Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-449-2024
https://doi.org/10.5194/gmd-17-449-2024
Model description paper
 | 
16 Jan 2024
Model description paper |  | 16 Jan 2024

The community-centered freshwater biogeochemistry model unified RIVE v1.0: a unified version for water column

Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo

Related authors

How much do bacterial growth properties and biodegradable dissolved organic matter control water quality at low flow?
Masihullah Hasanyar, Thomas Romary, Shuaitao Wang, and Nicolas Flipo
Biogeosciences, 20, 1621–1633, https://doi.org/10.5194/bg-20-1621-2023,https://doi.org/10.5194/bg-20-1621-2023, 2023
Short summary
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023,https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Modeling inorganic carbon dynamics in the Seine River continuum in France
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020,https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
Technical note: Water table mapping accounting for river–aquifer connectivity and human pressure
Mathias Maillot, Nicolas Flipo, Agnès Rivière, Nicolas Desassis, Didier Renard, Patrick Goblet, and Marc Vincent
Hydrol. Earth Syst. Sci., 23, 4835–4849, https://doi.org/10.5194/hess-23-4835-2019,https://doi.org/10.5194/hess-23-4835-2019, 2019
Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal infrared satellite imaging
E. Lalot, F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay, and F. Moatar
Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015,https://doi.org/10.5194/hess-19-4479-2015, 2015
Short summary

Related subject area

Biogeosciences
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023,https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023,https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
A novel Eulerian model based on central moments to simulate age and reactivity continua interacting with mixing processes
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023,https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023,https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
An along-track Biogeochemical Argo modelling framework: a case study of model improvements for the Nordic seas
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev., 16, 6875–6897, https://doi.org/10.5194/gmd-16-6875-2023,https://doi.org/10.5194/gmd-16-6875-2023, 2023
Short summary

Cited articles

Aissa-Grouz, N., Garnier, J., and Billen, G.: Long trend reduction of phosphorus wastewater loading in the Seine: determination of phosphorus speciation and sorption for modeling algal growth, Environ. Sci. Pollut. Res., 25, 23515–23528, https://doi.org/10.1007/s11356-016-7555-7, 2016. a
Alexander, R. B., Elliott, A. H., Shankar, U., and McBride, G. B.: Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand, Water Resour. Res., 38, 4-1–4-23, https://doi.org/10.1029/2001WR000878, 2002. a
Azam, F., Fenchel, T., Gray, J., Meyer, L., and Thingstad, F.: The Ecological Role of Water-Column Microbes in the Sea, Mar. Ecol. Prog. Ser., 10, 257–263, 1983. a
Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L. G., Hall, R. O., Hotchkiss, E. R., Maavara, T., Pavelsky, T. M., Ran, L., Raymond, P., Rosentreter, J. A., and Regnier, P.: River Ecosystem Metabolism and Carbon Biogeochemistry in a Changing World, Nature, 613, 449–459, https://doi.org/10.1038/s41586-022-05500-8, 2023. a
Billen, G.: Protein degradation in Aquatic Environments, in: Microbial Enzyme in Aquatic Environments, edited by: Chrost, R., Springer Verlag, Berlin, https://doi.org/10.1007/978-1-4612-3090-8_7, 1991. a, b
Download
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.