Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-1925-2023
https://doi.org/10.5194/gmd-16-1925-2023
Development and technical paper
 | 
06 Apr 2023
Development and technical paper |  | 06 Apr 2023

A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA

Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki

Related subject area

Earth and space science informatics
The Common Community Physics Package (CCPP) Framework v6
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023,https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary
Causal deep learning models for studying the Earth system
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023,https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023,https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022,https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
A generalized spatial autoregressive neural network (GSARNN) method for three-dimensional spatial interpolation
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-198,https://doi.org/10.5194/gmd-2022-198, 2022
Revised manuscript accepted for GMD
Short summary

Cited articles

Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for hyper-parameter optimization, in: Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, December 2011, 2546–2554, 2011. a, b, c, d, e, f
Bergstra, J., Yamins, D., and Cox, D.: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, in: Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA, June 2013, 115–123, 2013. a
Campolongo, F., Saltelli, A., and Cariboni, J.: From screening to quantitative sensitivity analysis. A unified approach, Comput. Phys. Commun., 182, 978–988, 2011. a
Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, San Francisco, CA, USA, 13–17 August 2016, https://doi.org/10.1145/2939672.2939785, 785–794, 2016. a, b, c
Download
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.