Articles | Volume 9, issue 8
https://doi.org/10.5194/gmd-9-2881-2016
https://doi.org/10.5194/gmd-9-2881-2016
Development and technical paper
 | 
26 Aug 2016
Development and technical paper |  | 26 Aug 2016

Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

Benjamin F. Jamroz and Robert Klöfkorn

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Robert Kloefkorn on behalf of the Authors (22 Jun 2016)  Manuscript 
ED: Publish subject to minor revisions (Editor review) (05 Jul 2016) by Simone Marras
AR by Robert Kloefkorn on behalf of the Authors (26 Jul 2016)  Author's response   Manuscript 
ED: Publish as is (01 Aug 2016) by Simone Marras
AR by Robert Kloefkorn on behalf of the Authors (02 Aug 2016)
Download
Short summary
The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement communication hiding data exchange in the High-Order Methods Modeling Environment (HOMME) for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. The presented approach produces significant performance and scalability gains in large-scale simulations.