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Abstract. Hindcasting experiments (conducting a model
forecast for a time period in which observational data are
available) are being undertaken increasingly often by the in-
tegrated assessment model (IAM) community, across many
scales of models. When they are undertaken, the results are
often evaluated using global aggregates or otherwise highly
aggregated skill scores that mask deficiencies. We select a
set of deviation-based measures that can be applied on differ-
ent spatial scales (regional versus global) to make evaluating
the large number of variable–region combinations in IAMs
more tractable. We also identify performance benchmarks
for these measures, based on the statistics of the observa-
tional dataset, that allow a model to be evaluated in absolute
terms rather than relative to the performance of other mod-
els at similar tasks. An ideal evaluation method for hindcast
experiments in IAMs would feature both absolute measures
for evaluation of a single experiment for a single model and
relative measures to compare the results of multiple exper-
iments for a single model or the same experiment repeated
across multiple models, such as in community intercompar-
ison studies. The performance benchmarks highlight the use
of this scheme for model evaluation in absolute terms, pro-
viding information about the reasons a model may perform
poorly on a given measure and therefore identifying opportu-
nities for improvement. To demonstrate the use of and types
of results possible with the evaluation method, the measures
are applied to the results of a past hindcast experiment fo-
cusing on land allocation in the Global Change Assessment
Model (GCAM) version 3.0. The question of how to more
holistically evaluate models as complex as IAMs is an area
for future research. We find quantitative evidence that global
aggregates alone are not sufficient for evaluating IAMs that
require global supply to equal global demand at each time

period, such as GCAM. The results of this work indicate it is
unlikely that a single evaluation measure for all variables in
an IAM exists, and therefore sector-by-sector evaluation may
be necessary.

1 Introduction

Integrated assessment models (IAMs) couple human and
physical Earth systems to explore the impacts of economic
and environmental policies (Parson and Fisher-Vanden,
1997; Parson et al., 2007). IAMs are usually calibrated to
a historical base year and simulate forward in time by in-
corporating changes in quantities such as population, GDP,
technology, and policy to produce outputs that include land
use, emissions, and commodity prices. Hindcast experiments
use a model to produce a forecast simulation over a time pe-
riod for which observational data are available. The ability
to compare simulation data with observational data presents
new opportunities for understanding a model’s strengths and
identifying avenues for improvement, and raises new re-
search questions to explore. A variety of hindcast studies on
IAMs of varying scale have used different metrics for evalua-
tion studies, often driven by the research question of interest
(Calvin et al., 2017; Fujimori et al., 2016; Baldos and Her-
tel, 2013; Beckman et al., 2011; van Ruijven et al., 2010b,
a; Kriegler et al., 2015). However, no community standard
for evaluation of IAMs currently exists, making it more dif-
ficult to compare results of hindcast experiments from dif-
ferent models. This work outlines goals for evaluating IAM
hindcast experiments.

The Global Change Assessment Model version 3.0
(GCAM; Calvin et al., 2011; Kim et al., 2006; Clarke et al.,
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2007; Kyle et al., 2011) was recently used to conduct a hind-
cast experiment (Calvin et al., 2017). Calvin et al., hereafter
referred to as Paper 1, used skill scores (Reichler and Kim,
2008; Taylor, 2001; Schwalm et al., 2010) to compare per-
formance of the land use module of GCAM under struc-
turally different operating assumptions to an observational
dataset. The different scenarios represent different extremes
of information for decision making given to the GCAM eco-
nomic agents. One finding of this hindcast experiment with
GCAM 3.0 was that the highly aggregated nature that makes
the skill scores examined convenient also masks important
deficiencies, limiting the insight they can provide for model
development. A key question raised by this experiment, and
which this work examines in greater detail, is how to actually
define “improvement”. The ease of use of skill scores has to
be balanced with illuminating as many model deficiencies as
possible. Only once a definition of improvement has been de-
cided upon can parameter estimation studies be undertaken,
as ranging over parameter values is only a useful task if one
can quantitatively identify the parameter values that give the
best agreement with historical data.

From this work, four goals for development of an IAM
hindcast evaluation scheme were identified. A desirable eval-
uation method will provide information about the absolute
performance of a single model run and may be used to mea-
sure the relative performance of multiple model runs (from a
single model or across many models of the same variables).
Additionally, we seek a method that can describe multiple
aspects of model performance on multiple scales, provid-
ing a flexible organizational structure for analyzing the large
amount of data generated by IAMs while investigating par-
ticular hypotheses of interest. And finally, the method should
include at least one metric that can be used as a cost func-
tion in future Monte Carlo-style parameter estimation exper-
iments. Given these goals, it is unlikely that a single metric
could be arrived at to satisfy all four. Rather, a condensed
set of related metrics that together accomplish all four goals
is sought for evaluating IAMs. The result of applying the set
of metrics to model runs may be interpreted to identify future
avenues for model improvement of a particular IAM. The im-
plementation of such improvements is outside the scope of
this paper.

Our evaluation goals are not independent of each other.
A metric that provides absolute performance insight can be
calculated for multiple model runs and compared to provide
relative performance information. A metric evaluating a par-
ticular aspect of model performance may be used to estimate
parameters to improve that aspect of model performance.

Several other works in the IAM hindcasting literature
(Baldos and Hertel, 2013; Beckman et al., 2011; van Rui-
jven et al., 2010b, a; Kriegler et al., 2015; Fujimori et al.,
2016) do not meet all four of our goals. For example, in the
hindcast experiment performed for the energy component of
the AIM/CGE (Asia-Pacific Integrated Models/Computable
General Equilibrium) model, Fujimori et al. present two

statistics: a regression technique and an error statistic for
global aggregates. The regression technique identifies re-
gions and variables for which model performance may be
improved. While the regression technique can produce de-
sirable region-specific information about model performance
and shortcomings for multiple variables, it unfortunately can-
not be leveraged as a performance metric for future Monte
Carlo-style parameter estimation exercises. It is also difficult
to efficiently and comprehensively compare the regression
results of multiple different scenarios to evaluate whether
one scenario represents an overall better performance than
another.

A common finding to both of these hindcast experiments
is that global performance of a variable is often substantially
better than the performance in individual regions.Therefore,
while this work will explore global aggregates as previous
analyses did, we find that global aggregates alone are not suf-
ficient to evaluate IAMs that require global supply to equal
global demand at each time period. GCAM is only one ex-
ample of such an IAM.

The analysis scheme outlined below is designed with the
four evaluation goals in mind and focuses on deviation-based
measures of model performance and the extent of conclu-
sions that may be drawn from them. While many other model
performance statistics exist, many operate on a pass–fail ba-
sis and therefore provide little insight into the reasons a
model may fail. The scheme is then used to reexamine the
land use data from Paper 1 to demonstrate application of the
evaluation method and the resulting expanded results relative
to application of skill scores.

2 Evaluation methods

A proposed scheme to meet the four evaluation goals inspired
by past IAM hindcasting experiments is outlined below. This
work explores the extent of conclusions that may be drawn
from the root mean square error (RMSE) measure of model
performance and finds that different uses of RMSE allow
the possibility of addressing all four evaluation goals. While
arguments against RMSE in favor of mean absolute error
(MAE) exist (Legates and McCabe, 1999; Willmott and Mat-
suura, 2005), RMSE is chosen because it can be decomposed
into errors from different sources (Murphy, 1988; Weglar-
czyk, 1998; Taylor, 2001). If only a single deviation measure
were being examined, the types of conclusions that could be
drawn would not differ appreciably whether RMSE or MAE
is used. However, the ability to decompose RMSE provides
unique opportunities to understand different aspects of simu-
lation performance.

Indices of agreement are popular in the literature and gen-
erally involve the comparison of a deviation measure be-
tween simulated and observed time series with some refer-
ence measure (Nash and Sutcliffe, 1970; Garrick et al., 1978;
Willmott, 1981; Legates and McCabe, 1999; Willmott et al.,
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2012). Common reference measures include deviation mea-
sures between the observed data points and the mean of ob-
servations, or deviation measures between the observed data
points and a baseline or naive model of the variable being
simulated. Consistent with the idea of examining different
reference measures, we normalize the root mean square er-
ror in different ways to capture different facets of model
performance. Other members of the geoscientific modeling
community are also moving to assess model performance
with multiple normalized statistics, although we differ in spe-
cific techniques (Luo et al., 2012). These indices of agree-
ment are particularly useful for evaluating model scenario
performance in absolute terms due to the informative per-
formance benchmarks outlined in Sect. 2.3. Other goodness-
of-fit statistics such as correlation or a reduced chi-squared
statistic were not chosen because they offer less information
to guide improvements when a model displays poor perfor-
mance.

2.1 Background: root mean square error
decomposition

In the statistics outlined below, the value of variable i in re-
gion j at timestep t is denoted by sijt for simulation and oijt
for observation. Each time series contains N discrete time
points. The deviation measure of error chosen for model eval-
uation is the root mean square error, denoted for variable i in
region j by

eij =

√√√√ 1
N

N∑
t=1

(
s
ij
t − o

ij
t

)2
. (1)

Root mean square error is the total deviation error in the
model, decomposed as follows:

e2
ij = b

2
ij + v

2
ij , (2)

where bij represents bias and vij represents errors due to
variability. Bias of variable i in region j is given by

bij = sij − oij , (3)

where sij is the mean of the simulated time series and oij
is the mean of the observed time series. The errors due to
variability are those remaining after bias is accounted for by
subtracting the means of the simulation and observation. The
centered root mean square error quantifies this error and is
denoted by

vij =
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ij
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−
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ij
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)]2
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2.2 Metrics for model evaluation

Past hindcast experiments in integrated assessment models
have implied that errors across regions cancel each other out,

leading to better performance at the global level than in most
individual regions (Calvin et al., 2017; Fujimori et al., 2016).
We define the time series for the global region, G, by concate-
nating the time series for each individual region. Therefore,
for J total regions whose time series each contain N data
points, the global time series contains JN data points. To
quantify the extent to which cancellation across regions oc-
curs, bias is examined at the global level in two ways. First,
the bias for the global region is examined, noting that it is
mathematically equivalent to averaging the individual region
biases:

biG = siG− oiG =
1
J

J∑
j=1

bij . (5)

Second, we define global absolute bias as follows:

|biG| =
1
J

J∑
j=1
|bij |. (6)

By comparing the magnitudes of Eqs. (5) and (6), the extent
of cancellation occurring across regions may be quantified
for each variable i.

On a regional level, normalization provides context for in-
terpreting the errors in Sect. 2.1. The conventional normal-
ization of root mean square uses the standard deviation of
the observed time series, σ ijo . Normalized RMSE of variable
i in region j is given by

e′ij =
eij

σ
ij
o

. (7)

The quantity e′ij gives a dimensionless measure: total error as
a fraction of the standard deviation of observation of variable
i in region j . Similarly, the centered RMSE may be normal-
ized by the standard deviation of observation, to give the er-
rors due to variability as a fraction of the observed standard
deviation. Normalized centered RMSE of variable i in region
j is given by

v′ij =
vij

σ
ij
o

. (8)

The normalization used in Eqs. (7) and (8) compares devi-
ation measures to the observed variance about the temporal
mean. However, that variance encompasses the trend line be-
havior. Therefore, we also normalize RMSE for variable i in
region j by the observed variance about the trend line, fol-
lowing the convention of comparing deviation measures to a
selected baseline to provide more targeted information about
model performance (Garrick et al., 1978; Willmott, 1984;
Legates and McCabe, 1999).

For each variable i in each region j , let ŷ(t) be the trend
line fitted to the observational data, with ŷt the values at the
discrete time steps considered. Then we define the standard
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deviation of observation about the trend line as

σ̂
ij
o =

√√√√ 1
N

N∑
t=1

[(
o
ij
t − ŷt

)
−

(
o
ij
t − ŷt

)]2

. (9)

For the true trend line, ŷ(t), the mean oijt − ŷt = 0. However,
in numerically fitting the trend line, the mean is often not
precisely 0. We can then define revised normalized RMSE
by normalizing with the standard deviation about the trend
line rather than about the time mean as follows:

êij =
eij

σ̂
ij
o

. (10)

One advantage of this refined measure is that êij penalizes
poor simulation of the observed trend line more heavily than
e′ij . Another advantage is that, if the trend line is believed
to be true to reality, the variance about the trend line will
encapsulate natural variations (such as those due to weather)
as well as observational uncertainty.

For the GCAM land use case study defined in Sect. 3.1,
FAO observational data for each crop–region combination
was individually detrended using the function loess.as from
the R package fANCOVA (Wang, 2010) to fit the LOESS
trend line, selecting the bias-corrected Akaike information
criterion (AICC) method for generating the span parameter
(Hurvich et al., 1998).

2.3 Informative performance benchmarks

While the time series statistics outlined in Sect. 2.1 have clear
values corresponding to perfect model performance (i.e., a
value of 0), specific criteria for acceptable and good model
performance are more difficult to define objectively. In this
section, we outline ways in which to contextualize the values
achieved by each statistic outlined above to identify opportu-
nities for model improvement.

For e′ij and eij , a helpful performance benchmark is de-
fined as

e′ij =
eij

σ
ij
o

< 1⇐⇒ eij < σ
ij
o . (11)

Recall that the definition of standard deviation is σ ijo =√
1
N

∑N
t=1

(
o
ij
t − o

ij
)2

. The right-hand side of this equation

is also what the root mean square error would be for a model
taking sijt = oij at each time step t . Satisfying Eq. (11) gives
some sense of whether total error is small enough without
achieving a perfect value of 0. It is popular to say that if
e′ij > 1, using the mean of the observed time series as a
model leads to better performance than the current model.
This interpretation is identical to that of the Nash–Sutcliffe
efficiency (Nash and Sutcliffe, 1970; Garrick et al., 1978;
Legates and McCabe, 1999). However, for a nonstationary
distribution of observations, the observed mean can only be

calculated after the simulation period and therefore cannot
be used as a model. When e′ij > 1, either the bias or the vari-
ability component of RMSE (or both) is too large. Therefore,
when e′ij > 1, it is most useful to examine whether v′ij < 1.
In this case, improving bias may allow the model to satisfy
Eq. (11).

3 A case study of GCAM 3.0 land allocation

The data described below and analyzed in Sect. 3.2 are from
the first GCAM land use system hindcast experiment, Paper
1. The land allocation data are reanalyzed using the method
outlined in Table 1 in order to determine whether this method
is more likely to achieve our four goals than the skill scores
originally used. This demonstration is why we have chosen to
reevaluate existing experiments rather than repeat or develop
new experiments in a more up to date version of GCAM.
The full complement of resulting statistics and figures are
available online with code and data; see the data availability
section.

3.1 GCAM background and data for reanalysis

GCAM is an integrated assessment model capturing the in-
teractions between human and Earth systems1. GCAM in-
cludes energy, economic, and land use sectors that interact
with each other and with a climate model. It is designed
for long-term forecasting and is typically operated in 5-year
timesteps. Model behavior is calibrated to a historical base
year using observational data, and forecasts evolve in time
from the base year. Therefore, social, economic, and environ-
mental policies in place during the base year are implicitly
reflected in GCAM’s performance. Policies that begin later,
or change over time, must be more thoughtfully included, of-
ten explicitly.

Full details of the GCAM land use system, including
equations, are provided in Wise et al. (2014) as well as in
the online documentation1. Full details of different aspects
of GCAM’s structure are published in a variety of papers
(Calvin et al., 2011; Kim et al., 2006; Clarke et al., 2007;
Kyle et al., 2011). Briefly, the land use system of GCAM has
a nested structure. In each subregion within a geopolitical re-
gion, a nested structure is implemented with data specific to
the subregion. The land allocation choice at each branch in
the nest is parameterized to reflect that subregion’s charac-
teristics and may vary in response to economic, policy, and
technological changes.

Economic agents in each subregion operate to maximize
the difference between revenue (including any taxes and sub-
sidies) and the cost of production. The land use system as-
sumes a distribution of costs, where the amount of land allo-
cated for each use is actually the probability that land type is
most profitable within its nest and avoiding winner-take-all

1Documentation available at http://jgcri.github.io/gcam-doc/.
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Table 1. Statistics for model evaluation

Abbreviation Description Normalized by Notes

biG global bias lacks absolute
performance info

|biG| global absolute bias lacks absolute
performance info

e′
ij

regional normalized standard deviation around
RMSE time mean of observation

v′
ij

regional normalized standard deviation around
centered RMSE time mean of observation

êij revised regional standard deviation around trend
normalized RMSE lline of observation

behavior. That is, land is allocated to various possible uses
via a logit distribution function at each branch of the nest.
All references to GCAM within this work may be assumed
to refer to GCAM version 3.0, unless otherwise specified.

Historical data prior to 1990 were used to calibrate
GCAM 3.0, and then GCAM was run for a period from 1990
to 2010 without using additional historical data (i.e., GCAM
is used to forecast agricultural land use from 1990 to 2010).
There are 9 GCAM crops (of 12) with historical data reported
by the United Nations Food and Agricultural Organization
(FAO; FAO, 2014) during the period 1990 to 2010. The same
analysis scheme outlined in Sect. 2 and demonstrated here
could just as easily be used to examine any variable output
by an IAM with historical data available for validation.

The reference setup of GCAM 3.0 (and all subsequent ver-
sions to date) for forecast into the 21st century uses smoothed
FAO projections of yields as exogenous yield input informa-
tion that is used by GCAM to simulate land allocation. The
smoothing is performed as a 5-year rolling average including
past and future years (i.e., the smoothed 2040 data point is
generated as the average of data from 2038 to 2042).

Because GCAM requires global supply to equal global de-
mand to solve for market prices at each time step, it is possi-
ble for GCAM economic agents to implicitly optimize land
allocation to meet global demand at minimum cost, even
though GCAM is a dynamic recursive rather than an opti-
mization model. When the economic agents are given unre-
alistic fore-knowledge of the impacts of weather events, for
example, this implicit optimization may become particularly
problematic. GCAM endogenously calculates a global mar-
ket price (where global supply equals global demand) dur-
ing the simulation period. This global market price is used to
set producer prices used by economic agents in profit calcu-
lations underlying land allocation decisions, and every land
use region shares the same global producer price. A global
market price is needed for model calibration in the base year.
Since such data do not currently exist, the USA producer
price is used as the global price for calibration. This choice
could lead to incorrectly incorporating or missing impacts of
policies like subsidies or crop insurance programs. On the

demand side, the price is sterilized in the GCAM calibration
procedure.

Paper 1 featured experiments designed to investigate the
possibility of unrealistic implicit optimization and examined
two extremes of exogenous yield inputs via different param-
eterizations. The extremes also emphasize different aspects
of the GCAM reference setup, and so the reference setup be-
havior is assumed to lie between the behaviors of the two
extremes. The first extreme features increased variability in
exogenous yield inputs compared to the GCAM reference.
This is referred to as the actual yield case: GCAM makes
planting decisions (allocates land) in 2005 based on know-
ing what the yield at the end of the year in 2005 will be, a
case of economic agents having unrealistic levels of infor-
mation for making planting decisions. There is no smoothing
at all, and there is no explicit memory of past years’ perfor-
mance. The other extreme features a lack of variability and
no updates to exogenous yield inputs during the simulation
period 1990–2010, as opposed to the reference setup. This
is referred to as the forecast yield case: a linear regression
is fit to the historical yields over 1961–1990 and extrapo-
lated linearly for the simulation period 1990–2010. There is
no variation about this linear trend and economic agents have
no fore-knowledge, contrasting the actual yield case.

To examine the impact of missing or incorrectly charac-
terizing a policy, Paper 1 examined the US Renewable Fuel
Standards implemented in 2005. The standards, among other
things, increased demand for corn. GCAM runs without any
implementation of the policy were compared with GCAM
runs in which the increased demand for corn was explicitly
included. Future scenarios interested in deeper analysis of the
impacts of the US Renewable Fuel Standards may use a more
detailed implementation or may make use of the metrics out-
lined in Sect. 2 to perform a Monte Carlo-style parameter
estimation for parameters related to the fuel standards.

These considerations result in the following four test cases
(scenarios) examined in Paper 1:
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Figure 1. Global bias, biG (Eq. 5). The black circle corresponds to bi,G = 0.

– GCAM makes annual land allocations given data for
population, income, and actual crop yields (denoted by
AY);

– GCAM makes annual land allocations given data for
population, income, and actual crop yields and includes
an estimate of the additional demand for corn result-
ing from the implementation of the US Renewable Fuel
Standards (denoted by AYB);

– GCAM makes annual land allocations given data for
population and income, but crop yields are forecasted
based on an annual time trend for the years 1961 to 1990
(denoted by FY);

– GCAM makes annual land allocations given data for
population and income, but crop yields are forecasted
based on an annual time trend for the years 1961 to
1990, and includes an estimate of the additional demand
for corn resulting from the implementation of the U.S.
Renewable Fuel Standards (denoted by FYB).

The simulated regional data in each of these four scenar-
ios are compared to data reported by the FAO (FAO, 2014)
during the period 1990 to 2010 for the nine GCAM crops
with FAO data available. Calvin et al. found that the case
FYB performed as well as or better than the other scenarios
across the skill scores considered: Reichler–Kim (Reichler
and Kim, 2008), normalized mean absolute error (Schwalm
et al., 2010; Luo et al., 2012), and Taylor skill (Schwalm

et al., 2010; Luo et al., 2012). Scenarios AY and AYB gener-
ally performed the worst.

3.2 Results

A selection of results demonstrating how the evaluation
method summarized in Table 1 can be used to analyze multi-
ple aspects of model performance at multiple scales and how
the metrics may be used to make the analysis of the large
amounts of data produced by IAMs more tractable are pre-
sented. The results presented were chosen both to illustrate
the general types of insights that may be drawn from appli-
cation of the evaluation scheme and to highlight the GCAM
areas of strong performance and weak performance, with the
full results for all variables on all scales by all metrics lying
somewhere in between the results presented in this section.
Each metric in Table 1 is used to reexamine the Paper 1 data,
demonstrating the interactive and complementary nature of
the metrics selected. With this approach, we are able to verify
and expand the previous GCAM land hindcast results arrived
at using skill scores in Paper 1. The analysis scheme does
appear to be more capable of achieving all four evaluation
goals than the skill scores. The full complement of resulting
statistics and figures are available online with code and data;
see data availability section for details.

Figure 1 shows the global bias, Eq. (5), which is equivalent
to the average of each individual region’s bias. Because it is
a signed quantity, a black circle is included at bi,G = 0 for
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visual reference. Each scenario models global supply well for
each crop with observational data available, as measured by
global bias biG. The primary exceptions are that the scenarios
AY (red) and AYB (green) model MiscCrop and OtherGrain
poorly. This is not surprising, given that each of those crops
is an aggregate of a large number of real-world crops, varying
across regions.

Figure 2 shows the global absolute bias, Eq. (6). For each
crop, the magnitude of the global absolute bias in Fig. 2 is
larger than the magnitude of the global bias in Fig. 1, indi-
cating that errors are canceling each other out across regions.
Because there are no regional constraints on supply to sup-
plement the requirement that global supply equal global de-
mand, there are numerous regional supply solutions that may
satisfy the global constraint. This provides ample opportu-
nity for error cancellation across regions in any integrated
assessment model with a similar global constraint.

The FYB scenario (purple) displays the smallest absolute
bias for all crops, with the exception of Rice and OtherGrain,
in Fig. 2. In other words, the FYB scenario is most successful
at modeling global supply when cancellation across regions
is prohibited.

The compensating errors across regions can be further
studied by examining the normalized RMSE, e′ij (Eq. 7), for
a single crop. Figure 3 displays the individual regional errors
for Wheat. A black circle is included to denote the perfor-
mance benchmark e′ij = 1 (Eq. 11). With the exception of
Southeast Asia, the forecast yield scenarios (FY, blue, and
FYB, purple) outperform the scenarios using actual yield
information (AY, red, and AYB, green). Scenarios FY and
FYB show that compensating performance is occurring: the
good performance in Canada, eastern Europe, and the USA
is balanced by the poorer performance in Australia, New
Zealand, India, Latin America, and Southeast Asia. Similar
trends hold when examining other crops.

To further understand the role of compensating errors in
GCAM land allocation, the role of bias as a contributing fac-
tor is examined. Because root mean square error decomposes
into bias and centered root mean square error (Eq. 2), a sense
of whether bias is too large can be gained from comparing
e′ij (Eq. 7) and v′ij (Eq. 8). If e′ij > 1 and v′ij < 1, bias may
be considered a problematic source of errors. This is gener-
ally what occurs in GCAM.

Figure 4 displays the normalized RMSE, e′ij , for each crop
in the United States. A black circle is included for e′ij = 1.
In the FYB scenario (purple), e′ij > 1 for every crop except
Wheat.

Figure 5 displays the normalized centered RMSE, v′ij , for
each crop in the United States. A black circle is included for
v′ij = 1.

The FYB scenario (purple) displays v′ij < 1 for all crops
except Rice and Root Tuber. Compared with the larger values
of e′ij in Fig. 4, this indicates that bias is a major contribut-
ing factor to performance issues. This general trend – that

scenario FYB performs best and that bias is the major con-
tributor to model performance issues for most crops – holds
across regions.

It would be preferential for the bias to be improved in-
trinsically through structural or parametric model changes,
rather than through bias-correction techniques. Therefore,
we examine which factors contribute to bias. The revised
normalized RMSE, êij (Eq. 10), compares GCAM perfor-
mance to variations of the observed time series about the
trend line. Figure 6 displays this metric for each crop in the
USA. A black circle is included for êij = 1. Each crop in
each scenario misses the trend line behavior. With the excep-
tion of Rice, scenario FYB (purple) comes closest to captur-
ing the trend line behavior. This result holds for most crops in
most regions. Therefore, scenario FYB is one possible start-
ing place in making structural improvements to GCAM.

To further examine the ways in which simulations may im-
prove at capturing trend lines, time series for corn and wheat
for multiple regions are depicted in Fig. 7a and b, respec-
tively. The black curves are FAO observational data for land
allocation in each region, and the colored time series corre-
spond to the different GCAM scenarios.

The time series for both corn and wheat illustrate a key is-
sue: GCAM tends to incorrectly simulate whether land allo-
cation should increase or decrease in time. The FYB scenario
for Wheat (Fig. 7b) tends to be the most accurate, consistent
with the results depicted in Fig. 6. It is of note that the actual
yield scenarios (AY, red, and AYB, green) are also suscepti-
ble to inaccurate discrimination between increasing and de-
creasing land allocation, showing that it is not improved by
economic agents in GCAM having perfect information about
year-end yields to make planting decisions.

One possibility for the incorrect direction of simulated
trends is that the parameters involved in the land allocation
decision may be improved, by changing the calibration pro-
cess and/or by using parameter estimation to adjust the logit
exponents governing competition. Another option may be to
explore the impacts of using different distributions to govern
competition.

That the AY (red) scenario displays different performance
than the AYB (green) scenario reinforces the importance of
careful implementation of policies: explicitly including the
effects of policies (such as in AYB) leads to different perfor-
mance than assuming policies are implicitly included in the
information provided to the model (as in AY, a case where
real-world yields that should implicitly reflect the increased
demand due to the US Renewable Fuel Standards).

Finally, the time series for corn in the former Soviet Union
and wheat in China both suggest an opportunity for struc-
tural changes to improve the land allocation performance of
GCAM. The yields for both of these crops display different
slopes during the simulation period than the historical pe-
riod. Therefore, the extension of the historical yield trends
used in the FY and FYB scenarios has no hope of correctly
capturing the different yield behavior during the simulation
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Figure 2. Global absolute bias, |biG| (Eq. 6).
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RMSE error with the standard deviation about the observed trend line for each crop.

period. In turn, GCAM has no hope of capturing the different
land allocation decisions in response to those yield changes.
In contrast to the FY and FYB scenarios, the AY and AYB
scenarios lead to GCAM’s land allocation being very respon-
sive to variability in yield inputs. One hypothesis is that this
is because the economic agents in GCAM have unrealistic
access to year-end harvest amounts when making their plant-
ing decisions. This local-yield input information may allow
GCAM to meet global demand without matching historical
data due to the lack of regional supply constraints.

3.3 GCAM-specific conclusions

Using the evaluation method outlined in Table 1, we expand
the results presented in Paper 1. Like many IAMs, GCAM re-
quires that global supply equal global demand for each com-
modity in each time period. The FYB scenario in GCAM
models global supply well, as measured by global bias biG
(Fig. 1). GCAM, at least, has no regional constraints on sup-
ply to supplement the global supply and demand constraint.
As a result, there are numerous regional supply solutions that
may satisfy the global constraint. This provides ample oppor-
tunity for error cancellation across regions, demonstrated in
Fig. 3.

We find that the main opportunity to improve land allo-
cation decisions in GCAM is to make structural and para-
metric changes to improve the trend line for each simulated

time series and therefore improve bias. The scenario using
yields forecasted from the historical period and modeling the
US Renewable Fuel Standards (scenario FYB) generally per-
forms the best across all metrics and is the most reasonable
starting point to begin model improvements. Specifically, up-
dating the yield forecast as new information becomes avail-
able each year in the simulation period would allow the yield
to capture changes occurring during the simulation period
while avoiding the over-responsiveness of the scenarios us-
ing actual yields as inputs (scenarios AY and AYB). Changes
to parameters, calibration methods, and data sources for pro-
ducer prices may also improve the land use system’s ability
to discern whether land allocation trend lines should increase
or decrease in time for a given crop–region combination. The
metrics in Table 1 may be used for parameter estimation stud-
ies. In using GCAM to forecast into the future (where an
AY scenario is not possible), providing the ability to adapt to
shifts in yield occurring during a simulation period and the
ability to better predict whether a land allocation trend line
should increase or decrease in response to a yield shift would
both be improvements.

Because the GCAM reference exogenous yield inputs lie
between the two extremes examined in Paper 1 and here,
one expects a hindcast experiment with the reference setup
to have errors between those of the AY and FY cases. How-
ever, because the reference scenario has exogenous yield in-
puts based on FAO forecasts of yields, it is possible that
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Figure 7. Time series for land allocated to corn (a) and wheat (b) in units of thousands of square kilometers across select regions. The black
time series in each panel represents FAO observational data. The colored time series correspond to different GCAM scenarios.

the reference scenario may perform substantially worse than
any of the cases examined in this work. This could occur if
FAO forecasts of yields are dramatically inaccurate. Because
planting decisions are not subject to the kind of “vintaging”
seen with power plant construction, it is unlikely that errors
will compound in unexpected ways. A planting decision (in
GCAM) only lasts for the year in which it occurs. A power
plant construction lasts for 30+ years. This lack of vintaging
makes it simpler to evaluate the land sector than other sectors
of GCAM. Therefore, while the evaluation method outlined
in this work can still be applied to sectors that feature vintag-
ing, the results must be interpreted much more carefully. It is
possible that additional metrics may have to be implemented
for sectors with vintaging, and rigorous studies designed to
specifically test the extent to which vintaging causes errors
to compound may be undertaken in the future.

4 Conclusions

Examination of past hindcasting exercises in the IAM com-
munity has suggested that global aggregate metrics are often
not well suited to evaluating IAM hindcast performance. This
work has outlined a suite of metrics designed to counteract
this problem and has demonstrated that the family of metrics
presented is able to provide richer insight into model perfor-
mance than global skill scores by reevaluating the results of
a past hindcast experiment in GCAM.

Further, applying the evaluation method outlined in Ta-
ble 1 allows insight into evaluating IAMs beyond GCAM.
While global results in GCAM are largely consistent with
observations, cancellation of errors is present at the global
level, a finding implied by previous hindcasting work in two
different IAMs (Calvin et al., 2017; Fujimori et al., 2016).
Any IAM requiring globally balanced supply and demand
without additional regional constraints will likely encounter
this same issue. This suggests a larger challenge in evaluat-
ing integrated assessment models: replicating global aggre-
gates is a necessary but in no way sufficient constraint on
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model performance. Indeed, many IAMs force global supply
to equal global demand, and so global aggregates of many
variables in IAMs simply reflect this forced behavior. There-
fore, a family of validating metrics is found to be necessary
in evaluation of IAM hindcast experiments. The option to
evaluate results both relatively and absolutely should lead to
more robust model improvements in the future by identifying
the best-performing scenarios for a single model, as well as
aid the IAM community in conducting hindcast intercompar-
ison studies.

A sector by sector application of a family of metrics may
be necessary for evaluation of an IAM hindcast experiment
as a whole. Future research into more tractable methods for
simultaneous evaluation of all IAM sectors without mask-
ing deficiencies as global aggregates do is necessary to de-
termine whether this is the case. Such work is complicated
by the lack of historical data against which to validate many
IAM variables. Additionally, one may question whether the
observational data being used for validation are reliable. Col-
lecting global economic data is difficult and there is no op-
portunity for repeated measurements to obtain measurement
uncertainty. When fitting trend lines to the FAO data for use
in the revised normalized RMSE metric, êij (Eq. 10), it be-
came clear that in at least some regions the data may not
be a reflection of reality. Namely, for some crops in Korea
and Japan (among other regions), there is almost no variation
about the trend line. There also was no available FAO data to
validate three crops and other land types modeled by GCAM.
Therefore, a better sense of observational uncertainty is nec-
essary before parameter estimation based on observational
data can take place.

Code and data availability. The data analyzed in this work are
publicly available at https://github.com/JGCRI/LandHindcastPaper.
This repository includes all input data, the R scripts for calculating
all statistics and the results of those calculations, and the R scripts
for generating all plots of statistics and the resulting plots. Results
from GCAM 3.0 simulations were used in this work. All GCAM re-
leases from 3.0 onward are available at https://github.com/JGCRI/
gcam-core/releases.
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