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Abstract. Geoscientific models are simplified representa-
tions of complex earth and environmental systems (EESs).
Compared with physics-based numerical models, data-driven
modeling has gained popularity due mainly to data prolif-
eration in EESs and the ability to perform prediction with-
out requiring explicit mathematical representation of com-
plex biophysical processes. However, because of the black-
box nature of data-driven models, their performance cannot
be guaranteed. To address this issue, we developed a general-
izable framework for improving the efficiency and effective-
ness of model training and the reduction of model overfitting.
This framework consists of two parts: hyperparameter selec-
tion based on Sobol global sensitivity analysis and hyperpa-
rameter tuning using a Bayesian optimization approach. We
demonstrated the framework efficacy through a case study of
daily edge-of-field (EOF) runoff predictions by a tree-based
data-driven model using the extreme gradient boosting (XG-
Boost) algorithm in the Maumee domain, USA. This frame-
work contributes towards improving the performance of a va-
riety of data-driven models and can thus help promote their
applications in EESs.

1 Introduction

Geoscientific models are simplified representations of com-
plex earth and environmental systems (EESs), where predic-
tive models can have a wide range of applications. For exam-

ple, they can incorporate and advance the scientific knowl-
edge of EESs and assess how EESs react to changing condi-
tions (Fleming et al., 2021; Reichstein et al., 2019). Further-
more, evidence-based decisions and policies on EESs can be
made by effectively evaluating their influences using these
models (Fleming et al., 2021; Prinn, 2013), which would oth-
erwise be impossible or too costly and time-consuming to
implement in practice (Hu et al., 2015; Sohl and Claggett,
2013).

Two broad classes of models are often used to predict tar-
get environmental phenomena in EESs: physics-based nu-
merical models, and data-driven machine learning models.
Conventionally, the modeling of EESs relies heavily on
physics-based models, developed based on the first princi-
ples of physics (Bergen et al., 2019), which require compre-
hensive understanding of the target EES and proper mathe-
matical representations of all processes relevant to the tar-
get phenomena. As such, the long development time, insuf-
ficient representations of system components, and difficul-
ties in access and use set barriers for the wide application
of such models. On the contrary, despite the fact that data-
driven models are data-intensive and not generalizable (Ford
et al., 2022), they do not require an explicit mathematical for-
mulation of all underlying complex processes to perform pre-
dictive analysis. Thus, the development of data-driven mod-
els is often less involved. Moreover, the proliferation of data
further leads to the rise of data-driven modeling in EESs
(Willard et al., 2020).
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For data-driven modeling, model performance relies heav-
ily on the capability of the underlying machine learning (ML)
algorithms to retrieve information from data; this capabil-
ity is controlled by the complexity of ML algorithms and
their associated parameters, that is, hyperparameters (Yang
and Shami, 2020; Hutter et al., 2015). When the underlying
ML algorithm is too simple to learn complex patterns from
data, we see large biases in the training phase (i.e., under-
fitting; Jabbar and Khan, 2015; Koehrsen, 2018). In contrast,
model overfitting occurs when the ML algorithm is overcom-
plicated to capture all random noises in the training data; the
resulting model performs very well in training but poorly on
the test (i.e., variance error). As such, to improve model per-
formance, we need to determine appropriate ML algorithms
that can balance model bias and variance error (Koehrsen,
2018).

There are various rules of thumb to choose an appropri-
ate ML algorithm for data-driven modeling. When the model
is underfitting, we can choose more complex ML algorithms
(e.g., from linear regression models to tree-based regression
models). However, in practice it can be more challenging to
reduce overfitting; model overfitting is often associated with
a long training time and poor performance in test sets. Be-
cause of the black-box nature of data-driven models, only a
handful of approaches is available to deal with overfitting.
One such approach is random sampling with or without re-
placement (Gimenez-Nadal et al., 2019) in which data points
are randomly selected for training and test. This approach
attempts to ensure that the data samples are uniformly dis-
tributed: both the training and test sets have data points to
represent the entire domain space. Combined with this ap-
proach, other approaches such as early stopping (Yao et al.,
2007), cross-validation (Fushiki, 2011), and regularization
techniques (Zhu et al., 2018) are used to address overfitting
by tuning hyperparameters to balance model performance in
training and test sets.

Hyperparameters affect model performance through ML
algorithms during model training, although they are external
parameters to data-driven models. However, not all hyper-
parameters have the same level of impact on model perfor-
mance, as they affect different aspects of ML algorithms to
retrieve data patterns. For example, some hyperparameters
control the algorithm complexity, while some are used to re-
duce overfitting as mentioned above. By tuning these hyper-
parameters, we want to identify optimal hyperparameter val-
ues for the ML algorithm. We can then apply the optimized
ML algorithm to maximize the model performance during
training.

Tuning hyperparameters manually becomes unfeasible as
the number of hyperparameters associated with the ML al-
gorithm increases. Hyperparameter optimization algorithms
are developed to automatically identify the optimal hyper-
parameters to maximize model performance by minimizing
a predefined objective function (i.e., loss function) of a data-
driven model. A variety of optimization approaches are avail-

able and categorized based on the mechanisms used to search
the optimal hyperparameter values: (I) exhaustive search us-
ing grid or random search (Liashchynskyi and Liashchyn-
skyi, 2019; Bergstra et al., 2011) and (II) surrogate models
using sequential model-based optimization (SMBO) meth-
ods (Bergstra et al., 2011). The choice of tuning approaches
is affected by several factors, such as the number of hyperpa-
rameters, different ranges of their values, and the complexity
of ML algorithms. In general, compared to the category I ap-
proaches, the category II approaches are more suitable for
data-driven models with complex ML algorithms (Bergstra
et al., 2011).

Rather than tuning all hyperparameters, it is expected to
be more efficient and effective if we only need to tune a sub-
set of them to achieve similar or better model performance.
Similarly to assessing the overall impact of model parame-
ters on model prediction for physics-based models, we can
use global sensitivity analysis approaches to identify critical
hyperparameters for model performance based on sensitivity
scores (Sobol, 2001); hyperparameters with high sensitivity
scores are considered influential, while the rest with low sen-
sitivity scores are considered to have no or negligible influ-
ence on model performance. Additionally, since fewer influ-
ential hyperparameters are involved in model training, less
training time is required to achieve maximum model per-
formance. Therefore, it is particularly useful if data-driven
models need to be trained with streaming data for real-time
predictions (Gomes et al., 2017).

With the proliferation of data in EESs, we expect to have
more EES applications using data-driven models. In this
study, we present a new framework for data-driven modeling
that combines hyperparameter selection and tuning to mini-
mize training time, reduce overfitting, and maximize overall
model performance. As such, the fundamental contribution
of our work is a framework which can (1) identify a subset
of hyperparameters critical for model performance through
hyperparameter selection using a variance-based sensitivity
analysis approach, and (2) provide optimal values for the
selected hyperparameters through an optimization-based hy-
perparameter tuning approach. As such, we can improve the
overall efficiency and effectiveness of model training, lead-
ing to better model performance. In turn, this can further pro-
mote the use of data-driven models in EESs. The efficacy of
the framework is evaluated using data-driven models devel-
oped to predict the magnitudes of daily surface runoff at a
farm scale in the Maumee domain, USA.

2 Method

In this study, we developed a framework to improve the per-
formance of data-driven models by reducing their training
time and overfitting. The framework comprises two modules:
hyperparameter selection (HS) and hyperparameter tuning
(HT; Fig. 1). To use the framework, we first choose a machine
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learning algorithm and its associated hyperparameters. Then,
we feed the initial hyperparameters (1) to the hyperparameter
selection (HS) module to determine the influential hyperpa-
rameters (2). Once initial values are assigned to the influ-
ential hyperparameters (3), we use the hyperparameter tun-
ing (HT) module to identify their optimal values (4), which
allows the algorithm to achieve the optimal performance in
training.

In the following sections, we will discuss the framework
in detail, including the use of a global sensitivity analysis
approach to select the hyperparameters critical for model
performance and an optimization approach for hyperparam-
eter tuning to identify the optimum of these critical hyperpa-
rameters for model training. A data-driven model using the
extreme gradient boosting (XGBoost) algorithm (Chen and
Guestrin, 2016) is selected to demonstrate the efficacy of the
proposed framework.

2.1 Hyperparameter selection

To understand the impact of individual hyperparameters and
their interactions on the performance of a given data-driven
model, we used a global sensitivity analysis (GSA) approach
based on Sobol decomposition (Sobol, 2001), a variance
decomposition technique. Through this GSA approach, the
model output variance is decomposed into the summation
of the variances from input parameters per se and their in-
teractions. Let us assume that a data-driven model is of the
form Y=M(X;H ), where X is a vector of features and
H = {h1, . . .,hi, . . .,hn}, a vector of hyperparameters, and hi
is the ith hyperparameter. We used O(Y ) to define the scores
of the objective function, O(Y), of the data-driven model,
M. By fixing the values of the features, X, and changing the
values of the hyperparameters, H , the total variance of the
score, denoted as V (O(Y )), can be represented as the sum of
the variance imposed by the individual hyperparameter, hi ,
and its interactions with the other hyperparameters.

V (O(Y ))=
n∑
i=1

Vi +

n∑
i≤j≤n

Vij + . . .+V1,...,n, (1)

where Vi is the first order contribution of hi to V (O(Y )),
and Vij denotes the variance arising from the interactions be-
tween two hyperparameters, hi and hj . We can then mea-
sure the influence of a hyperparameter by its contribution to
V (O(Y )) using the sensitivity score of the first (S) and total
order (ST) indices as follows:

Si = Vi/V (O(Y )) (2)
STi = 1−V∼i/V (O(Y )), (3)

where V∼i indicates the contribution to V (O(Y )) by all hy-
perparameters except hi ; Si measures the direct contribution
to V (O(Y )) by hi ; and STi measures the contribution by hi
and its interactions, of any order, with all other hyperparam-
eters.

To estimate S and ST, we first generated sufficient sam-
ples of the hyperparameters that can well represent the sam-
ple space. We chose the quasi-Monte Carlo sampling method
(Owen, 2020), which uses quasi-random numbers (i.e., low
discrepancy sequences) to sample points far away from the
existing sample points. As such, the sample points can cover
the sample space more evenly and quickly with the faster
convergence rate of O((logN)kN−1), where N and k are
the number and dimension of samples (Campolongo et al.,
2011). In total, we generated m samples for n hyperparam-
eters. We then fed the samples into the data-driven model,
M, to obtain the corresponding O(Y ). Next, we estimated
the variance components, Vi , V∼i , and V (O(Y )), in Eq. (1)
with m(2n+ 2) model evaluations, and derived the scores of
Si and STi using Eqs. (2)–(3) (Saltelli, 2002). Finally, we se-
lected the hyperparameters with high scores of the total order
index as influential hyperparameters.

2.2 Hyperparameter tuning

After hyperparameter selection, we expect to tune fewer hy-
perparameters through hyperparameter optimization, which
involves the process to maximize or minimize the score of
the objective function, O(Y), of a data-driven model, M,
over the sample space of its hyperparameters, H. As such,
we can identify the optimal values of the hyperparameters,
which are then used for training data-driven models.

Rather than manually tuning these hyperparameters, we
chose to use an automated optimization approach, Bayesian
hyperparameter optimization (Bergstra et al., 2011). This ap-
proach creates a surrogate model of the objective function us-
ing a probabilistic model. The surrogate model avoids solely
relying upon local gradient and Hessian approximations by
tracking the paired values of the hyperparameters and the
corresponding scores of the objective function from previous
trials and proposes new hyperparameters that can improve
the score based on the Bayes rules. As such, this optimiza-
tion approach can help avoid being trapped in the local op-
tima and also requires far less time to identify the optimum of
the hyperparameters, as the objective function can converge
to a better score faster.

To describe the Bayesian optimization approach in more
detail, let us assume that we have evaluated the objective
function O(Y) for n sets of hyperparameters, {h(1), . . .,h(n)}.
Based on pairs of a set of hyperparameters and the corre-
sponding score (h,O(y)) from n evaluations, we applied
a sequential model-based optimization (SMBO) method,
a tree-structured Parzen estimator (TPE) (Bergstra et al.,
2011), to develop a surrogate model for O(Y). The TPE de-
fines the conditional probability, p(h|O(y)), using two den-
sities:

p(h|O(y))=
{
l(h) if O(y) <O(y∗)
g(h) if O(y)≥O(y∗),

(4)
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Figure 1. The methodological framework for improving the performance of data-driven models with two modules: hyperparameter selection
(HS) and hyperparameter tuning (HT).

where l(h) and g(h) can be modeled using different proba-
bility density or mass functions for continuous or discrete hy-
perparameters. For example, l(h) and g(h) can be a uniform,
a Gaussian, or a log-uniform distribution for continuous hy-
perparameters. To define l(h), we use part of n sets of hyper-
parameters, {h(i)} that result in the score, O(y) less than the
threshold, O(y∗) which is chosen to be some quantile γ of
all scores, p(O(y) <O(y∗))= γ ; and g(h) is defined using
the remaining hyperparameters (Bergstra et al., 2011).

The following step is to decide the next hyperparameter
values that possibly give a better score, O(y) given the corre-
sponding uncertainty measured by the surrogate model (Fra-
zier, 2018). To do so, a selection function is defined based on
the expected improvement (EI):

EIO(y∗)(h) :=

O(y∗)∫
−∞

(O(y∗)−O(y))p(O(y)|h)dO(y) (5)

=

O(y∗)∫
−∞

(O(y∗)−O(y))
p(h|O(y))p(O(y))

p(h)

× dO(y), (6)

where p(O(y)|h) is parameterized as p(h|O(y))p(O(y)).
It is set to zero when O(y) <O(y∗) in order to neglect all
hyperparameters that yield no improvements in the score.
Through maximizing EI, a better set of hyperparameters is
identified. Together with the corresponding score, they are
used to update the TPE, l(h), and g(h) for the maximization
of EI. The iterative process continues until the maximum al-
lowed number of iterations is reached.

2.3 Case study

The Maumee River watershed (Fig. 2) is the largest wa-
tershed in the Great Lakes region, covering more than
17 000 km2 in Ohio, Indiana, and Michigan (U.S. Geological
Survey, 2014). The watershed receives more than 800 mm
of annual precipitation on average, with most of its rainfall

from March to July and snowfall from December to March.
The coldest and warmest months are February and July, re-
spectively (NOAA National Centers for Environmental In-
formation, 2012). The soil in the watershed is mainly com-
posed of glacial till, which is a mixture of clay, silt, sand, and
gravel deposited by glaciers; this type of soil is highly fertile
but prone to erosion if not managed properly (NRCS-USDA,
2013). Owing to these excellent geophysical and humid con-
tinental climate conditions, over 70 % of the watershed is
dedicated to agriculture, growing row crops such as corn,
soybeans, and wheat (Kalcic et al., 2016). As such, fertil-
izer applied for crop growth in the watershed contributes over
77 % of total phosphorus (TP) entering the western basin of
Lake Erie through the Maumee River (Kast et al., 2021; Mac-
coux et al., 2016).

Agricultural runoff is the main source of non-point source
pollution in the Maumee domain. The high nutrient load car-
ried by edge-of-field (EOF) runoff from agricultural fields in
the watershed has had detrimental effects on aquatic ecosys-
tems, such as harmful algal blooms and hypoxia in Lake Erie
(Scavia et al., 2019; Stackpoole et al., 2019). The occurrence
and magnitude of EOF runoff can be influenced by many fac-
tors, but it is mainly driven by precipitation and snowmelt
(Ford et al., 2022; Hu et al., 2021; Hamlin et al., 2020).
An early warning system to forecast runoff risk can assist
agriculture producers in the timing of fertilizer application
to retain more nutrients in the land: this also reduces nutri-
ent transport carried by runoff to nearby water bodies. To
design such an early warning system, in the previous study
(Hu et al., 2021), we developed a hybrid model to predict the
magnitude of daily EOF runoff for all EOF sites in the do-
main (Fig. 2); the model combines National Oceanic and At-
mospheric Administration’s (NOAA) national water model
(NWM) with a data-driven model based on the extreme
gradient boosting algorithm (XGBoost; Chen and Guestrin,
2016). In this study, we will demonstrate the efficiency and
effectiveness to train XGBoost models using the proposed
framework (Fig. 1).
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Figure 2. Study area of the Maumee domain in the Great Lakes region, USA. EOF sites (black dots) denote the locations where the observa-
tional data of daily edge-of-field (EOF) runoff is available over multiple years.

2.3.1 Data preparation

In this study, we used two types of datasets to train XGBoost
models preceded by different approaches as illustrated in the
framework (Fig. 1) and evaluated their performance of daily
EOF runoff prediction at each EOF site in the study area.
These two datasets include: (1) observations of daily EOF
runoff at the EOF sites within the Maumee domain (Fig. 2)
(this dataset was obtained from the conservation partners in
the previous study (Hu et al., 2021)), and (2) daily values
of the influential NWM model outputs. Based on the previ-
ous work on hybrid modeling using directed information for
causal inference (Hu et al., 2021), we first calculated daily
values of 72 NWM model outputs on the 1 km× 1 km grids
where EOF sites are located and then identified seven influ-
ential outputs for the Maumee domain (Tables S1 and S2
in the Supplement). As we did not separate the winter sea-
son (i.e., from November to April) from the rest of the year
when selecting influential variables, some of the selected in-
fluential outputs represented the driving forces of daily EOF
runoff during the winter season, such as snow melt and soil
temperature (Table S2 in the Supplement).

2.3.2 Implementation

Extreme gradient boosting (XGBoost) is a tree-based ensem-
ble machine learning algorithm, which is mainly designed
for its overall high convergence speed through optimal use
of memory resources and good predictability through ensem-
ble learning that leverages the combined predictive power of
multiple tree models (Chen and Guestrin, 2016). Using the
gradient boosting technique, XGBoost incorporates a new
tree model (i.e., weak learner) into the tree ensemble mod-
els obtained from previous iterations in a repetitive manner.

At the t th iteration, an objective function, J , is defined as

J (t) =

n∑
i=1

L(yi, ŷi)+

t∑
m=1

R(fm), (7)

where n is the number of samples and L is the training loss
function; ŷi is the prediction from the tree ensemble mod-
els F ; ŷi =

∑m
i=1fm(xi), fm ∈ F , and m are the number of

tree models; and R is the regularization function used to pe-
nalize the complexity of the tree ensemble models to reduce
model overfitting. All these functions are characterized by
a set of hyperparameters, e.g., learning rate (LR) and maxi-
mum tree depth (MD). Through optimizing J , an XGBoost
model can be obtained with locally optimal hyperparameter
values, which gives the best predictive performance at the ith
iteration. The process iterates for a defined number of repe-
titions to train the XGBoost model that can balance model
bias and variance error.

The XGBoost algorithm has been demonstrated to be ef-
fective for a wide range of regression and classification prob-
lems, such as overfitting and imbalanced datasets (Dong
et al., 2020). In this study, we used XGBoost models to
predict the magnitudes of daily EOF runoff in the Maumee
domain (Fig. 2). We considered nine hyperparameters as-
sociated with the XGBoost algorithm (Fig. 3). Daily EOF
measurements within the watershed (Hu, 2022a) were used
for hyperparameter selection, and the score O(y) of the ob-
jective function was measured by the mean absolute error
(MAE; Sect. 2.3.3). We then modified the Python SALib
package (Herman and Usher, 2017), which was developed
for Sobol-based global sensitivity analysis only with model
features and parameters; such modification allows the calcu-
lation of sensitivity scores for hyperparameters (i.e., the HS
approach). Given the number and range of the hyperparam-
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eter values, and the complexity of the XGBoost model, we
generated 4000 samples of hyperparameters (Fig. 3a) to cal-
culate the S and ST values for all nine hyperparameters, and
we selected the influential ones given their ST values.

After the influential hyperparameters were identified, the
next step was to search the optimal values for these hyper-
parameters through hyperparameter tuning (i.e., the HT ap-
proach). To do so, we first randomly selected 70 % of the
EOF datasets within the domain. Based on the selected data,
we then used the Bayesian optimization (BO) approach im-
plemented via the Python Hyperopt library (Bergstra et al.,
2013) to identify the optimal hyperparameter values. Given
these optimal values, we trained and evaluated XGBoost
models in predicting the magnitude of daily EOF runoff at
the EOF sites in the domain (Hu et al., 2021). Addition-
ally, to evaluate the impact of hyperparameter selection on
model performance, we trained and evaluated the perfor-
mance of XGBoost models without hyperparameter selec-
tion, that is, using only hyperparameter tuning on the initial
set of hyperparameters. To further mitigate the impact of the
imbalanced runoff data, besides the effective XGBoost algo-
rithm, we used the stratified k-fold cross-validation (Kohavi,
1995) across different scenarios to ensure the training and
test datasets follow a similar distribution, and we defined a
loss function (e.g., R squared) that penalizes more the miss-
ing predictions of large runoff events, that is, the minority
class in this study.

2.3.3 Evaluation metrics

In this study, we used mean absolute error (MAE) to measure
the score of the objective function O(Y), and R squared (R2)
to measure the level of agreement between the predictions
from the XGBoost models and observations of daily EOF
runoff.

MAE=
1
n

n∑
i=1
|yi − ŷi | where MAE ∈ [0,+∞], (8)

R2
=

(
∑n
i=1ŷiyi − nŶY )

2

(
∑n
i=1ŷi

2− nŶ
2
)(

∑n
i=1yi

2− nY
2
)

where R2
∈ [−∞,1], (9)

where n is the sample size; yi and ŷi are the observed and
predicted value of daily EOF runoff for a specific EOF site,
respectively; and Y and Ŷ are the mean values of yi and
ŷi , respectively. The MAE value equal to zero is the perfect
score, whereas the R2 value closer to one is considered to be
the perfect agreement between predictions and observations.

3 Results

The ability to represent the search space of all nine hyperpa-
rameters by the selected samples is critical to estimating their

influence on the model performance through the sensitivity
analysis approach. In our case, we have selected 4000 sam-
ples in total. As shown by the histogram plots on the diagonal
in Fig. 3a, the entire range of values for each hyperparame-
ter is well represented by uniformly distributed intervals of
values. Additionally, the well-scattered sample points on the
off-diagonal plots indicate no correlation among each other,
confirming the independence between these hyperparameters
and the appropriate samples to use for hyperparameter selec-
tion.

Through hyperparameter selection, the influence of hyper-
parameters is ranked by their contributions to the variance of
the objective function, characterized by the sensitivity score
of the total order index, ST (Fig. 3b). The higher the score,
the more influential the hyperparameter is. Among the nine
hyperparameters for the XGBoost model, the subsample ra-
tio of the training data, SS, is the most influential hyperpa-
rameter with the highest sensitivity score for both S and ST,
followed by the maximum tree depth, MD, and the learning
rate, LR (Fig. 3b). We noticed small differences in sensitivity
score between S and ST for the first two most influential hy-
perparameters, SS and MD, indicating that the contributions
to their ST scores are made by the variation of the hyperpa-
rameters per se. In contrast, for the hyperparameter, LR, a
large portion of its high ST score is contributed through the
interaction between LR and the other hyperparameters. As a
result, instead of tuning all hyperparameters, we only need to
search for the optimal values of these three influential hyper-
parameters through hyperparameter tuning.

We trained XGBoost models for the prediction of daily
EOF runoff events in the study domain (Fig. 2) with a fixed
number of iterations (i.e., 8000 in our case). We noticed that
the training of XGBoost models preceded by our proposed
framework, the combination of hyperparameter selection and
tuning (i.e., the HS–HT approach), took the least time (0.7 s;
Fig. 4c) compared to the training of models preceded by ei-
ther the HS or HT approach (1.4 and 61.6 s; Fig. 4a and b).
Similar to the case with only the HS approach, the perfor-
mance of the XGBoost model steadily improved during train-
ing when the HS–HT approach was used, i.e., R2 increased
from 0.52 to 0.68. In contrast, when only the HT approach is
used, the model quickly achieved almost perfect performance
(i.e., close to R2

= 1.0) but gained small improvements over
the rest of the training. In this regard, the training process af-
ter the HT approach was not as effective compared to that
using the HS–HT approach, although the former achieved
better training performance.

However, better training performance cannot guarantee a
better test performance due to the risk of overfitting. For the
Maumee domain (Fig. 2), the XGBoost model achieved an
almost perfect agreement with the observations (R2

= 1.0)
when preceded by the HT approach, while having a rela-
tively poor performance in test with R2

= 0.31 (Fig. 5a),
representing a 69.0 % reduction in performance. On the con-
trary, the XGBoost model performed worse in training when
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Figure 3. (a) Samples of nine hyperparameters associated with the extreme gradient boosting (XGBoost) algorithm for the global sensitivity
analysis. The histogram plots on the diagonal describe the actual sample distribution for a given hyperparameter. Each bar in the histogram
plots measures the sample size in the corresponding interval. (b) Comparison of the sensitivity scores of the nine hyperparameters for both
first (gray) and total (blue) order Sobol indices.

Figure 4. Comparison of the training time for the XGBoost models using hyperparameter selection (HS), hyperparameter tuning (HT), and
both of them (HS–HT), as proposed by the framework with respect to their performance measured by R2 over 8000 iterations.

preceded by the proposed framework (i.e., the HS–HT ap-
proach) with R2

= 0.67 but produced a better test perfor-
mance (R2

= 0.40), resulting in a smaller performance re-
duction of 40.3 %.

Similarly, we also evaluated the overfitting of the result-
ing XGBoost models by directly measuring the gaps be-
tween the model performances in training at different num-
bers of iterations and their test performances (Fig. 5b). Please
note that once XGBoost models are trained, their test perfor-
mances become irrelevant to the number of iterations during
the training process and thus stay constant (Fig. 5b). We no-
ticed that the model preceded by the HT approach was more
prone to overfitting, since the gaps measured by the differ-
ences in R2 values were always larger than the gaps for the
case with the proposed framework. As such, it demonstrated
that the proposed framework can help reduce model overfit-
ting.

As shown by Fig. 6a, using the proposed framework
(i.e., the HS–HT approach), the resulting XGBoost model
achieved a better agreement with the observations (R2

=

0.40) than the corresponding XGBoost models preceded by
other approaches (R2

= 0.36 for the HS approach,R2
= 0.31

for the HT approach). We noticed the relative difference in
model performance for the HS and HS–HT approaches (in

terms of R2 value) is smaller than the difference for the HT
and HS–HT approaches. In this regard, the XGBoost model
had the worst performance if only the HT approach was used
to search for the optimal values for all hyperparameters. This
is further demonstrated by the comparison of residual er-
rors between the observations and predictions of then XG-
Boost models preceded by different approaches (Fig. 6b): for
the HS–HT approach, residual errors are more concentrated
around the zero value compared to the wider scatter of errors
as the result of using only the HS or HT approach, respec-
tively. As such, the XGBoost models can often achieve better
test performance when preceded by the proposed framework.

4 Discussion

In this section, we will discuss the effects of the proposed
framework using hyperparameter selection and tuning on
model training and the overall performance of XGBoost
models. Through the discussion below, we aim to demon-
strate that the results gained from this study are generally
applicable to other data-driven models.
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Figure 5. (a) Comparison of the performance of the XGBoost models in prediction of daily EOF runoff for the Maumee domain with respect
to the observed runoff preceded by the HT approach and the proposed framework (i.e., the HS–HT approach) for a given period. The upper
x axis shows the rainfall intensity (mm d−1) over the training (July 2012–December 2013) and test (January 2014–January 2016) period,
respectively. (b) Comparison of the performance of the XGBoost models preceded by the two approaches, HS–HT and HT, with respect to
the number of iterations. The double-headed arrows indicate the differences in R2 values between the training and test for each approach.

Figure 6. (a) Comparison of the observations with the predictions of daily EOF runoff for the Maumee domain by the XGBoost models
trained using the HS, HT, and HS–HT approaches, respectively. (b) Comparison of residual errors between the observations and the predic-
tions of daily EOF runoff for the Maumee domain by the XGBoost models trained using the HS–HT, HS, and HT approaches, respectively.
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4.1 Influence of hyperparameters

In this study, we conducted the Sobol-based global sensitiv-
ity analysis (i.e., the HS approach) to identify the influential
hyperparameters of XGBoost models. We identified three in-
fluential hyperparameters for the XGBoost model based on
their sensitivity scores of the total order index (i.e., ST) and
their relative differences from the first order index (i.e., S).
Among them, the maximum tree depth, MD, and the learn-
ing rate, LR, are often considered important hyperparameters
for XGBoost models, since LR is associated with model con-
vergence and MD controls the depth of the tree model. As the
depth of the tree increases, the tree model contains more in-
ner layers, enabling it to better learn complex, non-linear pat-
terns from the data. However, tree models with greater depth
are also more prone to overfitting.

For the learning rate (LR), a higher learning rate often
leads to faster training, but the resulting tree models are more
likely to reach suboptimal solutions. In contrast, models with
a low learning rate converge slowly but are likely to have
good performance with optimal hyperparameter values. Ad-
ditionally, around half of its influence measured by ST is the
result of interactions with other hyperparameters (Fig. 3).
For such a hyperparameter, we need to investigate if other
hyperparameters with low ST scores should also be consid-
ered influential due to their interactions with the target hy-
perparameter. In our case, we decided not to consider others,
mainly because the S score of the learning rate is already
much higher than the ST score of the next one in the rank,
i.e., the number of tree estimators, ET.

Although these two hyperparameters are considered influ-
ential in the current study, the most influential hyperparam-
eter is the subsample ratio (SS) of the training data, which
determines the sample size used to grow a new tree model
in each boosting iteration. This is possibly due to the im-
balanced data of the target variable, the daily EOF runoff,
which is often zero-inflated with sparsely distributed runoff
events over a long time horizon. The number of non-zero
EOF runoffs in the training set, determined by the subsam-
ple ratio, can affect the model performance. With more zero
values included in the dataset, fewer non-zero EOF runoffs
are available to support model training, and vice versa. As
such, the subsample ratio appears to be the most critical hy-
perparameter for the performance of the XGBoost model in
the study. Similar to the sensitivity analysis of physics-based
models, analysis results depend on the characteristics of the
target variable (e.g., the daily EOF runoff in our case). As
such, for applications involving data-driven models, we can
first rely on our experience to select the hyperparameters and
then refine the list of influential hyperparameters using the
proposed HS approach.

4.2 Algorithm complexity and model training

Data-driven models perform differently in training with and
without hyperparameter selection. In general, models with
more hyperparameters are more capable of learning com-
plex, non-linear relationships from data. In our case study,
XGBoost models were initially set up with nine hyperpa-
rameters (Fig. 3) to account for the complexity of daily EOF
runoff prediction (Hu et al., 2021). This explains why the
XGBoost model without hyperparameter selection can often
achieve very good training performance (Fig. 4). However,
fast convergence to good training performance indicates that
data patterns can be too easy for the model to learn. Fur-
thermore, after the initial significant improvement, the per-
formance of the XGBoost model levels off for the majority
of the training time. In this regard, the whole training is not
effective, using additional training time on almost negligible
improvements.

After hyperparameter selection, three out of nine hyperpa-
rameters are considered influential to the prediction of daily
EOF runoff, which allows model training with a less com-
plex XGBoost algorithm for the search of optimal model pa-
rameter values. For this reason, given the same number of
iterations for training, it is thus more efficient to train the
model after hyperparameter selection in terms of training
time (Fig. 4). Meanwhile, guaranteed by the HS approach,
the removal of non-influential hyperparameters will have no
or limited impact on model performance in the EOF runoff
prediction. Training can also be more effective, as demon-
strated by the steady improvement of the XGBoost model
during the training period. As such, through hyperparame-
ter selection, the resulting XGBoost model, equipped with
fewer but influential hyperparameters, can be trained more
efficiently and effectively to predict the target variable, e.g.,
the daily EOF runoff over the Maumee domain.

Meanwhile, XGBoost models also perform differently
in training with and without hyperparameter tuning. When
training an XGBoost model without the HT approach, we
assign values to the hyperparameters by trial and error. The
resulting XGBoost algorithm is likely not to be optimal and
thus can take longer time to search for the optimal values for
the model parameters compared to the case using hyperpa-
rameter optimization; this is demonstrated by the faster con-
vergence to better performance when training is preceded by
the HS–HT approach compared to that by the HS approach
alone (Fig. 4a and c). Nevertheless, model training preceded
by the HS approach is still more effective compared to that
using the HT approach alone (Fig. 4a and b). This can be
because the XGBoost algorithm with more hyperparameters
(without hyperparameter selection) can more easily learn the
pattern from data, resulting in no improvement in training for
the majority of the training time. As such, the combination of
the HS and HT approach as proposed by the framework can
most effectively improve search efficiency.
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4.3 Model overfitting and performance

The complexity of the underlying machine learning algo-
rithm can be characterized by the number of hyperparameters
and their values, which are critical to the model performance.
High algorithm complexity can often result in overfitted
models, as demonstrated by the large model performance gap
in training and test (Fig. 5a and b). Through the identification
of influential hyperparameters, the HS approach helps reduce
the algorithm complexity by using an appropriate number of
hyperparameters that can balance the prediction errors and
variance in the dataset. As a result, reduction of algorithm
complexity through the removal of non-influential hyperpa-
rameters can effectively reduce model overfitting without
compromising model performance, which is further guaran-
teed by the use of the HT approach, searching optimal values
for these influential hyperparameters.

4.4 Limitation and outlook

The framework is designed to reduce model training time
and improve model performance, which is done through the
identification of influential hyperparameters and their opti-
mal values. Please note that the specific results for hyperpa-
rameter selection and tuning are data- and domain-specific,
and the impact of data size, quality, and location is not yet
fully explored in this study. Additionally, previous work (Hu
et al., 2018) has demonstrated the importance of feature se-
lection for model performance in terms of model training
time and overfitting. Thus, it is worth investigating the per-
formance of data-driven models when the framework is com-
bined with feature selection.

5 Conclusions

In this paper, we developed a framework composed of hy-
perparameter selection and tuning, which can effectively im-
prove the performance of data-driven models by reducing
both model training time and model overfitting. We demon-
strated the framework efficacy using a case study of daily
EOF runoff prediction by XGBoost models in the Maumee
domain, USA. Through the use of Sobol-based global sensi-
tivity analysis, hyperparameter selection enables the reduc-
tion in complexity of the XGBoost algorithm without com-
promising its performance in model training. This further al-
lows hyperparameter tuning using a Bayesian optimization
approach to be more effective in searching the optimal val-
ues only for the influential hyperparameters. The resulting
optimized XGBoost algorithm can effectively reduce model
overfitting and improve the overall performance of XGBoost
models in the prediction of daily EOF runoff. This frame-
work can thus serve as a useful tool for the application of
data-driven models in EESs.
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