Articles | Volume 16, issue 6
https://doi.org/10.5194/gmd-16-1601-2023
https://doi.org/10.5194/gmd-16-1601-2023
Review and perspective paper
 | 
21 Mar 2023
Review and perspective paper |  | 21 Mar 2023

Addressing challenges in uncertainty quantification: the case of geohazard assessments

Ibsen Chivata Cardenas, Terje Aven, and Roger Flage

Related subject area

Solid Earth
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
Malte Jörn Ziebarth and Sebastian von Specht
Geosci. Model Dev., 17, 2783–2828, https://doi.org/10.5194/gmd-17-2783-2024,https://doi.org/10.5194/gmd-17-2783-2024, 2024
Short summary

Cited articles

Albert, C. G., Callies, U., and von Toussaint, U.: A Bayesian approach to the estimation of parameters and their interdependencies in environmental modeling, Entropy, 24, 231, https://doi.org/10.3390/e24020231, 2022. 
Alley, R. B.: Abrupt climate change, Sci. Am., 291, 62–69, https://doi.org/10.1126/science.1081056, 2004. 
Apeland, S., Aven, T., and Nilsen, T.: Quantifying uncertainty under a predictive, epistemic approach to risk analysis, Reliab. Eng. Syst. Saf., 75, 93–102, https://doi.org/10.1016/S0951-8320(01)00122-3, 2002. 
Aven, T.: On the need for restricting the probabilistic analysis in risk assessments to variability, Risk Anal., 30, 354–360, https://doi.org/10.1111/j.1539-6924.2009.01314.x, 2010. 
Aven, T.: Practical implications of the new risk perspectives, Reliab. Eng. Syst. Saf., 115, 136–145, https://doi.org/10.1016/j.ress.2013.02.020, 2013. 
Download
Executive editor
This paper provides a review of uncertainty quantification, with particular application to geohazard modelling. It provides a review of the state of this field along with a large set of references to current and established literature in this area.
Short summary
We discuss challenges in uncertainty quantification for geohazard assessments. The challenges arise from limited data and the one-off nature of geohazard features. The challenges include the credibility of predictions, input uncertainty, and assumptions’ impact. Considerations to increase credibility of the quantification are provided. Crucial tasks in the quantification are the exhaustive scrutiny of the background knowledge coupled with the assessment of deviations of assumptions made.