Articles | Volume 9, issue 8
Geosci. Model Dev., 9, 2881–2892, 2016
https://doi.org/10.5194/gmd-9-2881-2016
Geosci. Model Dev., 9, 2881–2892, 2016
https://doi.org/10.5194/gmd-9-2881-2016

Development and technical paper 26 Aug 2016

Development and technical paper | 26 Aug 2016

Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

Benjamin F. Jamroz and Robert Klöfkorn

Related subject area

Earth and Space Science Informatics
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020,https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020,https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020,https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Using SHAP to interpret XGBoost predictions of grassland degradation in Xilingol, China
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-59,https://doi.org/10.5194/gmd-2020-59, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

The 2012 Dynamical Core Model Intercomparison Project: available at: https://earthsystemcog.org/projects/dcmip-2012 (last access: 22 August 2016), 2012.
Baggag, A., Atkins, H., and Keyes, D.: Parallel Implementation of the Discontinuous Galerkin Method, in: Proceedings of Parallel CFD'99, 115–122, 1999.
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015.
Bermejo-Moreno, I., Bodart, J., Larsson, J., Barney, B., Nichols, J., and Jones, S.: Solving the compressible Navier-Stokes equations on up to 1.97 million cores and 4.1 trillion grid points, in: Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, 62:1–62:10, 2013.
Brömmel, D., Frings, W., and Wylie, B. J. N.: JUQUEEN Extreme Scaling Workshop 2015, Tech. Rep. FZJ-JSC-IB-2015-01, available at: http://juser.fz-juelich.de/record/188191 (last access: 22 August 2016), 2015.
Download
Short summary
The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement communication hiding data exchange in the High-Order Methods Modeling Environment (HOMME) for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. The presented approach produces significant performance and scalability gains in large-scale simulations.