Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4307-2017
https://doi.org/10.5194/gmd-10-4307-2017
Model evaluation paper
 | 
29 Nov 2017
Model evaluation paper |  | 29 Nov 2017

Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module

Abigail C. Snyder, Robert P. Link, and Katherine V. Calvin

Related authors

Uncertainty-informed selection of CMIP6 Earth System Model subsets for use in multisectoral and impact models
Abigail Snyder, Noah Prime, Claudia Tebaldi, and Kalyn Dorheim
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-41,https://doi.org/10.5194/esd-2023-41, 2024
Preprint under review for ESD
Short summary
The need for carbon emissions-driven climate projections in CMIP7
Benjamin Mark Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Seferian, Bjørn Hallvard Samset, Detlef van Vuuren, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2023-2127,https://doi.org/10.5194/egusphere-2023-2127, 2023
Short summary
STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations
Claudia Tebaldi, Abigail Snyder, and Kalyn Dorheim
Earth Syst. Dynam., 13, 1557–1609, https://doi.org/10.5194/esd-13-1557-2022,https://doi.org/10.5194/esd-13-1557-2022, 2022
Short summary
Modeling land use and land cover change: using a hindcast to estimate economic parameters in gcamland v2.0
Katherine V. Calvin, Abigail Snyder, Xin Zhao, and Marshall Wise
Geosci. Model Dev., 15, 429–447, https://doi.org/10.5194/gmd-15-429-2022,https://doi.org/10.5194/gmd-15-429-2022, 2022
Short summary
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020,https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary

Related subject area

Biogeosciences
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024,https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024,https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024,https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
A model of the within-population variability of budburst in forest trees
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024,https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024,https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary

Cited articles

Baldos, U. L. C. and Hertel, T. W.: Looking back to move forward on model validation: insights from a global model of agricultural land use, Environ. Res. Lett., 8, 034024, https://doi.org/10.1088/1748-9326/8/3/034024, 2013.
Beckman, J., Hertel, T., and Tyner, W.: Validating energy-oriented CGE models, Energ. Econ., 33, 799–806, 2011.
Calvin, K., Wise, M., Kyle, P., Clarke, L., and Edmonds, J.: A Hindcast Experiment Using the GCAM 3.0 Agriculture and Land-use Module, Climate Change Economics, 8, 1750005, https://doi.org/10.1142/S2010007817500051, 2017.
Clarke, L., Lurz, J., Wise, M., Edmonds, J., Kim, S., Smith, S., and Pitcher, H.: Model documentation for the minicam climate change science program stabilization scenarios: Ccsp product 2.1 a, Pacific Northwest National Laboratory, PNNL-16735, 2007.
Download
Short summary
Experiments conducting a model forecast for a period in which observational data are available are rarely undertaken in the integrated assessment model (IAM) community. When undertaken, results are often evaluated using global aggregates that mask deficiencies. Comparing land allocation simulations in GCAM with FAO observational data from 1990 to 2010, we find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs with global supply constraints similar to GCAM.