, 2010)2 are used in
this study to understand earthquake rupture model responses
(in terms of PGVs) to random configurations of slip distri-
bution and hypocenter location. We associate each of the
physical parameters with a canonical PC random variable ξi
(i ∈ {1,2, .. . .,nd}, where nd = 7 is the stochastic space di-
mension) and assume all ξi values are independent and uni-
formly distributed over [−1,1]. That is, the joint distribution
of the random parameter vector ξ is

p(ξ)=
{

2−7 if ξ ∈4≡ [−1,1]7 ,
0 otherwise. (1)

Each random parameter vector ξ ∈4 can be linked
uniquely to a realization of the physical parameter vector (see
mapping details in Appendix A). We thus focus on construct-
ing functional representations of PGV responses at each sta-
tion with respect to the canonical variable ξ , which param-
eterize the physical parameters in Table 2. It is worth men-
tioning that the mapping from canonical random variable ξ to
physical fault plane configuration parameters does not lead to
uniform distributions for physical parameters, due to their in-
terdependency as indicated in Table 2. Nevertheless, the va-
lidity of PC expansions based on canonical random variable
ξ is well maintained, as suggested by the cross-validation and
empirical error analyses later in this section.

Let Qj (ξ) be the PGV response to ξ at the j th station
(j ∈ {1,2, . . .,Nobs}), and assume each Qj is a second-order

2An open-source toolkit for the PC framework is available at
http://www.sandia.gov/UQToolkit/ (last access: 20 December 2017)
(Debusschere et al., 2004, 2016).
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random variable, i.e.,Qj (ξ) is in the Hilbert space L2(4,p),
and

E
[
Q2
j

]
=
∫
4

Qj (ξ)2p(ξ)dξ <+∞, (2)

∀j ∈ {1,2, . . .,Nobs}.
One can approximate Qj (ξ) using a truncated PC expansion
as follows:

Qj (ξ)≈ Q̃j (ξ)=
Np∑
α=0

cα9α(ξ), ∀j ∈ {1,2, . . .,Nobs}, (3)

where Np is a truncation parameter and (Np+ 1) is the num-
ber of expansion terms retained in the PC surrogate models.
In this study, we truncated the PC expansion at total polyno-
mial order of q = 9. Given nd = 7, one can calculate the total
number of polynomials via

Np+ 1= (q + nd)!
q!nd! = 11440. (4)

By adopting the classical convention of90(ξ)= 1, the mean
and variance of a PC surrogate Qj (ξ) can be expressed as

E
[
Q̃
]= Np∑

α=0
cα 〈9α,1〉 = c0, (5)

and

V
[
Q̃
]= E

[(
Q̃−E

[
Q̃
])2]

(6)

=
Np∑

α,β=1
cαcβ

〈
9α,9β

〉= Np∑
α=1

c2
α‖9α‖2L2

,

where 〈·〉 denotes the inner product in the Hilbert space
L2(4,p) with respect to the joint distribution p(ξ)

(Le Maître and Knio, 2010).
To determine the expansion coefficients (cα values) in

Eq. (3), we rely on a Latin hypercube sample (LHS) (McKay
et al., 1979) set (denoted as PLHS hereafter) of NLHS = 8000
earthquake rupture model realizations through {ξ k}1≤k≤NLHS ,
and solve the following basis pursuit denoising (BPDN)
problem (Van Den Berg and Friedlander, 2007, 2008) 3 at
each station:

c∗ = arg min
c∈RNp+1

||c||l1 s.t. ||Qj − [9]c|| ≤ γ ||Qj ||l2 , (7)

∀j ∈ {1,2, . . .,Nobs},
where Qj = (Qj (ξ1),Qj (ξ2), . . .,Qj (ξNLHS

))T is the
model PGV realization vector at the j th station, and
c ∈ RNp+1 is the coefficient vector for the corresponding PC

3The corresponding source code is available at https://github.
com/mpf/spgl1 (last access: 20 December 2017).

surrogate model. [9] ∈ RNLHS×(Np+1) denotes the polyno-
mial matrix with each element [9]i,α =9α(ξ i). Note that
[9] is station invariant. The scalar parameter γ indicates the
model noise level and is determined numerically via a k-fold
(k = 5) cross-validation process (Seber and Lee, 2012) over
a discrete grid of γ = {10−4,10−3,10−2 : 0.005 : 0.2}.

Following Sobol (1993), Homma and Saltelli (1996),
variance-based first-order and total-order sensitivity in-
dices associated with a subset of random variables (i ⊂
{1,2, . . .,nd}) can be calculated, respectively, as follows:

Si =
∑
α∈Si c

2
α‖9α‖2L2∑Np

α=1c
2
α‖9α‖2L2

, (8a)

Ti =
∑
α∈Ti c

2
α‖9α‖2L2∑Np

α=1c
2
α‖9α‖2L2

, (8b)

where Si (first-order sensitivity) is the relative variance con-
tribution of those polynomials (denoted as index set Si) ex-
clusively related to random variables in the subset i, while Ti
(total-order sensitivity) is the relative variance contribution
of polynomials (denoted as index set Ti) involving any of the
random variables in i (including cross polynomials between
variables in i and its complement i∼, i∪i∼ = {1,2, . . .,nd}).
Note that by definition the two polynomial index sets satisfy
Si ⊂ Ti .
3.1 Validation of PC models

We first validate our PC surrogate models for PGVs at all sta-
tions. To this end, we introduce a second independent source
model simulation ensemble (again an 8000-member LHS set
Pvalid

LHS ⊂4) for the purpose of validation. (Note that Pvalid
LHS is

independent of the training set PLHS.) The following relative
l2 error is then examined for PGVs at each station.

εj =
√√√√∑NLHS

k=1 (Q̃j (ξ k)−Qj (ξ k))2∑NLHS
k=1 Qj (ξ k)2

, (9)

∀j ∈ {1,2, . . .,Nobs},
where Q̃j (ξ k) and Qj (ξ k) denote PC and source model re-
sponses, respectively, to ξ k at the j th station. ξ k ∈ PLHS or
ξ k ∈ Pvalid

LHS depending on the sample set used to estimate the
errors.

Figure 3 shows error estimates of PC surrogate models
over the training set (PLHS, blue dots) and the validation set
(Pvalid

LHS , red dots). It is not surprising to see slightly larger er-
ror estimates on the validation set, as the PC reconstruction
process is unaware of this dataset. However, because almost
all error estimates fall below 10 % range, and in light of the
close agreement (about 4 % difference) between the blue and
red dots, our PC surrogate models are deemed to suitably re-
produce source model PGV responses throughout the entire
station network.
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Figure 3. Relative l2 errors of PC surrogate models. The cross-
validation errors are close to the error estimated from validation set.
For brevity, we omit the cross-validation errors in the plot.

Apart from the above error estimates, the convergence of
PC surrogate models with respect to truncation order is also
investigated from a statistical point of view. Figure 4 shows
PGV distributions from PC resampling on a 1 million mem-
ber LHS set (P1E6

LHS) at two selected stations, with increasing
odd PC truncation orders up to degree 9. It is seen that when
the truncation order is larger than 5, the difference in the PGV
prediction distributions becomes relatively small, suggesting
that our ninth-order PC expansions are sufficiently accurate
for the source model under consideration.

We finally compare distributions of PC and source model
predictions; see Fig. 5. It is observed that our PC surrogate
models are capable of reproducing PGV distributions pro-
duced from source model realizations of the validation set
Pvalid

LHS . Besides, the excellent agreement between the two PC-
predicted distribution curves in Fig. 5 suggests that our ex-
isting 8000-model-simulation ensemble is statistically rep-
resentative, which provides additional confidence in our PC
representations.

3.2 PC statistics

The PC surrogate models obtained in the previous section
provide immediate access to prediction statistics, as given by
Eqs. (5) and (6). Figure 6 shows means and standard devia-
tions of PC PGV predictions at different stations, along with
a reference median PGV curve predicted by the GMPE in
Boore and Atkinson (2008)4. It is noted that two stations with

4The interested reader is referred to Mai (2009),
http://www.opensha.org/glossary-attenuationRelation-BOORE_
ATKIN_2008 (last access: 20 December 2017) and
http://www.gmpe.org.uk/gmpereport2014.pdf (last access: 20
December 2017) for more details on the GMPE employed in this
paper.
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Figure 4. PC-predicted PGV distributions at two selected stations
(as indicated in Fig. 2). Distribution curves are obtained using ker-
nel density estimation (Sheather and Jones, 1991) from PC realiza-
tions on a 1 million member LHS set P1E6

LHS.

similar RJB distance can have very different PGV values.
This is likely due to radiation-pattern effects, in particular
directivity, which is addressed in great detail by Vyas et al.
(2016). Besides, it is observed that PC predictions generally
scatter around the GMPE curve. Though one should not ex-
pect an exact match between PC statistic and GMPE pre-
dictions, due to the difference in random sources underlying
the two approaches, and the uninformative uniform canonical
PC parameter distributions used to generate PC statistics, it is
worth noting that the similar range of PC and GMPE predic-
tions enables us to use the GMPE results as “observations”
for the purpose of parameter inference discussed in Sect. 4.
One can also observe that PGVs are generally largest near
the fault plane and decrease with increasing RJB distance.
The overall tendency of PC prediction uncertainty (quanti-
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Figure 5. Comparison of PGV distributions predicted by the source
model (blue solid curve) and PC surrogate model (red dashed
curve), respectively, at selected stations (as indicated in Fig. 2) over
the validation sample set Pvalid

LHS . The black dash-dotted curves are
PGV prediction distributions obtained from PC surrogate model
realizations on a 1 million member LHS set P1E6

LHS. Distributions
are obtained using kernel density estimations (Sheather and Jones,
1991).

fied by the standard deviation bars) seems to decrease with
increasing RJB distance as well.

The conditional mapping from canonical PC random vari-
ables (ξ ) to physical fault plane configurations makes it diffi-
cult to isolate the relative impact of individual parameters. To
address this difficulty, we rely on the global sensitivity analy-
sis (Homma and Saltelli, 1996; Sobol, 1993) and discuss the
statistical significance of each canonical random parameters
in the rupture model.

Figure 7 shows both the first- and total-order sensitivity
indices associated with each random parameter at different
stations. These sensitivity indices reveal that the model PGV
response is most sensitive to the location of the hypocenter
(xh is dominant and zh plays a secondary role) throughout
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Figure 6. Comparison of PC statistics (based on uniform distri-
bution assumption of the canonical PC random parameters) with
GMPE results. Solid black curve denotes the median GMPE predic-
tion, while the dashed lines are GMPE standard deviation bounds.
Note that log scales are used in the plot.
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Figure 7. First- (a) and total-order (b) sensitivity indices at each
station.

all stations, whereas the remaining random parameters (as-
sociated with elliptical asperity patch) are relatively insignif-
icant. While it might be reasonable to neglect the elliptical
patch parameters’ impact on PGV response variability at far
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Figure 8. First-order sensitivity indices with respect to grouped pa-
rameters.

stations (with RJB distance roughly more than 10 km away
from the center), it is evident that at near-the-center stations,
those elliptical patch parameters can still lead to a consider-
able impact on PGV response.

To better illustrate the above sensitivity observation, we di-
vided the parameters into the following two groups (ξhypo =
{ξxh

2 ,ξ
zh
3 } and ξ ellip = {ξAR

1 ,ξ a
4 ,ξ

θ
5 ,ξ

xc
6 ,ξ

zc
7 }; the superscripts

denote the corresponding physical parameters) and calcu-
lated the first-order sensitivity indices associated with ξhypo
and ξ ellip using Eq. (8a), denoted as Shypo and Sellip, re-
spectively. Note that the combined effect (interaction) of
hypocenter location and elliptical patch parameters is simply
given by Shypo×ellip = 1−Shypo−Sellip. The resulting group
sensitivity indices are shown in Fig. 8. It is now clear that the
hypocenter location alone is responsible for 80–90 % of the
variability in PGVs at distant stations. Meanwhile, near the
center, the hypocenter location alone is associated with only
55–75 % of the PGV variability, suggesting that the elliptical
patch parameters play important roles with about 25–45 %
contribution to the total PGV variability.

4 Bayesian inference

In this section, we utilize a Bayesian approach (Bernardo
and Smith, 2001; Berger, 2013; Gelman et al., 2014) to find
the most likely fault plane configuration, in the sense that
the resulting earthquake rupture model produces PGVs that
best match the reference GMPE curve for the same mag-
nitude and focal mechanism (Boore and Atkinson, 2008).
To this end, we first obtain the GMPE-predicted PGVs at
the stations shown in Fig. 2, denoted as d, which serve
as observational data in our Bayesian inference, and com-
pare d with our PC surrogate model predictions d̃(ξ)=
(Q̃1(ξ),Q̃2(ξ), . . .,Q̃Nobs(ξ))

T .

4.1 Bayesian formulation

To formulate the Bayesian problem, we start with Bayes’ for-
mula:

p(η|d)= p(d|η)p(η)
p(d)

∝ p(d|η)p(η), (10)

where η is the parameter vector to be inferred, p(η) is the
prior probability distribution of η, and p(d|η) is the likeli-
hood of observing d given η. The denominator p(d) is the
marginal distribution known as evidence. (Note that this ev-
idence can be neglected, as the MCMC sampling method
(Haario et al., 2001; Roberts and Rosenthal, 2009) utilized
below solely relies on the proportionality.) We adopt the as-
sumption of independent Gaussian error at each station lo-
cation; i.e., the discrepancy between observations (GMPE-
predicted PGVs) and PC predictions at each station is an in-
dependent Gaussian variable:

p(εj )= p(dj − d̃j )= 1√
2πσ 2

exp

[
− (dj − d̃j )

2

2σ 2

]
, (11)

∀j ∈ {1,2, . . .,Nobs}.
Recall that the PC prediction variability seems to decrease

with RJB distance according to Fig. 6. To account for this
decay of PGV variance with RJB distance in the Bayesian
inference analysis, we partition the Nobs stations into four
groups according to their corresponding RJB distances as in-
dicated in Fig. 2, and associate each group of stations with
a hyperparameter σ 2

l(j) (l(j) ∈ {1,2,3,4} depending on the
RJB distance of the j th station). As a result, the likelihood
can be expressed as

p(d|η)=
Nobs∏
j=1

1√
2πσ 2

l(j)

exp

(
− (dj − d̃j (ξ))

2

2σ 2
l(j)

)
, (12)

and accordingly the inference parameter vector η reads

η = (ξ1,ξ2, . . ., ξ7,σ
2
1 ,σ

2
2 , . . .,σ

2
4 )
T . (13)

Our numerical experiments suggest that the 4− σ 2 model
above outperforms the model with only one hyperparameter
for all stations. It is noted that we limit the number of uncer-
tainty hyperparameters (σ 2

i values) to four in this study, due
to the limited number of observations (PGVs at limited num-
ber of stations). If more observations were available, it might
be beneficial to increase the number of hyperparameters.

The prior distribution of η, without additional information
on the model parameters, is usually given by assumptions of
uniform distribution for canonical PC parameters ξ , and Jef-
frey’s priors (Sivia and Skilling, 2006) for hyperparameters
σ 2
l (as σ 2

l is always greater than zero); consequently,

p(η)=

(

1
2

)7 4∏
l=1

1
σ 2
l

∀ξ ∈4 and ∀σ 2
l > 0,

0 otherwise,
, (14)
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and Bayes’ rule reduces to

p(η|d)∝ p(d|η)p(η)= (15)

Nobs∏
j=1

1√
2πσ 2

l(j)

exp

(
− (dj − d̃j (ξ))

2

2σ 2
l(j)

)
∀ξ ∈4 and[(

1
2

)7 4∏
l=1

1
σ 2
l

]
∀σ 2

l > 0,

0 otherwise.

We rely on the adaptive metropolis MCMC approach
(Haario et al., 2001; Roberts and Rosenthal, 2009) to sam-
ple the above posterior distribution. It is worth noting that
MCMC methods, despite the improved efficiency against tra-
ditional MC approaches, generally require a large number of
samples (typically tens of thousands, and even larger depend-
ing on the dimensionality of the problem). This is one of the
main reasons why we utilize PC techniques, as the use of the
corresponding PC surrogates in the MCMC simulation leads
to significant reduction in computational cost. In this study,
the MCMC sample size for inference is set to 106.

4.2 Inference results

As mentioned above, we exploit the PC surrogate models in
Bayesian inference analysis and update the posterior distri-
bution of random parameters (ξ ∈4), as well as PGV pre-
diction uncertainties (σ 2

l values), in light of the GMPE ob-
servations. Figure 9 shows the posterior probability distribu-
tions of hyperparameters σ 2

l (l ∈ {1,2,3,4}). It is evident that
σ 2
l decreases with RJB distance (from l = 1 to l = 4), which

supports our previous ansatz from Fig. 6.
Similarly, we examine the sampling chains of PC ran-

dom parameters ξi (i ∈ {1,2, . . .,7}). While some parameters
(e.g., ξ1,ξ2,ξ3, and ξ6) yield very informative posterior dis-
tributions (not shown here), others look relatively less infor-
mative. It is noted that our goal is to estimate the posterior
distributions of the physical parameters in Table 2, instead
of the PC parameters. Thus, it is desired to map the ξ chain
into the corresponding physical configuration chain, before
inferring the most likely fault plane configuration.

Figure 10 shows the posterior distributions of the physi-
cal parameters after mapping from the PC parameter chain
of ξ , as well as the corresponding inference of the fault plane
configuration (bottom right panel). It is observed that in light
of the GMPE PGV observations (1) the hypocenter location
(xh and zh) is well identified; (2) the size of the elliptical
patch seems to be more likely near the lower bound of the
prior; (3) the inclination angle of the elliptical patch, as well
as the location of the patch, are less conclusive. For exam-
ple, despite the clear peak in the inclination angle plot, the
posterior distribution is relatively flat, suggesting limited in-
formation gain compared with the prior knowledge. Further-
more, the xc distribution only shows the fact that the ellipse
tends to be in the left half of the fault plane; the definite lo-

cation of the elliptical patch (either xc or zc) is ambiguous.
These findings are generally consistent with the results of the
sensitivity analysis. Since the model is primarily sensitive to
the hypocenter location, perturbing the hypocenter location
leads to more effective adjustment in PGV responses. On the
other hand, elliptical patch parameters have relatively small
impact on PGV variance, which calls for more observational
data to pin down those parameters.

One needs to be cautious about the Bayesian inference re-
sults discussed above. From the physical point of view, the
spatial distribution of those stations (see Fig. 2) where PGVs
are reported is almost “symmetric” about the center of the
fault plane (x = 0 and y = 0); as a result, one would expect to
see a “symmetric” twin configuration that is roughly equally
plausible from the Bayesian inference. However, this “sym-
metric” counterpart is clearly missing in the above inference
results. This is probably because when MCMC chain con-
verges to the high probability region of hypocenter location
in the bottom right quadrant of the fault plane, it becomes
more and more difficult to escape from this high probability
region and explore the other side of parameter space. In other
words, there could be bimodal structures in the distributions
of xh (as well as xc) which the previous MCMC process fails
to identify (e.g., the configuration in which the hypocenter is
located in the bottom left quadrant of the fault plane, and the
ellipse is centered at somewhere on the right half of the fault
plane). While in theory it is possible to identify the missing
multimodal distributions of random parameters by further in-
creasing the number of MCMC samples, the computational
cost can be excessive. Alternatively, we verify our expecta-
tion of seeing the “symmetric” counterpart configuration by
rerunning the MCMC simulation starting with the “symmet-
ric” counterpart configuration (i.e., with hypocenter being
in the bottom left quadrant of the fault plane, and elliptical
patch being on the right side of the fault plane). The result-
ing fault plane configuration inference is shown in Fig. 11.
As expected, the new MCMC process ended up with a fault
plane configuration that is roughly “symmetric” to the previ-
ous inference result, especially for the hypocenter location.
The asymmetric behavior of the elliptical patch stems from
the fact that (1) the Nobs stations are not exactly symmetri-
cally distributed; thus, one should not expect exact symme-
try; (2) as discussed before, the PGV responses are less sen-
sitive to the elliptical patch properties, leading to ambiguity
in inferring these properties.

4.3 Inference with restricted prior

The previous inference results are all based on almost com-
plete ignorance of dependency between hypocenter location
and the slip area (asperity). However, previous studies (Mai
et al., 2005; Irikura and Miyake, 2011) suggested some con-
straints on the relative hypocenter location (Mai et al., 2005)
with respect to the asperity, and size of the asperity (Irikura
and Miyake, 2011).
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Figure 9. Posterior probability distributions of prediction uncertainty parameters (each PDF curve is scaled to have unit peak height for better
comparison).

In this section, we consider the following restrictions in
our inference analysis:

R-1. The elliptical patch is inside the dashed rectangle([L′,W ′] = 0.9×[L,W ]) shown in Fig. 1.

R-2. The area ratio of the elliptical patch (AR) is between 15
and 29 % of the fault plane area, i.e., 0.15< AR< 0.29.

R-3. The elliptical patch is not too elongated, i.e., the axis
ratio a

b
≤ 3.

R-4. The hypocenter is located outside but near the ellip-
tical patch, i.e., xh = (a+ 3ζh1)cos(2πζh2) and zh =
(b+ b 3

a
ζh1)sin(2πζh2) ∀(ζh1 ,ζh2) ∈ [0,1]2.

One of the advantages of having previous PC surrogate
models (which were built based on uninformative prior that
spans a wide range of feasible scenarios, i.e., minimal re-
strictions as in Table 2) is that the above four additional pa-
rameter restrictions can be efficiently performed a posteriori,
namely without the need for performing new model simula-
tions (Alexanderian et al., 2012).

To begin with, we first incorporate the above restrictions
into the Bayesian framework, namely by modifying the pre-
vious prior distribution (Eq. 14) as follows:

p∗(η)=



(
1
2

)7 4∏
l=1

1
σ 2
l

∀ξ ∈4,∀σ 2
l > 0

and all restrictions
are satisfied,

0 otherwise.

(16)

However, due to the strong restrictions listed above, the
support of the above prior probability distribution (Eq. 16)

turns out to be extremely limited in the parameter space
4, leading to computationally inefficient MCMC sampling
(since most of the samples drawn from a proposal distribu-
tion will end up not satisfying at least one of the restrictions
and thus zero prior probability). To mitigate the difficulty of
inefficient sampling due to restricted prior distribution, we
introduce a new layer of parameterization, mapping from
4 to restricted physical configurations. (Details on this new
mapping mechanism are given in Appendix B.)

Figure 12 shows the MCMC process of drawing random
samples from proposal distributions and calculates the re-
sulting posterior probability. Without additional restrictions
(orange path), the parameter vector ζ = ξ , and the whole pro-
cess reduces to the standard MCMC process we used in the
previous section. By introducing the new parameterization
process (see Algorithm 2), we are transforming the original
problem, which is based on PC parameter vector ξ , into a
new inference problem based on ζ (we denote ζ as the auxil-
iary random parameter vector hereafter, to distinguish it from
the PC parameter vector ξ ). This transformation is based on
the mapping from ζ to ξ (i.e., ξ = ξ(ζ )) via their commonly
associated physical configuration. For clarity, we formulate
the new ζ based Bayesian problem as follows:

p(η∗|d)∝ (17)

[(
1
2

)7 4∏
l=1

1
σ 2
l

]
Nobs∏
j=1

1√
2πσ 2

l(j)

exp

(
− (dj − d̃j (ξ(ζ )))

2

2σ 2
l(j)

)
∀ζ ∈4,∀σ 2

l > 0,

0 otherwise.

where η∗ = (ζ1,ζ2, . . ., ζ7,σ
2
1 ,σ

2
2 , . . .,σ

2
4 )
T .
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Figure 10. Prior (dashed black, derived from uniform ξ distribution in 4) and posterior (solid blue) distributions of physical fault plane
configuration parameters. The bottom right panel shows the inferred fault plane configuration.

Following the same analysis as discussed before, we show
the inference results under restrictions in Fig. 13. Note that
the prior distributions of those physical parameters are differ-
ent from those in Fig. 10, as the new ones are derived from
uniformly distributed auxiliary random vector ζ ∈4, instead
of PC parameters ξ ∈4. Nevertheless, we see very consis-

tent results of hypocenter location, as well as the location of
the elliptical patch, compared with those in Fig. 10. The area
ratio AR, though larger than the previous inferred value, still
favors the lower end of the prescribed parameter range. The
elliptical patch ends up with a larger area and longer semi-
major axis (compared to the results in Figs. 10 and 11). These

Geosci. Model Dev., 11, 3071–3088, 2018 www.geosci-model-dev.net/11/3071/2018/



H. Cruz-Jiménez et al.: Bayesian inference of earthquake rupture models 3081

2 [km]

X

Z

Surface

L=27 [km]

W
=1

0 
[k

m
]

Figure 11. Inferred fault plane configuration with MCMC chain
starting from the “symmetric” counterpart configuration.

differences are directly stemming from restrictions R-2 and
R-3.

Though it is not obvious to see from Fig. 13, the re-
stricted Bayesian MCMC process is indeed aware of the ex-
istence of the “symmetric” counterpart configuration. Fig-
ure 14 shows the restricted Bayesian MCMC sample chains
of both the hypocenter (Fig. 14a) and elliptical patch center
(Fig. 14b). It is seen that despite the fact the hypocenter sam-
ples are mostly clustered around xh = 5 km, there is a sam-
ple cloud on the opposite side (xh =−5 km), corresponding
to the “symmetric” counterpart configuration discussed be-
fore. The sample cloud of the elliptical center also shows bi-
modal distributions, with primary cloud on the left (xc < 0)
and secondary “symmetric” counterpart on the right (around
xc = 5 km). The correspondence between xh and xc is shown
in Fig. 14c, from which it is seen that when xh is positive,
xc is more likely to be negative, and vice versa, suggesting
that hypocenter and ellipse center are on the opposite side of
the fault plane, as previous inference results suggested. Note
that in this restricted Bayesian MCMC sampling, the total
number of samples remains 106. The ability to observe the
“symmetric” counterpart clouds is probably due to the fact
that by introducing the auxiliary parameter ζ , we dramati-
cally shrunk the sampling space (it is only a small subspace
of the original unrestricted parameter space). As mentioned
before, introducing the auxiliary parameter ζ leads to signif-
icant efficiency improvement in the MCMC sampling pro-
cess.

4.4 Comparing PGVs

We summarize the Bayesian analysis by comparing PC-
predicted PGV responses to the three inferred fault plane
configurations discussed above with the reference GMPE
curve (see Fig. 15 and Table 3). We observe that all three
configurations lead to a relatively close match between PC
predictions and the reference GMPE curve. By comparing
either the root mean square (rms) error or the relative rms
error (see Table 3), we conclude that the red dots (corre-
sponding to the unrestricted inference in Fig. 11) clearly

show larger discrepancy from the GMPE curve, suggesting
smaller likelihood compared to the other two, consistent with
our Bayesian analysis. When comparing the blue and green
dots (unrestricted inference in Fig. 10 versus restricted infer-
ence in Fig. 13), the former seems to be slightly better, which
is expected because of the additional flexibility in fitting the
GMPE curve. Nevertheless, it might be better to report the re-
stricted inference results (configuration in Fig. 13), as it satis-
fies all the restrictions learned from previous studies while re-
taining plausible agreement with the reference GMPE curve.

5 Conclusions

An earthquake rupture model was adopted to explore the
stochastic dependence of ground motion (in terms of PGVs)
on random fault plane configurations. Thanks to the ability to
generate two independent source model simulation ensem-
bles with 8000 members each, we were able to build suc-
cessful PC surrogate models to assess PGV responses over
the virtual network ofNobs = 56 stations from one ensemble,
and then to validate the quality of PC models on the other.
Our statistical analysis showed that the two 8000-member
LHS ensembles of source model simulations are adequate
to represent the underlying PGV distributions at all stations,
as they closely match with PC-predicted distributions over a
much larger sample set.

A global sensitivity analysis of PC surrogate models was
conducted. The analysis revealed that the source model PGV
response is primarily sensitive to the hypocenter location,
and much less sensitive to properties of the asperity patch,
especially at stations far away from the fault plane (in terms
of the RJB distance). While this holds true for all stations, it
is noted that asperity patch properties still carry considerable
impact (20–30 % associated variability) on PGV responses at
stations close to the fault plane, and even more influence (ad-
ditional 10 % variability) if one takes into consideration the
interaction between asperity patch and hypocenter location.

Our analysis of PGV variabilities indicated that one needs
to be cautious when interpreting PGVs at near-fault-plane
stations, as they are more prone to higher model noise. This is
supported by the Bayesian inference analysis, in which four
independent model noise parameters (σ 2

l for l = 1,2,3,4)
were introduced and assigned to four groups of observational
stations, depending on their RJB distances away from the
fault plane. The Bayesian inference results clearly showed
the decreasing trend of noise parameters (σ 2

l values) when
moving away from the fault plane (see Fig. 9). Further re-
finement of the noise parameter profile along the RJB dis-
tance, though desired, is prohibited by the limited number of
available observational stations.

We conducted both unrestricted and restricted Bayesian
inference analyses to identify the chosen GMPE reference
curve. The key findings are as follows. (1) Given the sta-
tion distribution (Fig. 2) in this study, it is more likely to
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Figure 12. Flow chart demonstrating the random sampling process and the calculation of posterior probability in MCMC. The orange path
corresponds to unrestricted sampling process, whereas the blue path incorporates additional restrictions on fault plane configurations. Note
that Y denotes the fault plane configuration vector in the physical domain, e.g., Y = (AR,xh,zh,a,θ,xc,zc)

T .

have the hypocenter located in the lower right quadrant of the
fault plane, and the elliptical patch centered in the lower left
quadrant. (2) Due to the considerable “symmetry” presented
by those Nobs stations, the most profound fault plane config-
uration, which best reproduce the reference GMPE predic-
tions, can potentially have a “symmetric” twin configuration,
especially for the hypocenter location. (3) The restricted in-
ference results remain consistent with the unrestricted ones,
with slightly more deviation from the chosen GMPE refer-

ence curve. (4) Most importantly, our analyses suggest that
the hypocenter and slip patch cannot be in the near-surface
area of the fault, and they need to be some distance away
from each other in order to produce the proper seismic radia-
tion pattern, including on-fault directivity. Otherwise, the re-
sulting near-source waveforms, and hence PGVs, would not
match with GMPE results. This is consistent with the find-
ings of Mai et al. (2005).
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Figure 13. Prior (dashed black, derived from uniform ζ distribution in 4) and posterior (solid blue) distributions of physical fault plane
configuration parameters in restricted inference. The bottom right panel shows the inferred fault plane configuration.

The analyses and findings in this study provide useful in-
sights on how near-source ground shaking (and its variabil-
ity) depends on random fault rupture configurations. Inter-
estingly, even very simple source models (with elliptical slip
patches) are able to generate shaking distributions that well
reproduce empirical predictions. To better reproduce the cho-

sen GMPE reference curve, it might be beneficial to consider
two or more asperity patches, instead of one in this study, in
order to reduce the hypocenter location influence and in re-
turn increase the impact of asperity properties. Another po-
tential improvement can be made by refining the station net-
work. As mentioned earlier, the Bayesian inference is pri-
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Table 3. Comparison of PC-predicted PGVs of different inferred configurations with the reference GMPE curve. Unrestricted-1 and -2
correspond to inferences in Figs. 10 and 11, respectively. Each inferred configuration leads to PGV predictions in Fig. 15, as indicated by
different colors.

Inference ε =
√∑Nobs

j=1 (Q̃j−QGMPE
j )2

Nobs
r =

√
1

Nobs

∑Nobs
j=1

(
Q̃j−QGMPE

j

QGMPE
j

)2

Unrestricted-1 (blue) 1.1135 0.3395
Unrestricted-2 (red) 1.7413 0.3993
Restricted (green) 1.4564 0.3702

Figure 14. Restricted Bayesian MCMC sample chains of the
hypocenter (a) and elliptical patch center (b); panel (c) shows the
correspondence between xh and xc chains.

marily limited by the number of available stations at which
PGVs are reported. By increasing the number of PGV report-
ing stations, one may improve the Bayesian inference results
(e.g., removing the ambiguity in inferring the elliptical patch
location).

 RJB distance [km]
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PG
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GMPE: Boore & Atkinson (2008)
 ' SD(GMPE)
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PC: unrestricted inference (symmetric)
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Figure 15. Comparison of PC-predicted PGV responses with afore-
mentioned three inferred fault plane configurations with the refer-
ence GMPE curve. Dashed lines are standard deviation bounds of
GMPE predictions.

Code and data availability. The COMPSYN code (Spudich and
Xu, 2003) employed in this study has recently been made available
at https://www.github.com/usgs; the rupture model simulation data
in this study are available upon request.
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Appendix A: Mapping from PC random parameters to
physical parameters

Algorithm 1 Unrestricted mapping – PC random parameter
ξ to physical parameters: Y =M1(ξ)

1: Input ∀ξ = (ξ1,ξ2, . . . , ξ7)T ∈ 4

2: AR = 0.05 + 1
2 (ξ1 + 1)(0.29 − 0.05) {Map ξ1 to area ratio}

3: xh = −L
2 + 1

2 (ξ2 + 1)L {Map (ξ2,ξ3) to hypocenter location
(xh,zh)}

4: zh = −W
2 + 1

2 (ξ3 + 1)W

5: amin =
√

AR·L·W
π {Calculate the lower bound of a from AR

above}
6: a = amin + 1

2 (ξ4 + 1)(L
2 − amin) {Map ξ4 to a, and calculate

b}
7: b = AR·L·W

πa

8: if zr
max(a,b,30◦) > W

2 then
9: Solve Eq. (A7) for θ∗

10: let θ̂ = θ∗ {Calculate maximum feasible rotation angle θ̂}
11: else
12: let θ̂ = 30◦ {Prescribe maximum feasible rotation angle

otherwise}
13: end if
14: θ = −θ̂ + θ̂ (ξ5 + 1) {Map ξ5 to rotation θ}
15: Plug (a,b,θ) into Eq. (A4) to calculate xr

max and zr
max

16: xc ∈ [xmin
c ,xmax

c ] = [−L
2 + xr

max, L
2 − xr

max]
17: zc ∈ [zmin

c ,zmax
c ] = [−W

2 + zr
max, W

2 − zr
max]

18: xc = xmin
c + 1

2 (ξ6 + 1)(xmax
c − xmin

c ) {Map (ξ6,ξ7) to ellipse
center (xc,zc)}

19: zc = zmin
c + 1

2 (ξ7 + 1)(zmax
c − zmin

c )

20: return Y = (AR,xh,zh,a,θ,xc,yc)
T {Return parameter

vector in the physical domain}

Let a and b be the lengths of semi-major and minor axes,
respectively, of the elliptical patch considered in the fault
plane configuration discussed in Sect. 2, and AR be the area
ratio defined by AR= πab

LW
(here, L= 27 km andW = 10 km

are the length and width of the fault plane). The elliptical
patch centered at the origin (xc = 0 and zc = 0, note the z
axis is pointing downwards as shown in Fig. 1), when not ro-
tated (meaning θ = 0, the semi-major axis align with x axis),
can be expressed as[
x

z

]
=
[
a cosβ
b sinβ

]
where −π ≤ β ≤ π. (A1)

If the elliptical patch is rotated by θ ∈ [−30◦,+30◦] (a
positive angle denotes clockwise rotation), then the ellipse
is given by

[
xr

zr

]
=
[

cosθ −sinθ
sinθ cosθ

][
x

z

]
(A2)

=
[

cosθ −sinθ
sinθ cosθ

][
a cosβ
b sinβ

]
=
[
a cosθ cosβ − b sinθ sinβ
a sinθ cosβ + bcosθ sinβ

]
.

To ensure the resulting elliptical patch is completely con-
fined within the fault plane, we first find the maximum extent
of the ellipse in both x and y directions. We first calculate the
following two β∗ values:

∂xr

∂β
=−a cosθ sinβ − b sinθ cosβ = 0

⇒ β∗x = tan−1
(
−b
a

tanθ
)

(A3)

∂zr

∂β
=−a sinθ sinβ + bcosθ cosβ = 0

⇒ β∗z = tan−1
(
b

a

1
tanθ

)
.

Next, by substituting the above β∗x and β∗z into Eq. (A2),
we have

xrmax = |a cosθ cosβ∗x − b sinθ sinβ∗x | (A4)
zrmax = |a sinθ cosβ∗z + bcosθ sinβ∗z |.
These are the maximum extents of the ellipse in x and y di-
rections, respectively.

When the ellipse is not centered at the origin (xc 6= 0
and/or zc 6= 0), the following conditions need to be satisfied:

|xc| + xrmax ≤
L

2
(A5)

|zc| + zrmax ≤
W

2
,

which leads to

|xc| ∈
[

0,
L

2
− xrmax

]
(A6)

|zc| ∈
[

0,
W

2
− zrmax

]
.

Note that the above constraint on xc is always valid, since
xrmax ≤ a ≤ L

2 , while the zc constraint requires more treat-
ment as zrmax can be greater than W

2 under some rotation an-
gle θ and semi-major axis a. To ensure that zrmax ≤ W

2 , we
first check if the prescribed upper bound rotation (30◦) is fea-
sible. If not, we solve the following equation for θ∗, which
corresponds to the maximum feasible rotation angle given a
and AR:

zrmax =
∣∣a sinθ∗ cosβ∗z (θ∗,a,AR) (A7)

+bcosθ∗ sinβ∗z (θ∗,a,AR)
∣∣= W

2
,

and define the upper bound of the rotation angle as

θ̂ =min(θ∗(PE,a),30◦). (A8)
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The resulting rotation angle parameter θ is then assumed to
be uniformly distributed over [−θ̂ , θ̂ ].

The mapping from ξ to physical parameters is outlined in
the Algorithm 1. With the prior assumption of uniform dis-
tribution of ξ in 4, the corresponding prior distributions of
each physical parameter are shown in Fig. 10 (dashed black
curves).

Appendix B: Restricted mapping

We introduce the auxiliary parameter vector ζ ∈4 and de-
sign the following mapping process to generate fault plane
configuration samples that satisfy our prior configuration re-
strictions. For clarity, we list again the four restrictions be-
low:

R-1. The elliptical patch is inside the dashed rectangle
([L′,W ′] = 0.9×[L,W ]) shown in Fig. 1.

R-2. The area of the elliptical patch (AR) is between 15 and
29 % of the fault plane area, i.e., 0.15< AR< 0.29.

R-3. The elliptical patch is not too elongated, i.e., a
b
< 3.

R-4. The hypocenter is located outside but near the ellip-
tical patch, i.e., xh = (a+ 3ζh1)cos(2πζh2) and zh =
(b+ b 3

a
ζh1)sin(2πζh2) ∀(ζh1 ,ζh2) ∈ [0,1]2.

The mapping process is similar to the one in Algorithm 1,
with necessary modifications to satisfy the above conditions.
We outline the constrained mapping in Algorithm 2. Note
that there is one additional condition needs to be verified,
i.e., whether or not the hypocenter is inside the fault plane,
as it is not guaranteed by the mapping process (this is also
indicated in Fig. 12).

Algorithm 2 Restricted mapping – auxiliary parameter vec-
tor ζ to physical parameters: Y =M2(ζ )

1: Input ∀ζ = (ζ1,ζ2, . . . , ζ7)T ∈ 4

2: [L′,W ′] = 0.9 × [L,W ] {Set the restricted rectangle
dimension}

3: [AR∗
l
,AR∗

u] = [ 0.15
0.81 ,0.29]

{Calculate area ratio range w.r.t
[
L′,W ′], the upper bound (0.29)

corresponds to the maximum circle in [L′,W ′]
}

4: AR∗ = ARl + 1
2 (ζ1 + 1)

(
AR∗

u − AR∗
l

)
{Map ζ1 to temporary

area ratio AR∗}

5: amin =
√

AR∗·L′·W ′
π {Calculate the lower bound of a from

AR∗}
6: a = amin + 1

2 (ζ4 + 1)(L′
2 − amin) {Map ζ4 to a, and calculate

b}
7: b = AR∗·L′·W ′

πa

8: AR = πab
L·W {Calculate area ratio w.r.t the original rectangle

[L,W ]}
9: xh =

(
a + 3 ζ2+1

2

)
cos

(
2π

ζ3+1
2

)
10: zh =

(
b + b 3

a
ζ2+1

2

)
sin
(

2π
ζ2+1

2

)
{Map (ζ2,ζ3) to hypocenter location (xh,zh), note the resulting
(xh,zh) can be outside the fault plane, in which case the
posterior probability is set to zero.

}

11: if zr
max(a,b,30◦) > W ′

2 then
12: Solve Eq. (A7) for θ∗ (using AR∗) {Calculate maximum

feasible rotation angle θ̂}
13: let θ̂ = θ∗
14: else
15: let θ̂ = 30◦ {Prescribe maximum feasible rotation angle

otherwise}
16: end if
17: θ = −θ̂ + θ̂ (ζ5 + 1) {Map ζ5 to rotation θ}
18: Plug (a,b,θ) into Eq. (A4) to calculate xr

max and zr
max

19: xc ∈
[
xmin

c ,xmax
c

]
=
[
−L′

2 + xr
max, L′

2 − xr
max

]
20: zc ∈

[
zmin

c ,zmax
c

]
=
[
−W ′

2 + zr
max, W ′

2 − zr
max

]
21: xc = xmin

c + 1
2 (ζ6 + 1)

(
xmax

c − xmin
c

)
{Map (ξ6,ξ7) to

ellipse center (xc,zc)}
22: zc = zmin

c + 1
2 (ζ7 + 1)

(
zmax

c − zmin
c

)
23: return Y = (AR,xh,zh,a,θ,xc,yc)

T {Return parameter
vector in the physical domain}
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