Articles | Volume 3, issue 2
https://doi.org/10.5194/gmd-3-653-2010
https://doi.org/10.5194/gmd-3-653-2010
Methods for assessment of models
 | 
12 Nov 2010
Methods for assessment of models |  | 12 Nov 2010

A nonlinear multi-proxy model based on manifold learning to reconstruct water temperature from high resolution trace element profiles in biogenic carbonates

M. Bauwens, H. Ohlsson, K. Barbé, V. Beelaerts, J. Schoukens, and F. Dehairs

Related subject area

Biogeosciences
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023,https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model
Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt
Geosci. Model Dev., 16, 813–832, https://doi.org/10.5194/gmd-16-813-2023,https://doi.org/10.5194/gmd-16-813-2023, 2023
Short summary
FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023,https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022,https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022,https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary

Cited articles

Aubert, A., Lazareth, C. E., Cabioch, G., Boucher, H., Yamada, T., Iryu, Y., and Farman, R.: The tropical giant clam hippopus hippopus shell, a new archive of environmental conditions as revealed by sclerochronological and δ18O profiles, Coral Reefs, 28, 989–998, https://doi.org/10.1007/s00338-009-0538-0, 2009.
Barats, A., Amouroux, D., Chauvaud, L., Pécheyran, C., Lorrain, A., Thébault, J., Church, T. M., and Donard, O. F. X.: High frequency Barium profiles in shells of the Great Scallop Pecten maximus: a methodical long-term and multi-site survey in Western Europe, Biogeosciences, 6, 157–170, https://doi.org/10.5194/bg-6-157-2009, 2009.
Barker, S., Cacho, I., Benway, H., and Tachikawa, K.: Planktonic foraminiferal mg/ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the last glacial maximum, Quaternary Sci. Rev., 24, 821–834, 10.1016/j.quascirev.2004.07.016, 2005.
Bauwens, M., Ohlsson, H., Beelaerts, V., Barbé, K., Schoukens, J., and Dehairs, F.: On Climate Reconstruction using Bivalve Shells: Three Methods to Interpret the Chemical Signature of a Shell, Comput. Meth. Prog. Bio., in press, https://doi.org/10.1016/j.cmpb.2010.08.020, 2010.
Bice, K. L., Birgel, D., Meyers, P. A., Dahl, K. A., Hinrichs, K. U., and Norris, R. D.: A multiple proxy and model study of cretaceous upper ocean temperatures and atmospheric CO2 concentrations, Paleoceanography, 21, PA2002, https://doi.org/10.1029/2005PA001203, 2006.
Download