Articles | Volume 16, issue 7
https://doi.org/10.5194/gmd-16-1925-2023
https://doi.org/10.5194/gmd-16-1925-2023
Development and technical paper
 | 
06 Apr 2023
Development and technical paper |  | 06 Apr 2023

A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA

Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki

Data sets

A methodological framework for improving the performance of data-driven models Yao Hu and Chirantan Ghosh https://doi.org/10.5281/zenodo.7026695

Model code and software

A methodological framework for improving the performance of data-driven models Yao Hu and Chirantan Ghosh https://doi.org/10.5281/zenodo.7026695

Download
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.