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Abstract. We analyse some of the challenges in quantifying
uncertainty when using geohazard models. Despite the avail-
ability of recently developed, sophisticated ways to param-
eterise models, a major remaining challenge is constraining
the many model parameters involved. Additionally, there are
challenges related to the credibility of predictions required in
the assessments, the uncertainty of input quantities, and the
conditional nature of the quantification, making it dependent
on the choices and assumptions analysts make. Addressing
these challenges calls for more insightful approaches yet to
be developed. However, as discussed in this paper, clarifi-
cations and reinterpretations of some fundamental concepts
and practical simplifications may be required first. The re-
search thus aims to strengthen the foundation and practice of
geohazard risk assessments.

1 Introduction

Uncertainty quantification (UQ) helps determine the uncer-
tainty of a system’s responses when some quantities and
events in such a system are unknown. Using models, the
system’s responses can be calculated analytically, numeri-
cally, or by random sampling (including the Monte Carlo
method, rejection sampling, Monte Carlo sampling using
Markov chains, importance sampling, and subset simulation)
(Metropolis and Ulam, 1949; Brown, 1956; Ulam, 1961;
Hastings, 1970). Sampling methods are frequently used be-
cause of the high-dimensional nature of hazard events and
associated quantities. Sampling methods result in less expen-
sive and more tractable uncertainty quantification than ana-
lytical and numerical methods. In the sampling procedure,
specified distributions of the input quantities and parame-

ters are sampled, and respective outputs of the model are
recorded. This process is repeated as many times as required
to achieve the desired accuracy (Vanmarcke, 1984). Even-
tually, the distribution of the outputs can be used to calcu-
late probability-based metrics, such as expectations or prob-
abilities of critical events. Model-based uncertainty quantifi-
cation using sampling is now more often used in geohaz-
ard assessments, e.g. Uzielli and Lacasse (2007), Wellmann
and Regenauer-Lieb (2012), Rodríguez-Ochoa et al. (2015),
Pakyuz-Charrier et al. (2018), Huang et al. (2021), Luo et
al. (2021), and Sun et al. (2021a).

This paper considers recent advances in UQ and analy-
ses some remaining challenges. For instance, we note that
a major problem persists, namely constraining the many pa-
rameters involved. Only some parameters can be constrained
in practice based solely on historical data (e.g. Albert et al.,
2022). Another challenge is that model outputs are condi-
tional on the choice of model parameters and the specified
input quantities, including initial and boundary conditions.
For example, a geological system model could be speci-
fied to include some geological boundary conditions (Juang
et al., 2019). Such systems are usually time-dependent and
spatial in nature and may involve, e.g. changing conditions
(e.g. Chow et al., 2019). Incorporating uncertainties related
to such conditions complicates the modelling and demands
further data acquisition. Next, models could accurately re-
produce data from past events but may be inadequate for
unobserved outputs or predictions. This might be the case
when predicting, e.g. extreme velocities in marine turbidity
currents, which are driven by emerging and little-understood
soil and fluid interactions (Vanneste et al., 2019). Overlook-
ing these challenges implies that the quantification will only
reflect some aspects of the uncertainty involved. These chal-
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lenges are, unfortunately, neither exhaustively nor clearly
discussed in the geohazard literature. Options and clarifica-
tions addressing these challenges are underreported in the
field. Analysing these challenges can be useful in treating
uncertainties consistently and providing meaningful results
in an assessment. This paper’s objective is to bridge the gap
in the literature by providing an analysis and clarifications
enabling a useful quantification of uncertainty.

It should be emphasised that, in this paper, we consider
uncertainty quantification in terms of probabilities. Other
approaches to measure or represent uncertainty have been
studied by, for example, Zadeh (1968), Shafer (1976), Fer-
son and Ginzburg (1996), Helton and Oberkampf (2004),
Dubois (2006), Aven (2010), Flage et al. (2013), Shortridge
et al. (2017), Flage et al. (2018), and Gray et al. (2022a, b).
These approaches will not be discussed here. The discussion
about the complications in UQ related to computational is-
sues generated by sampling procedures is also beyond the
scope of the current work.

The remainder of the paper is as follows. In Sect. 2, based
on recent advances, we describe how uncertainty quantifica-
tion using geohazard models can be conducted. Next, some
remaining challenges in UQ are identified and illustrated.
Options to address the challenges in UQ are discussed in
Sect. 3. A simplified example, further illustrating the discus-
sion, is found in Sect. 4, while the final section provides some
conclusions.

2 Quantifying uncertainty using geohazard models

In this section, we make explicit critical steps in uncertainty
quantification (UQ). We describe a general approach to UQ
that considers uncertainty as the analysts’ incomplete knowl-
edge about quantities or events. The UQ approach described
is restricted to probabilistic analysis. Emphasis is made on
the choices and assumptions usually made by analysts.

A geohazard model can be described as follows. We con-
sider a system (e.g. debris flow) with a set of specified in-
put quantities X (e.g. sediment concentration, entrainment
rate) whose relationships to the model output Y (e.g. runout
volume, velocity, or height of flow) can be expressed by a
set of models M. Analysts identify or specify X, Y , and
M. A vector 2m (including, e.g. friction, viscosity, turbu-
lence coefficients) parameterises a model m in M. The pa-
rameters 2m determine specific functions among a family
of potential functions modelling the system. Accordingly, a
model m can be described as a multi-output function with,
e.g. Y = {runout volume, velocity, height of flow}. Based on
Lu and Lermusiaux (2021), we can write

m :Xs,t×2m→ Y s,t (1)
m≡ (Em, SGm, BCm, ICm). (2)

Realisations of Y are the model responses y when elements
in X take the values x at a spatial location s ∈ S and a spe-

cific time t ∈ T , and parameters θm ∈2m are used. In ex-
pression (1), X ⊂ RdX is the set of specified input quantities,
T ⊂ RdT is the time domain, S ⊂ RdS is the spatial domain,
2m ⊂ Rd2m corresponds to a parameter vector, and Y ⊂ RdY
is the set of model outputs. To consider different dimensions,
d = {1, 2, or 3}. The system is fully described if m is speci-
fied in terms of a set of equations Em (e.g. conservation equa-
tions), the spatial domain geometry SGm (e.g. extension, soil
structure), the boundary conditions BCm (e.g. downstream
flow), and the initial conditions ICm (e.g. flow at t = t0); see
Eq. (2).

Probabilities reflecting analysts’ uncertainty about input
quantities are specified in uncertainty quantification. Such
distributions are then sampled many times, and the distri-
bution of the produced outputs can be calculated. The out-
put probability distribution for a model m can be denoted as
f (y|x,θm,m), for realisations y, x, θm, m of Y , X, 2m, and
M, respectively.

Betz (2017) has suggested that the parameter set is fully
described by a parameter vector 2; Eq. (3) is as follows:

2= {2m,2X,2ε,2o}, (3)

in which 2m refers to parameters of the modelm, 2X are pa-
rameters linked to the input X, 2ε is the vector of the output-
prediction error ε, and 2o is the vector associated with obser-
vation/measurement errors. More explicitly, to compute an
overall joint probability distribution, we may have the fol-
lowing distributions:

– f (y|x,θm,m) is the distribution of Y when X takes the
values x, and parameters θm ∈2m and a modelm ∈M
are used to compute y;

– f (x|θX,m) is the conditional distribution of X given the
parameters θX ∈2X and the model m. Note that each
m defines which elements in X are to be considered in
the analysis;

– f (x|x̂, θo) is a distribution of X given the observed val-
ues X̂ = x̂ and the observation/measurement error pa-
rameters θo ∈2o;

– additionally, one can consider f (y∗|y,θε,m), which is a
distribution of Y ∗, the future system’s response, condi-
tioned on the model output y and the output-prediction
error vector θε ∈2ε. The output-prediction error ε is
the mismatch between the model predictions and non-
observed system responses y∗. ε is used to correct the
imperfect model output y (Betz, 2017; Juang et al.,
2019).

If, for example, the parameters 2m are poorly known, a
prior distribution π(θm|m) weighing each parameter value
θm for a model m is usually specified. A prior is a subjec-
tive probability distribution quantified by expert judgement
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representing uncertainty about the quantities prior to con-
sidering data (Raices-Cruz et al., 2022). When some mea-
surements = {Ŷ = ŷ,X̂ = x̂} are available, such parameter
values θm, or their distributions π(θm|m), can be constrained
by back-analysis methods. Note that measurements form
part of different sources of data D, i.e. ∈D. Back-analysis
methods include matching experimental measurements ŷ and
calculated model outputs y using different assumed values
θ ′m. Values for θm can be calculated as follows (based on Liu
et al., 2022):

θm = argmin[ŷ− y(x̂,θ ′m)]. (4)

The revision or updating of the prior π(θm|m) with mea-
surements to obtain a posterior distribution denoted
π(θm| ,m) is also an option in back analysis. The updat-
ing can be calculated as follows (based on Juang et al., 2019;
Liu et al., 2022):

π
(
θm| ,m

)
=

L(θm| )π(θm|m)∫
L(θm| )π(θm|m)dθm

, (5)

where L(θm| )= f ( |θm) is a likelihood function, i.e. a
distribution that weighs given θm.

Similarly, we can constrain any of the distributions above,
e.g. f (y|x,θm,m), or f (x|θX,m) to obtain f (y|x,θm, ,m)

and f (x|θX, ,m), respectively.
For a geohazard problem, it is often possible to specify sev-

eral competing models, e.g. distinct geological models with
diverse boundary conditions; see expression (2). If the avail-
able knowledge is insufficient to determine the best model,
different modelsm can be considered. The respective overall
output probability distribution is computed as (Betz, 2017;
Juang et al., 2019)

f (y|x,2,D,M)=
∑

f (y|x,θ, ,m)ω(m|D,M) (6)

f (y|x,θ, ,m)=

∫
f (y|x,θ,m)π(θ | ,m)dθ. (7)

In Eq. (6), ω(m|D,M) is a distribution weighing each
model m in M.

The various models M, their inputs X, parameters 2,
outputs Y , and experimental data can be coupled all to-
gether through a Bayesian network, as has been suggested by
Sankararaman and Mahadevan (2015) or Betz (2017). One
possible configuration of a network coupling some elements
in M, X, 2, Y , and Y ∗ is illustrated in Fig. 1.

The previous description of a general approach to UQ con-
siders uncertainty as that reflected in the analysts’ incomplete
knowledge about quantities or events. In UQ, to measure or
describe uncertainty, subjective probabilities can be used and
constrained using observations . It is also explicitly shown
that model outputs are conditional on observations made
available and models M chosen by analysts. Analysts might
also select several parameters 2 and initial and boundary
conditions, BCm and ICm. Based on the above description,

Figure 1. A configuration of a network coupling some elements in
M, X, 2, Y , and Y ∗.

in the following, we analyse some of the challenges that arise
when conducting UQ.

As mentioned, back-analysis methods help constrain some
elements in 2. However, given the considerable number
of parameters (see expressions 1–3) and data scarcity, con-
straining 2 is often only achieved in a limited fashion. Back-
analysis is further challenged by the potential dependency
among 2 or M and between 2 and SGm, BCm, and ICm.
We also note that back analysis, or, more specifically, inverse
analysis, faces problems regarding non-identifiability, non-
uniqueness, and instability. Non-identifiability occurs when
some parameters do not drive changes in the inferred quan-
tities. Non-uniqueness arises because more than one set of
fitted or updated parameters may adequately reproduce ob-
servations. Instability in the solution arises from errors in
observations and the non-linearity of models (Carrera and
Neuman, 1986). Alternatively, in specifying a joint distribu-
tion f (x,θ) to be sampled, analysts may consider the use of
e.g. Bayesian networks (Albert et al., 2022). However, under
the usual circumstance of a lack of information, establishing
such a joint distribution is challenging and requires that an-
alysts encode many additional assumptions (e.g. prior distri-
butions, likelihood functions, independence, linear relation-
ships, normality, stationarity of the quantities and parameters
considered); see e.g. Tang et al. (2020), Sun et al. (2021b),
Albert et al. (2022), Pheulpin et al. (2022). A more conven-
tional choice is that x or θ are specified using the maximum
entropy principle (MEP), to specify the least biased distribu-
tions possible on the given information (Jaynes, 1957). Such
distributions are subject to the system’s physical constraints
based on some available data. The information entropy of a
probability distribution measures the amount of information
contained in the distribution. The larger the entropy, the less
information is provided by the distribution. Thus, by max-
imising the entropy over a suitable set of probability dis-
tributions, one finds the least informative distribution in the
sense that it contains the least amount of information consis-
tent with the system’s constraints. Note that a distribution is
sought over all the candidate distributions subject to a set of
constraints. The MEP has been questioned since its validity
and usefulness lie in the proper choice of physical constraints
(Jaynes, 1957; Yano 2019). Doubts are also raised regarding
the potential information loss when using the principle. An-
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alysts usually strive to use all available knowledge and avoid
unjustified information loss (Christakos, 1990; Flage et al.,
2018).

Options to address the parametrisation challenge also in-
clude surrogate models, parameter reduction, and model
learning (e.g. Lu and Lermusiaux, 2021; Sun et al., 2021b;
Albert et al., 2022; Degen et al., 2022; Liu et al., 2022). Sur-
rogate models are learnt to replace a complicated model with
an inexpensive and fast approximation. Parameter reduction
is achieved based on either principal component analysis or
global sensitivity analysis to determine which parameters
significantly impact model outputs and are essential to the
analysis (Degen et al., 2022; Wagener et al., 2022). Remark-
ably, versions of the model learning option do not need any
prior information about model equations Em but require lo-
cal verification of conservation laws in the data (Lu and
Lermusiaux, 2021). These approaches still require large data
sets sourced systematically, which is a frequent limitation in
geohazard assessments. More importantly, however, is that,
like many models, the credibility of unobserved surrogate
model outputs can always be questioned, since, for instance,
records may miss crucial events (Woo, 2019). Models may
also fail to reproduce outputs caused by recorded abrupt
changes (e.g. extreme velocities of turbidity currents) (Alley,
2004). An additional point is the issue of incomplete model
response, which refers to a model not having a solution for
some combinations of the specified input quantities (Carde-
nas, 2019; van den Eijnden et al., 2022).

In bypassing the described challenges when quantifying
uncertainty, simplifications are usually enforced, sometimes
unjustifiably, in the form of assumptions, denoted here by Ą.
The set Ą can include one or more of the assumptions listed
in Table 1. Note that the set of assumptions can be increased
with those assumptions imposed by using specific models
M (e.g. conservation of energy, momentum, or mass, Mohr–
Coulomb’s failure criterion).

3 Addressing the challenges in uncertainty
quantification

From the previous section, we saw that it is very difficult
in geohazard assessments to meet data requirements for the
ideal parameterisation of models. Further, we have noted
that, although fully parameterised models could potentially
be accurate at reproducing data from past events, these may
turn out to be inadequate for unobserved outputs. We also
made explicit that predictions are not only conditional on
2 but possibly also on SGm, BCm, and ICm; see expres-
sions (1)–(7). Ultimately, assumptions made also condition
model outputs. More importantly, note that when only some
model input quantities or parameters can be updated using
data , the modelling will only reflect some aspects of the
uncertainty involved. If the above challenges remain unad-
dressed, UQ lacks credibility. To address such challenges

and provide increased credibility, clarifications and reinter-
pretation of some fundamental concepts and practical sim-
plifications may be required, which are discussed in the fol-
lowing. Table 2 shows the major challenges found and how
they are addressed in related literature, while in Table 3,
some clarifications or considerations put forward by us are
displayed. The discussion in this section builds on previous
analysis by Aven and Pörn (1998), Apeland et al. (2002),
Aven and Kvaløy (2002), Nilsen and Aven (2003), Aven and
Zio (2013), Khorsandi and Aven (2017), and Aven (2019).

Among the clarifications, we consider a major conceptu-
alisation suggested by the literature, which is the definition
of uncertainty. Uncertainty refers to incomplete information
or knowledge about a quantity or the occurrence of an event
(Society for Risk Analysis, 2018). In Table 3, we denote this
clarification as C1. Embracing this definition has some impli-
cations for uncertainty quantification using geohazard mod-
els. We use these implications to address the major complica-
tions and challenges. For instance, if uncertainty is measured
in terms of probability, one such implication is that analysts
are discouraged from using so-called frequentist probabili-
ties. We note that frequentist probabilities do not measure
uncertainty or lack of knowledge. Rather. such probabilities
reflect frequency ratios representing fluctuation or variation
in the outcomes of quantities. Frequentist probabilities are of
limited use because these assume that quantities vary in large
populations of identical settings, a condition which can be
justified only for rather few geohazard quantities. The often
one-off nature of many geohazard features and the impossi-
bility of verifying or validating data by, e.g. a large number
of repeated tests, make it difficult to develop such probabil-
ities. Thus, a more meaningful and practical approach sug-
gests to measure uncertainty by the use of knowledge-based
(also referred to as judgemental or subjective) probabilities
(Aven, 2019). A knowledge-based probability is an expres-
sion of the degree of belief in the occurrence of an event
or quantity by a person assigning the probability conditional
on the available knowledge K. Such knowledge K includes
not only data in the form of measurements made avail-
able but also other data sources in D. The models M chosen
for the prediction and the modelling assumptions Ą made by
analysts are also part of K. Accordingly, to describe uncer-
tainty about quantities, probabilities are assigned based on
K, and, therefore, those probabilities are conditional on K.
In the previous section, we have made evident the conditional
nature of the uncertainty quantification (i.e. the probabilities)
on measured data and models M and wrote the expression
f (y|x, 2, D, M) for the overall output probability distribu-
tion (see Eq. 6). If assumptions Ą are also acknowledged as
a conditional argument of the uncertainty quantification, we
write more explicitly f (y|x, 2, D, M, Ą) or equivalently
f (y|x,2,K). We can therefore write

f (y|x,2,K)= f (y|x,2,D,M, Ą). (8)
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Table 1. Some enforced assumptions in UQ for geohazard assessments.

Predictions (non-observed outputs) of Y ∗ are credible despite models only reproducing responses based on historical data = {Ŷ =

ŷ,X = x̂}, ∈D.
A model has a solution for any combination of the specified input quantities X.
Elements in X are fully specified.
Elements in X are mutually independent.
The joint distribution f (x,θ) distributes according to the maximum entropy principle.
If measurements are available, some specified input quantities X are set to specific values x = x̂.
Some specified input quantities X are set to constant values x0, that is X = x0.
Some θ are set to specific point values and are mutually independent.
Some θ are independent of SGm, BCm, ICm.
SGm, BCm, ICm are set to be constant.
When some data are available in the form of measurements {ŷ, x̂}, likelihood functions L[m(θ | )] are mutually independent.

Table 2. Major challenges and options to address them in geohazard assessments.

Challenges: CH Options to address the challenges: O

Challenges related to the model outputs and system responses

CH1. Model outputs Y lack credibility since these are
outputs not recorded in the data .
CH2. A model does not have a solution for a feasible
combination of the specified input quantities X.

O1. Credibility of predictions is judged in terms of
physical consistency checks (Wagener et al., 2022) and
by examining the ability of models to reproduce disrup-
tive changes recorded in the data (Alley, 2004).
O2. Predictions by Bayesian forecasting methods.
Based on a prior distribution for y, a posterior distri-
bution of y is obtained by including the information
provided by the model prediction in the form of model
likelihood (Montanari and Koutsoyiannis, 2012).

Challenges related to input quantities

CH3. Data available may not include all the crucial
historical events or disruptive changes,
CH4. Some input quantities remain unknown (unidenti-
fied) to analysts during an assessment,
CH5. The distribution f (x) or the bounds of x are un-
known,
CH6. Some input quantities X may be mutually depen-
dent.

O3. Using the maximum entropy principle (MEP) to
specify the distributions based on the choice of physical
constraints of the phenomena involved. To reduce un-
justified information loss, constrain the distributions by
data including data other than measurements (Jaynes,
1957; Christakos, 1990; Betz, 2017; Yano, 2019).
O4. Counterfactual analysis in which alternative events
to observed facts, including disruptive changes, are
assumed to obtain alternative system responses using
models (Pearl, 1993; Woo, 2019).
O5. To specify input distributions, an exhaustive inves-
tigation of input uncertainty using the assumptions de-
viation approach (Aven, 2013).

Challenges related to the parameters and models

CH7. The distribution f (θ) or the bounds of θ are un-
known,
CH8. Some θ may be dependent on SGm, BCm, or
ICm,
CH9. Likelihood functions L[m(θ | )]may be mutually
dependent,
CH10. Models m in M may be mutually correlated.

O3. Using the MEP as described above.
O6. A joint distribution of 2, SGm, BCm, ICm, X

for each m can be specified by encoding other assump-
tions (e.g. prior distributions, likelihood functions, inde-
pendence, linear relationships, normality, stationarity)
in Bayesian networks (Albert et al., 2022).
O7. Using surrogate models, parameters reduction, and
model learning (Lu and Lermusiaux, 2021; Albert et al.,
2022).
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Table 3. Some clarifications and considerations to address the challenges in UQ.

C1. Uncertainty refers to lack of knowledge about quantities or events.
C2. Models are simplifications, mainly used for understanding the performance of the system and approximating its responses. Models
are part of the knowledge of the system, and they do not introduce uncertainty.
C3. The focus is on quantifying the uncertainty of the system responses rather than on the accuracy of a model reproducing recorded
data.
C4. Predictions are conditional on the model(s) chosen and the assumptions made by analysts.
C5. The specification of the joint distribution f (x,θ) cannot solely rely on the use of the maximum entropy principle but on the full
scrutiny of background knowledge K.
C6. Some elements in the parameter set 2 are not properties of the system as such, and there could not be uncertainty about them.
C7. Analysts may choose a model or a set of models which are believed or judged to be the best credible models.

The meaning of this expression is explained next. If, in a spe-
cific case, we would write f (y|x,2,K)= f (y|x,θ,D), it
means that D summarises all the knowledge that analysts
have to calculate y given (realised or known) x and θ . Ac-
cordingly, the full expression in Eq. (8) implies that to calcu-
late y, and given the knowledge of x and θ , the background
knowledge includes D, M, and Ą. Note that K can also be
formed by observations, justifications, rationales, and argu-
ments; thus, Eq. (8) can be further detailed to include these
aspects of K. Structured methods exist to assign knowledge-
based probabilities (see, e.g. Apeland et al., 2002; Aven,
2019). Here we should note, however, that since models form
part of the available background knowledge K, models can
also inform these knowledge-based probability assignments.
It follows that, based on knowledge-based input probabili-
ties, an overall output probability distribution calculated us-
ing models is also subjective or knowledge-based (Jaynes,
1957). Some of the implications of using knowledge-based
probabilities are described throughout this section.

According to the left column in Table 2, the focus of the
challenges relates to the model outputs, more specifically
predictions (CH1 and CH2), input quantities (CH3–CH6),
parameters (CH7–CH9), and models (CH10). We recall that
uncertainty quantification helps determine the system’s re-
sponse uncertainty based on specified input quantities. Ac-
cordingly, an assessment focuses on the potential system’s
responses. The focus is often on uncertainty about future
non-observed responses Y ∗, which are approximated by the
model output Y , considering some specified input quantities
X. We recall that Y ∗ and X∗ are quantities that are unknown
at the time of the analysis but will take some value in the
future and possibly become known. Thus, during an assess-
ment, Y ∗ and X∗ are the uncertain quantities of the system
since we have incomplete knowledge about Y ∗ and X∗. Ac-
cordingly, the output-prediction error ε, the mismatch be-
tween the model prediction values y, and the non-observed
system’s response values y∗ can only be specified based on
the scrutiny of K.

There is another consequence of considering the defini-
tion of uncertainty put forward in C1, which links uncertainty
solely to quantities or events. The consequence is that mod-

els, as such, are not to be linked to uncertainty. Models are
merely mathematical artefacts. Models, per se, do not intro-
duce uncertainty, but they are likely inaccurate. Accordingly,
another major distinction is to be set in place. We recall that
models, by definition, are simplifications, approximations of
the system being analysed. They express or are part of the
knowledge of the system. Models should therefore be solely
used for understanding the performance of the system rather
than for illusory perfect predictions. In Table 3, we denote
the latter clarification as C2.

Regarding the challenges CH1 and CH2, we should note
that geohazard analysts are often more interested in predic-
tions rather than known system outputs. For instance, predic-
tions are usually required to be calculated for input values
not contained in the validation data. We consider that pre-
dictions are those model outputs not observed or recorded in
the data, i.e. extrapolations out of the range of values cov-
ered by observations. Thus, the focus is on quantifying the
uncertainty of the system’s responses rather than on the accu-
racy of a model reproducing recorded data. This is the clar-
ification C3 in Table 3. Considering this, models are yet to
provide accuracy in reproducing observed outputs but, more
importantly, afford credibility in predictions. Such credibility
is to be assessed mainly in terms of judgements, since con-
ventional validation cannot be conducted using non-observed
outputs. Recall that model accuracy usually relates to com-
paring model outputs with experimental measurements (Roy
and Oberkampf, 2011; Aven and Zio, 2013) and is the basis
for validating models. Regarding the credibility of predic-
tions, Wagener et al. (2022) have reported that such credibil-
ity can be mainly judged in terms of the physical consistency
of the predictions. Such consistency is judged by checks re-
jecting physically impossible representations of the system.
The credibility of predictions may also include the verifica-
tion of the ability of models to accurately reproduce disrup-
tive changes recorded in the data (Alley, 2004). However, as
we have made explicit in the previous section, model pre-
dictions are conditional on a considerable number of critical
assumptions and choices made by analysts (see Table 1 and
clarification C4 in Table 3). Therefore, predictions can only
be as good as the quality of the assumptions made. The as-
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sumptions could be wrong, and the examination of the im-
pact of these deviations on the predictions must be assessed.
To provide credibility of predictions, such assumptions and
choices should be justified and scrutinised; see option O5 in
Table 2. Option O5 addresses the challenge CH1; however,
when conducting UQ, O5 has a major role when investigat-
ing input uncertainty, which is discussed next.

A critical task in UQ is the quantification of input un-
certainty. Input uncertainty may originate when crucial his-
torical events or disruptive changes are missing in the
records (CH3). Some critical input quantities may also re-
main unidentified to analysts during an assessment (CH4).
Analysts can unintendedly fail to identify relevant elements
in X∗ due to insufficiencies in data or limitations of existing
models. For example, during many assessments, trigger fac-
tors that could bring a soil mass to failure could remain un-
known to analysts (e.g. Hunt et al., 2013; Clare et al., 2016;
Leynaud et al., 2017; Casalbore et al., 2020). UQ requires
simulating sampled values from X, and elements in X can
be mutually dependent. However, the joint distribution of X,
namely f (x), is often also unknown. This is the challenge
CH6. Considering the potential challenges CH3 to CH6, to
specify f (x), we cannot solely rely on using the maximum
entropy principle (MEP). The MEP may fail to advance an
exhaustive uncertainty quantification in the input, e.g. by
missing relevant values not recorded in the measured data.
This would undermine the quality of predictions and, there-
fore, uncertainty quantification. Recall that the MEP sug-
gests using the least informative distribution among candi-
date distributions constrained solely on measurements. Using
counterfactual analysis, as described in Table 2, is an option.
However, the counterfactual analysis will also fail to provide
quality predictions, since this analysis focuses on counter-
factuals (alternative events to observed facts , ∈D) and
little on the overall knowledge available K. Note that the
knowledge K about the system includes, e.g. the assumptions
made in the UQ, such as those shown in Table 1. Further note
that such assumptions relate not only to data but also to input
quantities, modelling, and predictions. Thus, it appears that
the examination of these assumptions should be at the core
of UQ in geohazard assessments, as suggested in Table 2,
option O5. The risk assessment of deviations from assump-
tions was originally suggested by Aven (2013) and exempli-
fied by Khorsandi and Aven (2017). An assumption deviation
risk assessment evaluates different deviations, their associ-
ated probabilities of occurrence, and the effect of the devia-
tions. A major distinctive feature of the assumption deviation
risk assessment approach is the evaluation of the credibil-
ity of the knowledge K supporting the assumptions made.
Another feature of this approach is questioning the justifi-
cations supporting the potential for deviations. The exami-
nation of K can be achieved by assessing the justifications
for the assumptions made, the amount and relevance of data
or information, the degree of agreement among experts, and
the extent to which the phenomena involved are understood

and can be modelled accurately. Justifications might be in
the form of direct evidence becoming available, indirect ev-
idence from other observable quantities, supported by mod-
elling results, or possibly inferred by assessments of devi-
ations of assumptions. This approach is succinctly demon-
strated in the following section. Accordingly, we suggest
specifying f (x) in terms of knowledge-based probabilities
in conjunction with investigating input uncertainty using the
assumptions deviation approach. This is identified as consid-
eration C5 in Table 3.

Another point to consider is that when uncertainty is mea-
sured in terms of knowledge-based probabilities, analysts
should be aware of what conditionality means. If, for ex-
ample, a quantity X2 is conditional on a quantity X1, this
implies that increased knowledge about X1 will change the
uncertainty aboutX2. The expression that denotes this is con-
ventionally written asX2|X1. Analysts may exploit this inter-
pretation when specifying, e.g. the joint distribution f (x,θ).
For example, when increased knowledge about a quantityX1
will not result in increased knowledge about another quan-
tity X2, analysts may simplify the analysis according to the
scrutiny of K, meaning that a distribution f (y|x1,x2) to be
specified may reduce to f (y|x1)f (y|x2) according to proba-
bility theory. Apeland et al. (2002) have illustrated how con-
ditionality in the setting of knowledge-based probabilities
can inform the specification of a joint distribution.

The parameterisation problem, which involves the chal-
lenges CH7 to CH9 in Table 2, warrants exhaustive consider-
ation. Addressing these challenges also requires some rein-
terpretation. To start, note that parameters are coefficients
determining specific functions among a family of potential
functions modelling the system. Those parameters constrain
a model’s output. Recall that y, as realisations of Y , are the
model output when X takes the values x, and some param-
eters θ ∈2, and models m ∈M are used. Thus, as shown
in the previous section, any output y is conditional on θ , and
so is the uncertainty attached to y∗. We may also distinguish
two types of parameters. We may have parameters associ-
ated with a property of the system. Other parameters exist
that are merely artefacts in the models and are not proper-
ties of the system. As suggested, if uncertainty can solely be
attached to events or quantities, we may say that parameters
that are not properties of the system are not to be linked to
any uncertainty. This is identified as clarification C6 in Ta-
ble 3. For example, analysts may consider that the parameters
not being part of the system as such are those linked to the
output-prediction error ε, the vector associated with obser-
vation/measurement errors 2o, and the overall attached hy-
perparameters linked to probability distributions (including
priors, likelihood functions). Analysts may consider the lat-
ter parameters as modelling artefacts, so it is questionable to
attach uncertainty to them. Thus, focused on the uncertainty
of the system responses rather than model inaccuracies, un-
certainty is to be assigned to those parameters that represent
physical quantities. Fixed single values can be assigned to
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those parameters that are not properties of the system. To
help identify those parameters to which some uncertainty can
be linked, we can scrutinise, e.g. the physical nature of these.
In fixing parameters to a single value, we can still make use
of back-analysis procedures, as mentioned previously. Ana-
lysts may have some additional basis to specify parameter
values when the background knowledge available K is scru-
tinised. K can be examined to verify that not only data mea-
surements but other sources of data, models, and assumptions
made strongly support a specific parameter value. Based on
this interpretation, setting the values of the parameters that
are not properties of the system to a single value reduces
the complications in quantifying uncertainty considerably. It
also follows that analysts are encouraged to make explicit
that model outputs are conditional on these fixed parameters,
and on the model or models chosen, as we have shown in the
previous section. The latter also leads us to argue that the fo-
cus of UQ is on the uncertainty of the system response rather
than the inaccuracies of the models. This implies in a prac-
tical sense that in geohazard assessments, when parameters
are clearly differentiated from specified input quantities, and
models providing the most credible predictions are chosen,
uncertainty quantification can then proceed. This parsimo-
nious modelling approach is identified as consideration C7
in Table 3. This latter consideration addresses, to an extent,
the challenge CH10.

In the following section, we further illustrate the above
discussion by analysing a documented case in which UQ in
a geohazard assessment was informed by modelling using
sampling procedures.

4 Case analysis

To further describe the proposed considerations, we analyse
a case reported in the specialised literature. The case deals
with the quantification of uncertainty of geological struc-
tures, namely uncertainty about the subsurface stratigraphic
configuration. Conditions in the subsurface are highly vari-
able, whereas site investigations only provide sparse mea-
surements. Consequently, subsurface models are usually in-
accurate. At a given location, subsurface conditions are un-
known until accurately measured. Soil investigation at all lo-
cations is usually impractical and uneconomical, and point-
to-point condition variation cannot be known (Vanmarcke,
1984). Such uncertainty means significant engineering and
environmental risk to, e.g. infrastructure built on the surface.
One way to quantify this uncertainty is by calculating the
probability of every possible configuration of the geological
structures (Tacher et al., 2006; Thiele et al., 2016; Pakyuz-
Charrier et al., 2018). Sampling procedures for UQ are help-
ful in this undertaking. We use an analysis and information
from Zhao et al. (2021), which refer to a site located in the
Central Business District, Perth, Western Australia, where
six boreholes were executed. The case has been selected tak-

ing into account its simplicity to illustrate the points of this
paper, but at the same time, it provides details to allow some
discussion. Figure 2 displays the system being analysed.

In the system under consideration, a particular material
type to be found in a non-bored point, a portion of terrain
not penetrated during soil investigation, is unknown and thus
uncertain. The goal is to compute the probability of encoun-
tering a given type of soil at these points. Zhao et al. (2021)
focus on calculating the probabilities of encountering clay in
the subsurface. The approach advocated was a sampling pro-
cedure to generate many plausible configurations of the ge-
ological structures and evaluate their probabilities. In a non-
penetrated point in the ground, to calculate the probability
of encountering a given type of soil c, p(y = c), Zhao et
al. (2021) used a function that depends on two correlation pa-
rameters, namely the horizontal and vertical scale of fluctua-
tion θh and θv. Note that spatial processes and their properties
are conventionally assumed as spatially correlated. Such spa-
tial variation may presumably be characterised by correlation
functions, which depend on a scale of fluctuation parameter.
The scale of fluctuation measures the distance within which
points are significantly correlated (Vanmarcke, 1984). Equa-
tion (9) describes the basic components of the model chosen
by Zhao et al. (2021) (specific details are given in the Ap-
pendix to this paper) as follows:

m :Xs×2m→ Y s→ p(y = c), (9)

where X is the collection of all specified quantities at bore-
hole points sx which can take values x from the set {sand,
clay, gravel}, according to the setting in Fig. 2. Y is the col-
lection of all model outputs with values y at non-borehole
points sy . Probabilities p(y = c) are computed based on the
sampling of the values y and x, and a chosen model using
the parameters θh = 11.1 and θv = 4.1 m, θh, θv ∈2m. Us-
ing the maximum likelihood method, the parameters were
determined based on the borehole data revealed at the site.
In determining parameters, the sampling from uniform and
mutually independent distributions of θh and θv was the pro-
cedure advocated. The system is further described by a set of
equations Em (a correlation function and a probability func-
tion), the spatial domain geometry sgm (a terrain block of
30×80 m), and the boundary conditions bcm (the conditions
at the borders). More details are given in the Appendix to this
paper. Since this system is not considered time-dependent,
the initial conditions ICm were not specified.

The summary results reported by Zhao et al. (2021) are
shown in Fig. 3. In Fig. 3, the most probable stratigraphic
configuration, along with the spatial distribution of the prob-
ability of the existence of clay, is displayed. The authors fo-
cused on this sensitive material, which likely represents a risk
to the infrastructure built on the surface.

Zhao et al. (2021) stated that “characterisation results of
the stratigraphic configuration and its uncertainty are consis-
tent with the intuition and the state of knowledge on site char-
acterisation”. Next, throughout Zhao et al.’s (2021) analysis,
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Figure 2. Borehole logs in colours and longitudinal section reported by Zhao et al. (2021) located in the Central Business District, Perth,
Western Australia. The records correspond to information on six boreholes. Three types of materials are revealed by the boreholes, including
sand (yellow), clay (magenta), and gravel (blue).

Figure 3. Zhao et al. (2021) findings shown in their Fig. 9. (a) Most
probable stratigraphic configuration. (b) Spatial distribution of the
probability of the existence of clay. Reprinted from Engineering Ge-
ology, 238, Zhao et al. (2021), Probabilistic characterisation of sub-
surface stratigraphic configuration with modified random field ap-
proach, p. 106138, © 2021, with permission from the COPYRIGHT
OWNER: Elsevier. Distances in metres.

the following assumptions were enforced (Table 4), although
these were not explicitly disclosed by the authors.

Unfortunately, the authors did not report enough details
on how the majority of these assumptions are justified. We
should note, however, that providing these justifications was
not the objective of their research. Yet, here we analyse how
assumptions can be justified by scrutinising K and using
some elements of the assumption deviation approach de-

scribed in the previous section. Table 5 summarises the anal-
ysis conducted and only reflects the most relevant observa-
tions and reservations we identified. Accordingly, the infor-
mation in Table 5 may not be exhaustive but is still useful
for the desired illustration. Table 5 displays some of our ob-
servations related to the credibility of the knowledge K. The
examination of K is achieved by assessing the amount and
relevance of data or information, the extent to which the phe-
nomena involved are understood and can be modelled accu-
rately, the degree of agreement among experts, and the jus-
tifications for the assumptions made. Observations regarding
the justifications for potential deviations from assumptions
also form part of the analysis.

Not surprisingly, the observations in our analysis concen-
trate on the predictions’ credibility. Recall that UQ focuses
on the system’s response, approximated by model predic-
tions (considerations C2 and C3 in Table 3). For example,
although using correlations is an accepted practice and a
practical simplification, correlation functions appear coun-
terintuitive to model geological structures or domains. Fur-
ther, correlation functions do not help much in understand-
ing the system (consideration C2 in Table 3). Recall that
such structures are mainly disjoint domains linked to a fi-
nite set of possible categorical quantities (masses of soil or
rock) rather than continuous quantities. Next, the variation
of such structures can occur by abrupt changes in materials;
thus, the use of smoothed correlation functions to represent
them requires additional consideration. Moreover, the physi-
cal basis of the correlation functions is not clear, and physi-
cal models based on deposition processes may be suggested
(e.g. Catuneanu et al., 2009). We should note a potential jus-
tification for the deviation from the assumption regarding the
credibility of predictions. This is because knowledge from
additional sources such as surface geology, sedimentology,
local geomorphic setting, and structural geology was not ex-
plicitly taken into account in quantifying uncertainty. The re-
vision of this knowledge can contribute to reducing the prob-
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Table 4. Assumptions enforced by Zhao et al. (2021).

Predictions (non-observed outputs) are credible.
Likelihood functions L[m(θ | )] were set to be mutually independent.
For the determination of parameters and model, f (θh,θv) distributes according to the maximum entropy principle. θh
and θv are mutually independent.
Specified elements X are complete.
X only takes values from the set {sand, clay, gravel}.
X were set to the measured values, i.e. x = x̂ (no inaccuracies in data).
θ are independent of sgm and bcm.
sgm, bcm were set to be constant.

ability of deviation in predictions. Based on the observations
in Table 5, we can conclude that there is potential to improve
the credibility of predictions.

The choices made by Zhao et al. (2021) regarding the use
of parameters with fixed values together with the choice for
a single best model can be highlighted. These choices illus-
trate the points raised in considerations C6 and C7 (Table 3).
The maximum likelihood method supported these choices;
a back-analysis method focused on matching measurements
and calculated model outputs using different assumed val-
ues for θh and θv. We highlight that a model judged to be
the best model was chosen. This includes the specification of
a particular spatial domain geometry in SGm. Investigating
the impact of the variation of SGm was considered unneces-
sary. There was no need to specify several competing models,
which is in line with our consideration labelled as C7 in this
paper.

Zhao et al. (2021) investigated the joint distribution
f (x), which was sampled to calculate probabilities. How-
ever, someone can suggest that the joint distribution
f (x,θ ,sgm,bcm) could have been produced. Nevertheless, we
can argue that establishing such a joint distribution is chal-
lenging and requires, in many instances, that analysts encode
many additional assumptions (e.g. prior distributions, likeli-
hood functions, independence, linear relationships, normal-
ity, stationarity of the quantities and parameters considered).

A more crucial observation derived from the analysis of
potential deviations of assumptions might considerably im-
pact the credibility of predictions. This observation comes
from revisiting the knowledge sources of Zhao et al.’s (2021)
analysis, available from https://australiangeomechanics.org/
downloads/ (last access: 29 June 2022). Another type of sen-
sitive material was revealed by other soundings in the area,
more specifically, silt. Depending on the revision of K, this
fourth suspected material could be analysed in an extended
uncertainty quantification of the system. Note that the spec-
ified input quantities X were originally assumed to take val-
ues x from the set {sand, clay, gravel}. Such an assumption
was based on the records of six boreholes which were be-
lieved to be accurate. The latter illustrates the relevance of
consideration C5 in Table 3.

Another choice by Zhao et al. (2021) is that they disre-
garded the possibility of incorporating measurement errors
of the borehole data into the UQ, probably because these
data were judged to be accurate. We recall in this respect
that these errors reflect the inaccuracy of the measurements
rather than the uncertainty about the system. As stated for
consideration C6 (Table 3), we can hardly justify attaching
uncertainty to measurement error parameters, since measure-
ment errors are not a property of the system. The same can be
said for the parameters θh and θv, which are not properties of
the system. Note that their physical basis is questioned. We
should note, however, that assuming global coefficients for
the parameters θh and θv is an established practice (Vanmar-
cke, 1984; Lloret-Cabot et al., 2014; Juang et al., 2019). It
can be pointed out that uncertainty quantification in this kind
of system is, to an extent, sensitive to the choice of scale
of fluctuation values (Vanmarcke, 1984). It can also be ar-
gued that using a global rather than local correlation between
spatial quantities can misrepresent geological structure varia-
tion. Accordingly, further examination of the existing knowl-
edge K justifies some assessment of the impact of assuming
a local rather than global scale of fluctuation.

Overall, the Zhao et al. (2021) analysis is, to an extent,
based on the previously suggested definition of uncertainty;
see the consideration C1 in Table 3.

We should stress that Zhao et al.’s (2021) uncertainty
quantification refers specifically to the ground model de-
scribed at the beginning of this section. In other words, the
probabilities displayed in Fig. 3b are conditional on the pa-
rameters chosen (θh = 11.1 and θv = 4.1 m), the model se-
lected (described by Eqs. 9, A1 and A2 in the Appendix
to this paper), the specified spatial domain geometry sgm (a
terrain block of 30× 80 m), and ultimately the assumptions
made (listed in Table 4). This information is to be reported
explicitly to the users of the results. This reflects the clarifi-
cation C4 in Table 3.

Regarding the consideration of subjective probabilities,
there has been some agreement on their use in this kind
of UQ since Vanmarcke (1984). However, the use of
knowledge-based probabilities in the extension described
here is recommended, given the illustrated implications to
advance UQ (as discussed in the previous section and stated
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Table 5. Examination of supporting knowledge K and justifications for the potential deviation of assumptions.

The amount and rele-
vance of data or infor-
mation

The extent to which the
phenomena involved
are understood and
accurate models exist

The degree of agree-
ment among experts

Justifications for the as-
sumptions made

Justifications sup-
porting the potential
deviations

Assumption: predictions of Y ∗ are credible.

The analysis is only
based on borehole
information; however,
such investigation is ex-
ceptionally exhaustive.
Six boreholes.

The physical basis for
using correlations is du-
bious and models based
on the deposition pro-
cess can be considered.

The use of correlations
is an accepted practice
in the field.

Exhaustive borehole in-
formation.

The knowledge of sur-
face geology, sedimen-
tology, local geomor-
phic setting, and struc-
tural geology was not
explicitly incorporated
into UQ.

Variation of geological
structures can occur by
abrupt changes, thus
the use of smoothed
functions to represent
them requires addi-
tional consideration.

Global rather than local
correlation between
spatial quantities has
been used, possibly
misrepresenting ge-
ological structures
variation.

Assumption: likelihood functions L[m(θ | )] were set to be mutually independent.

Assumption:f (θh,θv) distributes according to the maximum entropy principle and θh and θv are mutually independent.

Data of the six bore-
holes have been
used to calibrate
the model chosen.
However, knowledge
of surface geology,
sedimentology, local
geologic/geomorphic
setting, and structural
geology was not explic-
itly incorporated into
the analysis.

Based on the maximum
likelihood method, a
model judged to be the
best model was chosen.

Dependency between
θh and θv, cannot be
supported by general
knowledge and such
dependency hardly can
be enforced.

An increased revision
of K, could have been
useful to specify f (x)

and f (θ) providing a
richer information than
that suggested by the
maximum entropy prin-
ciple, regarding how X

or 2 take values.

Assumption: specified elements X are complete.

Input quantities were
considered fully speci-
fied.

Assumption: specified input quantities X were set to measured values x = x̂.

Errors during surveys
may have resulted in
horizontal positioning
inaccuracies.

Data were judged to be
accurate.

There is usually not
data basis to calculate
these errors.
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in consideration C5). For example, increased examination of
K might have resulted in using a more informative distribu-
tion f (θh,θv) than the uniform distribution. The increased
examination of K might have led to different values for θh
and θv, and a different model. Recall that the selection of
the model and determination of parameters were based on
the maximum likelihood method, which only uses measured
data .

In our analysis of Zhao’s et al. (2021) assessment, the ex-
amination of supporting knowledge K resulted essentially in

1. judging the credibility of predictions;

2. providing justifications for assessing assumption devia-
tions by considering the modelling of a fourth material;

3. considering additional data other than the borehole
records, such as surface geology, sedimentology, local
geomorphic setting, and structural geology;

4. analysing the possibility of distinct geological models
with diverse spatial domain geometry and local correla-
tions; and

5. ultimately, further examining the existing K.

5 Conclusions

In this paper, we have discussed challenges in uncertainty
quantification (UQ) for geohazard assessments. Beyond the
parameterisation problem, the challenges include assessing
the quality of predictions required in the assessments, quanti-
fying uncertainty in the input quantities, and considering the
impact of choices and assumptions made by analysts. Such
challenges arise from the commonplace situation of limited
data and the one-off nature of geohazard features. If these
challenges are kept unaddressed, UQ lacks credibility. Here,
we have formulated seven considerations that may contribute
to providing increased credibility in the quantifications. For
example, we proposed understanding uncertainty as lack of
knowledge, a condition that can only be attributed to quan-
tities or events. Another consideration is that the focus of
the quantification should be more on the uncertainty of the
system response rather than the accuracy of the models used
in the quantification. We drew attention to the clarification
that models, in geohazard assessments, are simplifications
used for predictions approximating the system’s responses.
We have also considered that since uncertainty is only to be
linked to the properties of the system, models do not intro-
duce uncertainty. Inaccurate models can, however, produce
poor predictions and such models should be rejected. Then,
an increased examination of background knowledge will be
required to quantify uncertainty credibly. We also put for-
ward that there could not be uncertainty about those elements
in the parameter set that are not properties of the system.
The latter also has pragmatic implications, including how the

many parameters in a geohazard system could be constrained
in a geohazard assessment.

We went into detail to show that predictions, and in turn
UQ, are conditional on the model(s) chosen together with
the assumptions made by analysts. We identified limitations
of measured data to support the assessment of the quality
of predictions. Accordingly, we have proposed that the qual-
ity of UQ needs to be judged based also on some additional
crucial tasks. Such tasks include the exhaustive scrutiny of
the knowledge coupled with the assessment of deviations of
those assumptions made in the analysis.

Key to enacting the proposed clarifications and simplifica-
tions is the full consideration of knowledge-based probabil-
ity. Considering this type of probability will help overcome
the identified limitations of the maximum entropy principle
or counterfactual analysis to quantify uncertainty in input
quantities. We have exposed that the latter approaches are
prone to produce unexhausted uncertainty quantification due
to their reliance on measured data, which can miss crucial
events or overlook relevant input quantities.

Appendix A

In this Appendix, the necessary details of the original analy-
sis made by Zhao et al. (2021) are given. The following are
the basic equations Em used by these authors:

p(y = c)∼

∑
xs×Yρx=c,y=c∑C

c=1
∑
xs×Y

ρx=c, y=c
(A1)

ρxy = exp
(
−π

sxsy

θh
−π
|sxsy

θv

)
, (A2)

where X is the collection of all specified quantities at bore-
hole points, which take values x. Y is the collection of all out-
puts at non-borehole points with values y. ρxy is the value of
correlation between a quantity value x at a penetrated point
sx ∈ Sx and the value y at a non-penetrated point sy ∈ Sy .
sxsy is the horizontal distance between points sx and sy ,
while |sxsy is the vertical one. θh and θv are the horizontal
and vertical scales of fluctuation, respectively. Each material
class considered is associated exclusively with an element in
the set of integers {1,2, . . .,C}. p(y = c) is the probability of
encountering a type of material c in a point sy . Such proba-
bility is initially approximated using Eq. (A1). More accurate
probabilities are computed based on the repeated sampling of
the joint distribution f (x,y), which was approximated using
Eq. (A1). Equation (A1), described in short, approximates
probabilities as the ratio of the sum of correlation values,
calculated for a penetrated point in the set Sx and the set of
non-penetrated points Sy for a given material c, to the sum
of correlation values for all points and all materials.

Based on data collected at borehole locations, the se-
lection of the type of correlation function and the scales
of fluctuation took place using the maximum likelihood
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method. The authors considered three types of correlation
functions, namely squared exponential, single exponential,
and second-order Markov. In this case, the likelihood func-
tion L(θm| )= f ( |θm) represents the likelihood of ob-
serving at borehole locations, given the spatial correla-
tion structure θm. The squared exponential function yielded
the maximum likelihood when the horizontal and vertical
scales of fluctuation were set to 11.1 and 4.1 m, respectively.
Hence, the squared exponential function correlation, whose
expression is Eq. (A2) in this Appendix, was selected. Equa-
tions (A3) and (A4) correspond to the single exponential and
the second-order Markov functions, respectively.

ρxy = exp
(
−2
sxsy

θh
− 2
|sxsy

θv

)
(A3)

ρxy =

(
1+ 4

sxsy

θh

)(
1+ 4

|sxsy

θv

)
· exp

(
−4
sxsy

θh
− 4
|sxsy

θv

)
(A4)

Data availability. No data sets were used in this article.

Author contributions. ICC: conceptualisation, methodology, writ-
ing (original draft preparation), investigation, and validation. TA:
investigation, supervision, and writing (reviewing and editing). RG:
investigation, supervision, and writing (reviewing and editing).

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors are very grateful to the reviewers,
who provided valuable and useful suggestions.

Financial support. This research is funded by ARCEx partners and
the Research Council of Norway (grant no. 228107).

Review statement. This paper was edited by Dan Lu and David
Ham and reviewed by Anthony Gruber and one anonymous referee.

References

Albert, C. G., Callies, U., and von Toussaint, U.: A Bayesian
approach to the estimation of parameters and their inter-

dependencies in environmental modeling, Entropy, 24, 231,
https://doi.org/10.3390/e24020231, 2022.

Alley, R. B.: Abrupt climate change, Sci. Am., 291, 62–69,
https://doi.org/10.1126/science.1081056, 2004.

Apeland, S., Aven, T., and Nilsen, T.: Quantifying uncertainty
under a predictive, epistemic approach to risk analysis, Re-
liab. Eng. Syst. Saf., 75, 93–102, https://doi.org/10.1016/S0951-
8320(01)00122-3, 2002.

Aven, T.: On the need for restricting the probabilistic analysis
in risk assessments to variability, Risk Anal., 30, 354–360,
https://doi.org/10.1111/j.1539-6924.2009.01314.x, 2010.

Aven, T.: Practical implications of the new risk per-
spectives, Reliab. Eng. Syst. Saf., 115, 136–145,
https://doi.org/10.1016/j.ress.2013.02.020, 2013.

Aven, T.: The science of risk analysis: Foundation and practice,
Routledge, London, https://doi.org/10.4324/9780429029189,
2019.

Aven, T. and Kvaløy, J. T.: Implementing the Bayesian paradigm
in risk analysis, Reliab. Eng. Syst. Saf., 78, 195–201,
https://doi.org/10.1016/S0951-8320(02)00161-8, 2002.

Aven, T. and Pörn, K.: Expressing and interpreting the re-
sults of quantitative risk analyses, Review and discussion, Re-
liab. Eng. Syst. Saf., 61, 3–10, https://doi.org/10.1016/S0951-
8320(97)00060-4, 1998.

Aven, T. and Zio, E.: Model output uncertainty in
risk assessment, Int. J. Perform. Eng., 29, 475–486,
https://doi.org/10.23940/ijpe.13.5.p475.mag, 2013.

Betz, W.: Bayesian inference of engineering models, Doctoral dis-
sertation, Technische Universität München, 2017.

Brown, G. W.: Monte Carlo methods, Modern Mathematics for the
Engineers, 279–303, McGraw-Hill, New York, 1956.

Cardenas, I.: On the use of Bayesian networks as
a meta-modelling approach to analyse uncertain-
ties in slope stability analysis, Georisk, 13, 53–65,
https://doi.org/10.1080/17499518.2018.1498524, 2019.

Carrera, J. and Neuman, S.: Estimation of aquifer parameters un-
der transient and steady state conditions: 2. Uniqueness, stabil-
ity, and solution algorithms, Water Resour. Res., 22, 211–227,
https://doi.org/10.1029/WR022i002p00211, 1986.

Casalbore, D., Passeri, F., Tommasi, P., Verrucci, L., Bosman, A.,
Romagnoli, C., and Chiocci, F. L.: Small-scale slope instability
on the submarine flanks of insular volcanoes: the case-study of
the Sciara del Fuoco slope (Stromboli), Int. J. Earth Sci., 109,
2643–2658, https://doi.org/10.1007/s00531-020-01853-5, 2020.

Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dal-
rymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L.,
Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M.,
Jordan, R., Kendall, C. G. St. C., Macurda, B., Martinsen, O. J.,
Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamen-
tier, H. W., Pratt, B. R., Sarg, J. F., Shanley, K. W., Steel, R. J.,
Strasser, A., Tucker, M. E., and Winker, C.: Towards the stan-
dardisation of sequence stratigraphy, Earth-Sci. Rev., 92, 1–33,
https://doi.org/10.1016/j.earscirev.2008.10.003, 2009.

Chow, Y. K., Li, S., and Koh, C. G.: A particle method for simu-
lation of submarine landslides and mudflows, Paper presented at
the 29th International Ocean and Polar Engineering Conference,
16–21 June, Honolulu, Hawaii, USA, ISOPE-I-19-594, 2019.

https://doi.org/10.5194/gmd-16-1601-2023 Geosci. Model Dev., 16, 1601–1615, 2023

https://doi.org/10.3390/e24020231
https://doi.org/10.1126/science.1081056
https://doi.org/10.1016/S0951-8320(01)00122-3
https://doi.org/10.1016/S0951-8320(01)00122-3
https://doi.org/10.1111/j.1539-6924.2009.01314.x
https://doi.org/10.1016/j.ress.2013.02.020
https://doi.org/10.4324/9780429029189
https://doi.org/10.1016/S0951-8320(02)00161-8
https://doi.org/10.1016/S0951-8320(97)00060-4
https://doi.org/10.1016/S0951-8320(97)00060-4
https://doi.org/10.23940/ijpe.13.5.p475.mag
https://doi.org/10.1080/17499518.2018.1498524
https://doi.org/10.1029/WR022i002p00211
https://doi.org/10.1007/s00531-020-01853-5
https://doi.org/10.1016/j.earscirev.2008.10.003


1614 I. C. Cardenas et al.: Addressing challenges in uncertainty quantification

Christakos, G.: A Bayesian/maximum-entropy view to the
spatial estimation problem, Math. Geol., 22, 763–777,
https://doi.org/10.1007/BF00890661, 1990.

Clare, M. A., Clarke, J. H., Talling, P. J., Cartigny, M. J., and
Pratomo, D. G.: Preconditioning and triggering of offshore slope
failures and turbidity currents revealed by most detailed moni-
toring yet at a fjord-head delta, Earth Planet. Sc. Lett., 450, 208–
220, https://doi.org/10.1016/j.epsl.2016.06.021, 2016.

Degen, D., Veroy, K., Scheck-Wenderoth, M., and Wellmann,
F.: Crustal-scale thermal models: Revisiting the influence of
deep boundary conditions, Environ. Earth Sci., 81, 1–16,
https://doi.org/10.1007/s12665-022-10202-5, 2022.

Dubois, D.: Possibility theory and statistical rea-
soning, Comput. Stat. Data Anal., 51, 47–69,
https://doi.org/10.1016/j.csda.2006.04.015, 2006.

Ferson, S. and Ginzburg, L. R.: Different methods are needed
to propagate ignorance and variability, Reliab. Eng. Syst. Saf.,
54, 133–144, https://doi.org/10.1016/S0951-8320(96)00071-3,
1996.

Flage, R., Baraldi, P., Zio, E., and Aven, T.: Probability and
possibility-based representations of uncertainty in fault tree anal-
ysis, Risk Anal., 33, 121–133, https://doi.org/10.1111/j.1539-
6924.2012.01873.x, 2013.

Flage, R., Aven, T., and Berner, C. L.: A comparison between
a probability bounds analysis and a subjective probability ap-
proach to express epistemic uncertainties in a risk assessment
context – A simple illustrative example, Reliab. Eng. Syst. Saf.,
169, 1–10, https://doi.org/10.1016/j.ress.2017.07.016, 2018.

Gray, A., Ferson, S., Kreinovich, V., and Patelli, E.: Distribution-
free risk analysis, Int. J. Approx. Reason., 146, 133–156,
https://doi.org/10.1016/j.ijar.2022.04.001, 2022a.

Gray, A., Wimbush, A., de Angelis, M., Hristov, P. O., Calleja, D.,
Miralles-Dolz, E., and Rocchetta, R.: From inference to design:
A comprehensive framework for uncertainty quantification in en-
gineering with limited information, Mech. Syst. Signal Process.,
165, 108210, https://doi.org/10.1016/j.ymssp.2021.108210,
2022b.

Hastings, W. K.: Monte Carlo sampling methods using Markov
chains and their applications, Biometrika, 87, 97–109,
https://doi.org/10.2307/2334940, 1970.

Helton, J. C. and Oberkampf, W. L.: Alternative representations
of epistemic uncertainty, Reliab. Eng. Syst. Saf., 1, 1–10,
https://doi.org/10.1016/j.ress.2011.02.013, 2004.

Huang, L., Cheng, Y. M., Li, L., and Yu, S. Reliability and failure
mechanism of a slope with non-stationarity and rotated trans-
verse anisotropy in undrained soil strength, Comput. Geotech.,
132, 103970, https://doi.org/10.1016/j.compgeo.2020.103970,
2021.

Hunt, J. E., Wynn, R. B., Talling, P. J., and Masson, D. G.:
Frequency and timing of landslide-triggered turbidity cur-
rents within the Agadir Basin, offshore NW Africa: Are
there associations with climate change, sea level change
and slope sedimentation rates?, Mar. Geol., 346, 274–291,
https://doi.org/10.1016/j.margeo.2013.09.004, 2013.

Jaynes, E. T.: Information theory and statistical mechanics, Phys.
Rev., 106, 620, https://doi.org/10.1103/PhysRev.106.620, 1957.

Juang, C. H., Zhang, J., Shen, M., and Hu, J.: Probabilistic meth-
ods for unified treatment of geotechnical and geological uncer-

tainties in a geotechnical analysis, Eng. Geol, 249, 148–161,
https://doi.org/10.1016/j.enggeo.2018.12.010, 2019.

Khorsandi, J. and Aven, T.: Incorporating assumption de-
viation risk in quantitative risk assessments: A semi-
quantitative approach, Reliab. Eng. Syst. Saf., 163, 22–32,
https://doi.org/10.1016/j.ress.2017.01.018, 2017.

Leynaud, D., Mulder, T., Hanquiez, V., Gonthier, E., and
Régert, A.: Sediment failure types, preconditions and trigger-
ing factors in the Gulf of Cadiz, Landslides, 14, 233–248,
https://doi.org/10.1007/s10346-015-0674-2, 2017.

Liu, Y., Ren, W., Liu, C., Cai, S., and Xu, W.: Displacement-based
back-analysis frameworks for soil parameters of a slope: Using
frequentist inference and Bayesian inference, Int. J. Geomech.,
22, 04022026, https://doi.org/10.1061/(ASCE)GM.1943-
5622.0002318, 2022.

Lloret-Cabot. M., Fenton, G. A., and Hicks, M. A.: On the estima-
tion of scale of fluctuation in geostatistics, Georisk, 8, 129–140,
https://doi.org/10.1080/17499518.2013.871189, 2014.

Lu, P. and Lermusiaux, P. F.: Bayesian learning of
stochastic dynamical models, Phys. D, 427, 133003,
https://doi.org/10.1016/j.physd.2021.133003, 2021.

Luo, L., Liang, X., Ma, B., and Zhou, H.: A karst networks genera-
tion model based on the Anisotropic Fast Marching Algorithm, J.
Hydrol., 126507, https://doi.org/10.1016/j.jhydrol.2021.126507,
2021.

Metropolis, N. and Ulam, S.: The Monte Carlo
method, J. Am. Stat. A., 44, 335–341,
https://doi.org/10.1080/01621459.1949.10483310, 1949.

Montanari, A. and Koutsoyiannis, D.: A blueprint for process-based
modeling of uncertain hydrological systems, Water Resour. Res.,
48, W09555, https://doi.org/10.1029/2011WR011412, 2012.

Nilsen, T. and Aven, T.: Models and model uncertainty in the
context of risk analysis, Reliab. Eng. Syst. Saf., 79, 309–317,
https://doi.org/10.1016/S0951-8320(02)00239-9, 2003.

Pakyuz-Charrier, E., Lindsay, M., Ogarko, V., Giraud, J., and Jes-
sell, M.: Monte Carlo simulation for uncertainty estimation on
structural data in implicit 3-D geological modeling, a guide for
disturbance distribution selection and parameterization, Solid
Earth, 9, 385–402, https://doi.org/10.5194/se-9-385-2018, 2018.

Pearl, J.: Comment: graphical models, causality and intervention,
Statist. Sci., 8, 266–269, 1993.

Pheulpin, L., Bertrand, N., and Bacchi, V.: Uncertainty quantifica-
tion and global sensitivity analysis with dependent inputs pa-
rameters: Application to a basic 2D-hydraulic model, LHB,
108, 2015265, https://doi.org/10.1080/27678490.2021.2015265,
2022.

Raíces-Cruz, I., Troffaes, M. C., and Sahlin, U.: A suggestion for
the quantification of precise and bounded probability to quantify
epistemic uncertainty in scientific assessments, Risk Anal., 42,
239–253, https://doi.org/10.1111/risa.13871, 2022.

Rodríguez-Ochoa, R., Nadim, F., Cepeda, J. M., Hicks,
M. A., and Liu, Z.: Hazard analysis of seismic
submarine slope instability, Georisk, 9, 128–147,
https://doi.org/10.1080/17499518.2015.1051546, 2015.

Roy, C. J. and Oberkampf, W. L.: A comprehensive framework for
verification, validation, and uncertainty quantification in scien-
tific computing, Comput. Methods Appl. Mech. Eng., 200, 2131–
2144, https://doi.org/10.1016/j.cma.2011.03.016, 2011.

Geosci. Model Dev., 16, 1601–1615, 2023 https://doi.org/10.5194/gmd-16-1601-2023

https://doi.org/10.1007/BF00890661
https://doi.org/10.1016/j.epsl.2016.06.021
https://doi.org/10.1007/s12665-022-10202-5
https://doi.org/10.1016/j.csda.2006.04.015
https://doi.org/10.1016/S0951-8320(96)00071-3
https://doi.org/10.1111/j.1539-6924.2012.01873.x
https://doi.org/10.1111/j.1539-6924.2012.01873.x
https://doi.org/10.1016/j.ress.2017.07.016
https://doi.org/10.1016/j.ijar.2022.04.001
https://doi.org/10.1016/j.ymssp.2021.108210
https://doi.org/10.2307/2334940
https://doi.org/10.1016/j.ress.2011.02.013
https://doi.org/10.1016/j.compgeo.2020.103970
https://doi.org/10.1016/j.margeo.2013.09.004
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1016/j.enggeo.2018.12.010
https://doi.org/10.1016/j.ress.2017.01.018
https://doi.org/10.1007/s10346-015-0674-2
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002318
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002318
https://doi.org/10.1080/17499518.2013.871189
https://doi.org/10.1016/j.physd.2021.133003
https://doi.org/10.1016/j.jhydrol.2021.126507
https://doi.org/10.1080/01621459.1949.10483310
https://doi.org/10.1029/2011WR011412
https://doi.org/10.1016/S0951-8320(02)00239-9
https://doi.org/10.5194/se-9-385-2018
https://doi.org/10.1080/27678490.2021.2015265
https://doi.org/10.1111/risa.13871
https://doi.org/10.1080/17499518.2015.1051546
https://doi.org/10.1016/j.cma.2011.03.016


I. C. Cardenas et al.: Addressing challenges in uncertainty quantification 1615

Sankararaman, S. and Mahadevan, S.: Integration of model verifi-
cation, validation, and calibration for uncertainty quantification
in engineering systems, Reliab. Eng. Syst. Saf., 138, 194–209,
https://doi.org/10.1016/j.ress.2015.01.023, 2015.

Shafer, G.: A mathematical theory of evidence, in: A mathematical
theory of evidence, Princeton university press, 1976.

Shortridge, J., Aven, T., and Guikema, S.: Risk as-
sessment under deep uncertainty: A methodologi-
cal comparison, Reliab. Eng. Syst. Saf., 159, 12–23,
https://doi.org/10.1016/j.ress.2016.10.017, 2017.

Society for Risk Analysis: Society for Risk Analysis glos-
sary, https://www.sra.org/wp-content/uploads/2020/04/
SRA-Glossary-FINAL.pdf (last access: 25 June 2021), 2018.

Sun, X., Zeng, P., Li, T., Wang, S., Jimenez, R., Feng, X.,
and Xu, Q.: From probabilistic back analyses to probabilis-
tic run-out predictions of landslides: A case study of Heifang-
tai terrace, Gansu Province, China, Eng. Geol, 280, 105950,
https://doi.org/10.1016/j.enggeo.2020.105950, 2021a.

Sun, X., Zeng, X., Wu, J., and Wang, D.: A Two-stage
Bayesian data-driven method to improve model pre-
diction, Water Resour. Res., 57, e2021WR030436,
https://doi.org/10.1029/2021WR030436, 2021b.

Tacher, L., Pomian-Srzednicki, I., and Parriaux, A.:
Geological uncertainties associated with 3-D sub-
surface models, Comput. Geosci., 32, 212–221,
https://doi.org/10.1016/j.cageo.2005.06.010, 2006.

Tang, X. S., Wang, M. X., and Li, D. Q.: Modeling multivariate
cross-correlated geotechnical random fields using vine copulas
for slope reliability analysis, Comput. Geotech., 127, 103784,
https://doi.org/10.1016/j.compgeo.2020.103784, 2020.

Thiele, S. T., Jessell, M. W., Lindsay, M., Wellmann, J.
F., and Pakyuz-Charrier, E.: The topology of geology
2: Topological uncertainty, J. Struct. Geol., 91, 74–87,
https://doi.org/10.1016/j.jsg.2016.08.010, 2016.

Ulam, S. M.: Monte Carlo calculations in problems of mathemat-
ical physics, Modern Mathematics for the Engineers, 261–281,
McGraw-Hill, New York, 1961.

Uzielli, M. and Lacasse, S.: Scenario-based probabilistic esti-
mation of direct loss for geohazards, Georisk, 1, 142–154,
https://doi.org/10.1080/17499510701636581, 2007.

van den Eijnden, A. P., Schweckendiek, T., and Hicks,
M. A.: Metamodelling for geotechnical reliability analysis
with noisy and incomplete models, Georisk, 16, 518–535,
https://doi.org/10.1080/17499518.2021.1952611, 2022.

Vanmarcke, E. H.: Random fields: Analysis and synthesis, The MIT
Press, Cambridge, MA, 1984.

Vanneste, M., Løvholt, F., Issler, D., Liu, Z., Boylan, N., and Kim,
J.: A novel quasi-3D landslide dynamics model: from theory to
applications and risk assessment, Paper presented at the Offshore
Technology Conference, 6–9 May, Houston, Texas, OTC-29363-
MS, https://doi.org/10.4043/29363-MS, 2019.

Wagener, T., Reinecke, R., and Pianosi, F.: On the evaluation of
climate change impact models, Wiley Interdiscip, Rev. Clim.
Change, e772, https://doi.org/10.1002/wcc.772, 2022.

Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have
a meaning: Information entropy as a quality measure for
3-D geological models, Tectonophysics, 526, 207–216,
https://doi.org/10.1016/j.tecto.2011.05.001, 2012.

Woo, G.: Downward counterfactual search for
extreme events, Front. Earth Sci., 7, 340,
https://doi.org/10.3389/feart.2019.00340, 2019.

Yano, J. I.: What is the Maximum Entropy Principle? Com-
ments on “Statistical theory on the functional form of cloud
particle size distributions”, J. Atmos. Sci., 76, 3955–3960,
https://doi.org/10.1175/JAS-D-18-0223.1, 2019.

Zadeh, L. A.: Probability measures of fuzzy events, J. Math.
Anal. Appl., 23, 421–427, https://doi.org/10.1016/0022-
247X(68)90078-4, 1968.

Zhao, C., Gong, W., Li, T., Juang, C. H., Tang, H., and Wang, H.:
Probabilistic characterisation of subsurface stratigraphic config-
uration with modified random field approach, Eng. Geol, 288,
106138, https://doi.org/10.1016/j.enggeo.2021.106138, 2021.

https://doi.org/10.5194/gmd-16-1601-2023 Geosci. Model Dev., 16, 1601–1615, 2023

https://doi.org/10.1016/j.ress.2015.01.023
https://doi.org/10.1016/j.ress.2016.10.017
https://www.sra.org/wp-content/uploads/2020/04/SRA-Glossary-FINAL.pdf
https://www.sra.org/wp-content/uploads/2020/04/SRA-Glossary-FINAL.pdf
https://doi.org/10.1016/j.enggeo.2020.105950
https://doi.org/10.1029/2021WR030436
https://doi.org/10.1016/j.cageo.2005.06.010
https://doi.org/10.1016/j.compgeo.2020.103784
https://doi.org/10.1016/j.jsg.2016.08.010
https://doi.org/10.1080/17499510701636581
https://doi.org/10.1080/17499518.2021.1952611
https://doi.org/10.4043/29363-MS
https://doi.org/10.1002/wcc.772
https://doi.org/10.1016/j.tecto.2011.05.001
https://doi.org/10.3389/feart.2019.00340
https://doi.org/10.1175/JAS-D-18-0223.1
https://doi.org/10.1016/0022-247X(68)90078-4
https://doi.org/10.1016/0022-247X(68)90078-4
https://doi.org/10.1016/j.enggeo.2021.106138

	Abstract
	Introduction
	Quantifying uncertainty using geohazard models
	Addressing the challenges in uncertainty quantification
	Case analysis
	Conclusions
	Appendix A
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

