Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-1925-2023
https://doi.org/10.5194/gmd-16-1925-2023
Development and technical paper
 | 
06 Apr 2023
Development and technical paper |  | 06 Apr 2023

A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA

Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024,https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024,https://doi.org/10.5194/gmd-17-2987-2024, 2024
Short summary

Cited articles

Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for hyper-parameter optimization, in: Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, December 2011, 2546–2554, 2011. a, b, c, d, e, f
Bergstra, J., Yamins, D., and Cox, D.: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, in: Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA, June 2013, 115–123, 2013. a
Campolongo, F., Saltelli, A., and Cariboni, J.: From screening to quantitative sensitivity analysis. A unified approach, Comput. Phys. Commun., 182, 978–988, 2011. a
Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, CA, USA, 13–17 August 2016, https://doi.org/10.1145/2939672.2939785, 785–794, 2016. a, b, c
Download
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.