Articles | Volume 15, issue 21
https://doi.org/10.5194/gmd-15-7933-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7933-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Feng Yin
CORRESPONDING AUTHOR
Department of Geography, University College London, Gower Street, London WC1E 6BT, United Kingdom
National Centre for Earth Observation (NCEO), Space Park Leicester, Leicester LE4 5SP, United Kingdom
Philip E. Lewis
Department of Geography, University College London, Gower Street, London WC1E 6BT, United Kingdom
National Centre for Earth Observation (NCEO), Space Park Leicester, Leicester LE4 5SP, United Kingdom
Jose L. Gómez-Dans
Department of Geography, University College London, Gower Street, London WC1E 6BT, United Kingdom
National Centre for Earth Observation (NCEO), Space Park Leicester, Leicester LE4 5SP, United Kingdom
Related authors
Philip E. Lewis, Feng Yin, Jose Luis Gómez-Dans, Thomas Weiß, and Elhadi Adam
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 199–206, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, 2024
Jose Luis Gómez-Dans, Philip Edward Lewis, Feng Yin, Kofi Asare, Patrick Lamptey, Kenneth Kobina Yedu Aidoo, Dilys Sefakor MacCarthy, Hongyuan Ma, Qingling Wu, Martin Addi, Stephen Aboagye-Ntow, Caroline Edinam Doe, Rahaman Alhassan, Isaac Kankam-Boadu, Jianxi Huang, and Xuecao Li
Earth Syst. Sci. Data, 14, 5387–5410, https://doi.org/10.5194/essd-14-5387-2022, https://doi.org/10.5194/essd-14-5387-2022, 2022
Short summary
Short summary
We provide a data set to support mapping croplands in smallholder landscapes in Ghana. The data set contains information on crop location on three agroecological zones for 2 years, temporal series of measurements of leaf area index and leaf chlorophyll concentration for maize canopies and yield. We demonstrate the use of these data to validate cropland masks, create a maize mask using satellite data and explore the relationship between satellite measurements and yield.
Philip E. Lewis, Feng Yin, Jose Luis Gómez-Dans, Thomas Weiß, and Elhadi Adam
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 199–206, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, 2024
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Jose Luis Gómez-Dans, Philip Edward Lewis, Feng Yin, Kofi Asare, Patrick Lamptey, Kenneth Kobina Yedu Aidoo, Dilys Sefakor MacCarthy, Hongyuan Ma, Qingling Wu, Martin Addi, Stephen Aboagye-Ntow, Caroline Edinam Doe, Rahaman Alhassan, Isaac Kankam-Boadu, Jianxi Huang, and Xuecao Li
Earth Syst. Sci. Data, 14, 5387–5410, https://doi.org/10.5194/essd-14-5387-2022, https://doi.org/10.5194/essd-14-5387-2022, 2022
Short summary
Short summary
We provide a data set to support mapping croplands in smallholder landscapes in Ghana. The data set contains information on crop location on three agroecological zones for 2 years, temporal series of measurements of leaf area index and leaf chlorophyll concentration for maize canopies and yield. We demonstrate the use of these data to validate cropland masks, create a maize mask using satellite data and explore the relationship between satellite measurements and yield.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
James Brennan, Jose L. Gómez-Dans, Mathias Disney, and Philip Lewis
Biogeosciences, 16, 3147–3164, https://doi.org/10.5194/bg-16-3147-2019, https://doi.org/10.5194/bg-16-3147-2019, 2019
Short summary
Short summary
We estimate the uncertainties associated with three global satellite-derived burned area estimates. The method provides unique uncertainties for the three estimates at the global scale for 2001–2013. We find uncertainties of 4 %–5.5 % in global burned area and uncertainties of 8 %–10 % in the frequently burning regions of Africa and Australia.
Related subject area
Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
GNNWR: An Open-Source Package of Spatiotemporal Intelligent Regression Methods for Modeling Spatial and Temporal Non-Stationarity
Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
The 4D reconstruction of dynamic geological evolution processes for renowned geological features
Machine learning for numerical weather and climate modelling: a review
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system Version 1
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
The Common Community Physics Package (CCPP) Framework v6
Causal deep learning models for studying the Earth system
A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
Fast infrared radiative transfer calculations using graphics processing units: JURASSIC-GPU v2.0
CSDMS: a community platform for numerical modeling of Earth surface processes
A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator
Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
Copula-based synthetic data augmentation for machine-learning emulators
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0)
S-SOM v1.0: a structural self-organizing map algorithm for weather typing
Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China
Current status on the need for improved accessibility to climate models code
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Global hydro-climatic biomes identified via multitask learning
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)
Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming
A high-fidelity multiresolution digital elevation model for Earth systems
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024, https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
Short summary
Spatial proxies, such as coordinates and distances, are often used as predictors in random forest models for predictive mapping. In a simulation and two case studies, we investigated the conditions under which their use is appropriate. We found that spatial proxies are not always beneficial and should not be used as a default approach without careful consideration. We also provide insights into the reasons behind their suitability, how to detect them, and potential alternatives.
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024, https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
Short summary
With ERA5 hourly data, we show spatiotemporal characteristics of pressure and zenith wet delay (ZWD) and propose an empirical global pressure and ZWD grid model with a broader operating space which can provide accurate pressure, ZWD, zenith hydrostatic delay, and zenith tropospheric delay estimates for any selected time and location over globe. IGPZWD will be of great significance for the tropospheric augmentation in real-time GNSS positioning and atmospheric water vapor remote sensing.
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024, https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
Short summary
Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-62, https://doi.org/10.5194/gmd-2024-62, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
In geography, understanding how relationships between different factors change over time and space is crucial. This study implements two neural network-based spatiotemporal regression models as well as an open-sourced Python package named GNNWR, to accurately capture the varying relationships between factors. This makes it a valuable tool for researchers in various fields, such as environmental science, urban planning, and public health.
Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024, https://doi.org/10.5194/gmd-17-4077-2024, 2024
Short summary
Short summary
Lagrangian particle dispersion models are key for studying atmospheric transport but can be computationally intensive. To speed up simulations, the MPTRAC model was ported to graphics processing units (GPUs). Performance optimization of data structures and memory alignment resulted in runtime improvements of up to 75 % on NVIDIA A100 GPUs for ERA5-based simulations with 100 million particles. These optimizations make the MPTRAC model well suited for future high-performance computing systems.
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
EGUsphere, https://doi.org/10.5194/egusphere-2024-753, https://doi.org/10.5194/egusphere-2024-753, 2024
Short summary
Short summary
Advanced compression techniques can drastically reduce the size of meteorological datasets (by 5x to 150x) without compromising the data's scientific value. We developed a user-friendly tool called 'enstools-compression' that makes this compression simple for Earth scientists. This tool works seamlessly with common weather and climate data formats. Our work shows that lossy compression can significantly improve how researchers store and analyze large meteorological datasets.
Mohamad Hakam Shams Eddin and Juergen Gall
Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024, https://doi.org/10.5194/gmd-17-2987-2024, 2024
Short summary
Short summary
In this study, we use deep learning and a climate simulation to predict the vegetation health as it would be observed from satellites. We found that the developed model can help to identify regions with a high risk of agricultural drought. The main applications of this study are to estimate vegetation products for periods where no satellite data are available and to forecast the future vegetation response to climate change based on climate scenarios.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024, https://doi.org/10.5194/gmd-17-1133-2024, 2024
Short summary
Short summary
The cycling of carbon among the land, oceans, and atmosphere is a closely monitored process in the global climate system. These exchanges between the atmosphere and the surface can be quantified using a combination of atmospheric carbon dioxide observations and computer models. This study presents a statistical method for investigating the similarities and differences in the estimated surface–atmosphere carbon exchange when different computer model assumptions are invoked.
Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024, https://doi.org/10.5194/gmd-17-847-2024, 2024
Short summary
Short summary
This study proposes a 3D and temporally dynamic (4D) geological modeling method. Several simulation and actual cases show that the 4D spatial and temporal evolution of regional geological formations can be modeled easily using this method with smooth boundaries. The 4D modeling system can dynamically present the regional geological evolution process under the timeline, which will be helpful to the research and teaching on the formation of typical and complex geological features.
Catherine O. de Burgh-Day and Tennessee Leeuwenburg
Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023, https://doi.org/10.5194/gmd-16-6433-2023, 2023
Short summary
Short summary
Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional methods. In this review, we have summarized the use of ML in weather and climate modelling over time; provided an overview of key ML concepts, methodologies, and terms; and suggested promising avenues for further research.
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023, https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Short summary
We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR–NEON system enables convergence of climate and ecological sciences.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023, https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
Short summary
Scientific understandings of the distribution of coseismic landslides, followed by emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023, https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary
Short summary
The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
Short summary
A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki
Geosci. Model Dev., 16, 1925–1936, https://doi.org/10.5194/gmd-16-1925-2023, https://doi.org/10.5194/gmd-16-1925-2023, 2023
Short summary
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Martina Stockhause and Michael Lautenschlager
Geosci. Model Dev., 15, 6047–6058, https://doi.org/10.5194/gmd-15-6047-2022, https://doi.org/10.5194/gmd-15-6047-2022, 2022
Short summary
Short summary
The Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC) celebrates its 25th anniversary in 2022. DDC Partner DKRZ has supported the IPCC Assessments and preserved the quality-assured, citable climate model data underpinning the Assessment Reports over these years over the long term. With the introduction of the IPCC FAIR Guidelines into the current AR6, the value of DDC services has been recognized. However, DDC sustainability remains unresolved.
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev., 15, 5857–5881, https://doi.org/10.5194/gmd-15-5857-2022, https://doi.org/10.5194/gmd-15-5857-2022, 2022
Short summary
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022, https://doi.org/10.5194/gmd-15-2221-2022, 2022
Short summary
Short summary
There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.
Paul F. Baumeister and Lars Hoffmann
Geosci. Model Dev., 15, 1855–1874, https://doi.org/10.5194/gmd-15-1855-2022, https://doi.org/10.5194/gmd-15-1855-2022, 2022
Short summary
Short summary
The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, https://doi.org/10.5194/gmd-14-7659-2021, 2021
Short summary
Short summary
The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
David Meyer, Thomas Nagler, and Robin J. Hogan
Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021, https://doi.org/10.5194/gmd-14-5205-2021, 2021
Short summary
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
Short summary
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev., 14, 1493–1510, https://doi.org/10.5194/gmd-14-1493-2021, https://doi.org/10.5194/gmd-14-1493-2021, 2021
Short summary
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020, https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
Short summary
This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020, https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
Short summary
Every generation of MIP exercises introduces new layers of complexity and an exponential growth in the amount of data requested. CMIP6 required us to develop a new tool chain and forced us to change our methodologies. The new methods discussed in this paper provided us with an 18 times faster speedup over our existing methods. This allowed us to meet our deadlines and we were able to publish more than half a million data sets on the Earth System Grid Federation (ESGF) for the CMIP6 project.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Jorge Vicent, Jochem Verrelst, Neus Sabater, Luis Alonso, Juan Pablo Rivera-Caicedo, Luca Martino, Jordi Muñoz-Marí, and José Moreno
Geosci. Model Dev., 13, 1945–1957, https://doi.org/10.5194/gmd-13-1945-2020, https://doi.org/10.5194/gmd-13-1945-2020, 2020
Short summary
Short summary
The modeling of light propagation through the atmosphere is key to process satellite images and to understand atmospheric processes. However, existing atmospheric models can be complex to use in practical applications. Here we aim at providing a new software tool to facilitate using advanced models and to generate large databases of simulated data. As a test case, we use this tool to analyze differences between several atmospheric models, showing the capabilities of this open-source tool.
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019, https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
Short summary
Parameterizations are frequently used in models representing physical phenomena and are often the computationally expensive portions of the code. Using model output from simulations performed using a weather model, we train deep neural networks to provide an accurate alternative to a physics-based parameterization. We demonstrate that a domain-aware deep neural network can successfully simulate the entire diurnal cycle of the boundary layer physics and the results are transferable.
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Short summary
The VISIR ship-routing model is updated in order to deal with ocean currents.
The optimal tracks we computed through VISIR in the Atlantic ocean show great seasonal and regional variability, following a variable influence of surface gravity waves and currents. We assess how these tracks contribute to voyage energy-efficiency gains through a standard indicator (EEOI) of the International Maritime Organization. Also, the new model features are validated against an exact analytical benchmark.
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global
hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018, https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Short summary
Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525–2539, https://doi.org/10.5194/gmd-11-2525-2018, https://doi.org/10.5194/gmd-11-2525-2018, 2018
Short summary
Short summary
Geographically weighted regression is a widely used method to deal with spatial heterogeneity, which is common in geostatistics. However, most existing software does not support logistic regression and cannot deal with missing data, which exist extensively in mineral prospectivity mapping. This work generalized logistic regression to spatial statistics based on a spatially weighted technique. The new model also supports an anisotropic local window, which is another innovative point.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Xinqiao Duan, Lin Li, Haihong Zhu, and Shen Ying
Geosci. Model Dev., 10, 239–253, https://doi.org/10.5194/gmd-10-239-2017, https://doi.org/10.5194/gmd-10-239-2017, 2017
Short summary
Short summary
This article proposes an optimized transformation for topographic datasets. The resulting topographic grid exhibits good surface approximation and quasi-uniform high-quality. Both features of the processed topography build a concrete base from which improved endogenous or exogenous parameters can be derived, and makes it suitable for Earth and environmental simulations.
Cited articles
Baetens, L. and Hagolle, O.: Sentinel-2 reference cloud masks generated by an
active learning method, Zenodo [data set], https://doi.org/10.5281/ZENODO.1460961, 2018. a
Baldridge, A., Hook, S., Grove, C., and Rivera, G.: The ASTER spectral
library version 2.0, Remote Sens. Environ., 113, 711–715,
https://doi.org/10.1016/j.rse.2008.11.007, 2009. a, b
Barsi, J. A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M. O.,
Kaewmanee, M., Leigh, L., and Markham, B. L.: Sentinel-2A MSI and Landsat-8
OLI radiometric cross comparison over desert sites, Eur. J.
Remote Sens., 51, 822–837, https://doi.org/10.1080/22797254.2018.1507613,
2018a. a
Barsi, J. A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M. O.,
Kaewmanee, M., Leigh, L., and Markham, B. L.: Sentinel-2A MSI and Landsat-8
OLI radiometric cross comparison over desert sites, Eur. J.
Remote Sens., 51, 822–837, 2018b. a
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher,
M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W, and Kinne, S.: Aerosol analysis
and forecast in the European centre for medium-range weather forecasts
integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, D13205, https://doi.org/10.1029/2008jd011115, 2009. a, b, c
Bouvet, M., Thome, K., Berthelot, B., Bialek, A., Czapla-Myers, J., Fox, N. P.,
Goryl, P., Henry, P., Ma, L., Marcq, S., and Meygret, A.: RadCalNet: A radiometric
calibration network for earth observing imagers operating in the visible to
shortwave infrared spectral range, Remote Sens., 11, 2401, https://doi.org/10.3390/rs11202401, 2019. a, b
Briggs, W. L., Henson, V. E., and McCormick, S. F.: A Multigrid Tutorial,
Second Edition, Society for Industrial and Applied Mathematics,
https://doi.org/10.1137/1.9780898719505, 2000. a
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited Memory Algorithm for
Bound Constrained Optimization, SIAM J. Sci. Comput., 16,
1190–1208, https://doi.org/10.1137/0916069, 1995. a
Capderou, M.: Satellites: Orbits and Missions, Springer, https://doi.org/10.1007/b139118,
2005. a
CEOS: CEOS Analysis Ready Data Strategy,
http://ceos.org/ard/files/CEOS_ARD_Strategy_v1.0_1-Oct-2019.pdf
(last access: 3 March 2020), 2019. a
CEOS: CEOS Analysis Ready Data Surface Reflectance Specification,
https://ceos.org/ard/files/PFS/SR/v5.0/CARD4L_Product_Family_Specification_Surface_Reflectance-v5.0.pdf,
last access: 25 January 2020. a
CEOS: WGCV CARD4L Review Panel evaluation (SR PFS v5),
CEOS,
https://ceos.org/ard/files/Self%20Assessments/SR/v5.0/WGCV_CARD4L_Review_Panel_Assessment_USGS_SR_PFS_v5.pdf (last access: 21 October 2022), 2021a. a
CEOS: CEOS Analysis Ready Data, https://ceos.org/ard,
last access: 21 September 2021b. a
CEOS: Analysis Ready Data For Land,
https://ceos.org/ard/files/PFS/SR/v5.0/CARD4L_Product_Family_Specification_Surface_Reflectance-v5.0.pdf (last access: 21 October 2022),
2021c. a
Chatterjee, A., Michalak, A. M., Kahn, R. A., Paradise, S. R., Braverman,
A. J., and Miller, C. E.: A geostatistical data fusion technique for merging
remote sensing and ground-based observations of aerosol optical thickness,
J. Geophys. Res.-Atmos., 115, D20207, https://doi.org/10.1029/2009JD013765, 2010. a
Che, X., Zhang, H. K., and Liu, J.: Making Landsat 5, 7 and 8 reflectance
consistent using MODIS nadir-BRDF adjusted reflectance as reference, Remote Sens. Environ., 262, 112517, https://doi.org/10.1016/j.rse.2021.112517, 2021. a
Chen, J. and Zhu, W.: Comparing Landsat-8 and Sentinel-2 top of atmosphere and
surface reflectance in high latitude regions: case study in Alaska, Geocarto
International, 37, 6052–6071, https://doi.org/10.1080/10106049.2021.1924295, 2021. a
Clerc, S. and MPC Team: Sentinel-2 L1C data quality report, ESA, Tech. Rep, 59, 2021. a
Doxani, G., Vermote, E., Roger, J.-C., Gascon, F., Adriaensen, S., Frantz, D.,
Hagolle, O., Hollstein, A., Kirches, G., Li, F., Louis, J., Mangin, A.,
Pahlevan, N., Pflug, B., and Vanhellemont, Q.: Atmospheric Correction
Inter-Comparison Exercise, Remote Sens., 10, 352, https://doi.org/10.3390/rs10020352,
2018. a, b, c
Doxani, G., Vermote, E., Roger, J.-C., Skakun, S., Gascon, F., Collison, A.,
Keukelaere, L. D., Desjardins, C., Frantz, D., Hagolle, O., Kim, M., , Louis,
J., Pacifici, F., Pflug, B., Poilvé, H., Ramon, D., Richter, R., and
Yin, F.: Atmospheric Correction Inter-Comparison eXercise (ACIX II Land): an
atmospheric correction processors assessment for Landsat 8 and Sentinel-2
over land, Remote Sens. Environ., in review, 2022. a, b, c, d
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011. a, b, c
Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F.,
Lopatin, A., Chaikovsky, A., Torres, B., Derimian, Y., Huang, X.,
Aspetsberger, M., and Federspie, C.: GRASP: a versatile algorithm for
characterizing the atmosphere, sPIE: Newsroom,
https://doi.org/10.1117/2.1201408.005558, 2014. a
Duveiller, G., Baret, F., and Defourny, P.: Crop specific green area index
retrieval from MODIS data at regional scale by controlling pixel-target
adequacy, Remote Sens. Environ., 115, 2686–2701,
https://doi.org/10.1016/j.rse.2011.05.026, 2011. a, b
Eck, T. F., Holben, B., Reid, J., Dubovik, O., Smirnov, A., O'neill, N.,
Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of
biomass burning, urban, and desert dust aerosols, J. Geophys. Res.-Atmos., 104, 31333–31349, 1999. a
Eilers, P. H.: A perfect smoother, Anal. Chem., 75, 3631–3636, 2003. a
Eilers, P. H., Pesendorfer, V., and Bonifacio, R.: Automatic smoothing of
remote sensing data, in: 2017 9th International Workshop on the Analysis of
Multitemporal Remote Sensing Images (MultiTemp), IEEE, 1–3, 2017. a
ESA: Sentinel-2,
https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (last access: 21 October 2022),
2015. a
ESA: Gearing up for third Sentinel-2 satellite,
ESA, https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/Gearing_up_for_third_Sentinel-2_satellite (last access: 21 October 2022),
2021a. a
ESA: S2 MPC Level-2A Algorithm Theoretical Basis Document,
https://sentinel.esa.int/documents/247904/4363007/Sentinel-2-Level-2A-Algorithm-Theoretical-Basis-Document-ATBD.pdf/fe5bacb4-7d4c-9212-8606-6591384390c3 (last access: 21 October 2022),
2021b. a
ESA: S2 MPC Level-2A Algorithm Theoretical Basis Document,
https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf (last access: 21 October 2022),
2021c. a
Feng, M., Sexton, J. O., Huang, C., Masek, J. G., Vermote, E. F., Gao, F.,
Narasimhan, R., Channan, S., Wolfe, R. E., and Townshend, J. R.: Global
surface reflectance products from Landsat: Assessment using coincident
MODIS observations, Remote Sens. Environ., 134, 276–293,
https://doi.org/10.1016/j.rse.2013.02.031, 2013. a
Flood, N.: Comparing Sentinel-2A and Landsat 7 and 8 using surface reflectance
over Australia, Remote Sens., 9, 659, https://doi.org/10.3390/rs9070659, 2017. a
Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr., R. D., Beckmann, T.,
Schmidt, G. L., Dwyer, J. L., Hughes, M. J., and Laue, B.: Cloud detection
algorithm comparison and validation for operational Landsat data products,
Remote Sens. Environ., 194, 379–390, 2017. a
Franch, B., Vermote, E., Sobrino, J., and Fédèle, E.: Analysis of
directional effects on atmospheric correction, Remote Sens. Environ.,
128, 276–288, https://doi.org/10.1016/j.rse.2012.10.018, 2013. a, b
Francis, A., Mrziglod, J., Sidiropoulos, P., and Muller, J.-P.: Sentinel-2
Cloud Mask Catalogue, Zenodo [data set], https://doi.org/10.5281/ZENODO.4172871, 2020. a
Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis,
J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., and Languille, F.:
Copernicus Sentinel-2A calibration and products validation status, Remote Sens., 9, 584, https://doi.org/10.3390/rs9060584, 2017. a
GCOS: Albedo ESSENTIAL CLIMATE VARIABLE (ECV) FACTSHEET,
https://gcos.wmo.int/en/essential-climate-variables/albedo
(last access: 12 September 2022), 2019. a
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019. a, b
Gómez-Dans, J. L., Lewis, P. E., and Disney, M.: Efficient Emulation of
Radiative Transfer Codes Using Gaussian Processes and Application to Land
Surface Parameter Inferences, Remote Sens., 8, 119, https://doi.org/10.3390/rs8020119, 2016. a, b
Govaerts, Y. and Luffarelli, M.: Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 1: theoretical concept, Atmos. Meas. Tech., 11, 6589–6603, https://doi.org/10.5194/amt-11-6589-2018, 2018. a, b, c
Guanter, L., Del Carmen González-Sanpedro, M., and Moreno, J.: A
method for the atmospheric correction of ENVISAT/MERIS data over land
targets, Int. J. Remote Sens., 28, 709–728,
https://doi.org/10.1080/01431160600815525, 2007. a, b, c
Hagolle, O., Huc, M., Pascual, D., and Dedieu, G.: A Multi-Temporal and
Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for
the Atmospheric Correction of FormoSat-2, LandSat, VENS and
Sentinel-2 Images, Remote Sens., 7, 2668–2691, https://doi.org/10.3390/rs70302668,
2015a. a
Hall, D. K. and Riggs, G. A.: Normalized-Difference Snow Index (NDSI), in:
Encyclopedia of Earth Sciences Series, Springer Netherlands, 779–780,
https://doi.org/10.1007/978-90-481-2642-2_376, 2011. a
Hecht-Nielsen, R.: Theory of the backpropagation neural network, in: Neural networks for perception, Academic Press, 65–93, https://doi.org/10.1109/IJCNN.1989.118638, 1992. a
Helder, D., Markham, B., Morfitt, R., Storey, J., Barsi, J., Gascon, F., Clerc,
S., LaFrance, B., Masek, J., Roy, D., Lewis, A., and Pahlevan, N.:
Observations and Recommendations for the Calibration of Landsat 8 OLI and
Sentinel 2 MSI for Improved Data Interoperability, Remote Sens., 10,
1340, https://doi.org/10.3390/rs10091340, 2018. a
Hilker, T.: Chapter 3.02 – Surface Reflectance/Bidirectional Reflectance
Distribution Function, in: Comprehensive Remote Sensing, edited by: Liang,
S., Elsevier, Oxford, 2–8,
https://doi.org/10.1016/B978-0-12-409548-9.10347-1, 2018. a
Hou, W., Wang, J., Xu, X., Reid, J. S., Janz, S. J., and Leitch, J. W.: An
algorithm for hyperspectral remote sensing of aerosols: 3. Application to the
GEO-TASO data in KORUS-AQ field campaign, J. Quant.
Spectrosc. Ra., 253, 107161,
https://doi.org/10.1016/j.jqsrt.2020.107161, 2020. a, b
Hsu, N., Tsay, S.-C., King, M., and Herman, J.: Aerosol Properties Over
Bright-Reflecting Source Regions, IEEE T. Geosci.
Remote, 42, 557–569, https://doi.org/10.1109/tgrs.2004.824067, 2004. a
Hsu, N., Tsay, S.-C., King, M., and Herman, J.: Deep Blue Retrievals of Asian
Aerosol Properties During ACE-Asia, IEEE T. Geosci.
Remote, 44, 3180–3195, https://doi.org/10.1109/tgrs.2006.879540, 2006. a
Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor,
C. S., Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol retrieval
algorithm: The second generation, J. Geophys. Res.-Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013. a, b
Hughes, M. J. and Hayes, D. J.: Automated detection of cloud and cloud shadow
in single-date Landsat imagery using neural networks and spatial
post-processing, Remote Sens., 6, 4907–4926, 2014. a
Ilehag, R., Schenk, A., Huang, Y., and Hinz, S.: KLUM: An Urban VNIR and
SWIR Spectral Library Consisting of Building Materials, Remote Sens., 11,
2149, https://doi.org/10.3390/rs11182149, 2019. a, b
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner,
G. P., François, C., and Ustin, S. L.: PROSPECT + SAIL models: A
review of use for vegetation characterization, Remote Sens. Environ.,
113, S56–S66, https://doi.org/10.1016/j.rse.2008.01.026, 2009. a
Justice, C. O., Román, M. O., Csiszar, I., Vermote, E. F., Wolfe, R. E.,
Hook, S. J., Friedl, M., Wang, Z., Schaaf, C. B., Miura, T., and Tschudi, M.: Land and
cryosphere products from Suomi NPP VIIRS: Overview and status, J. Geophys. Res.-Atmos., 118, 9753–9765, 2013. a
Kaiser, G. and Schneider, W.: Estimation of sensor point spread function by
spatial subpixel analysis, Int. J. Remote Sens., 29,
2137–2155, https://doi.org/10.1080/01431160701395310, 2008. a
Kaminski, T., Pinty, B., Voßbeck, M., Lopatka, M., Gobron, N., and Robustelli, M.: Consistent retrieval of land surface radiation products from EO, including traceable uncertainty estimates, Biogeosciences, 14, 2527–2541, https://doi.org/10.5194/bg-14-2527-2017, 2017. a
Kaufman, Y. J.: Aerosol optical thickness and atmospheric path radiance,
J. Geophys. Res.-Atmos., 98, 2677–2692, 1993. a
Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., and
Holben, B. N.: Operational remote sensing of tropospheric aerosol over land
from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res.-Atmos., 102, 17051–17067,
https://doi.org/10.1029/96jd03988, 1997. a
Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W. M., Lowers, H. A., Driscoll, R. L., and Klein, A. J.: USGS Spectral Library Version 7 Data: U.S. Geological Survey data release [data set], https://doi.org/10.5066/F7RR1WDJ, 2017. a, b
Ku, H.: Notes on the use of propagation of error formulas, J. Res.
Nat. Bur. Stand., 70C, 263, https://doi.org/10.6028/jres.070c.025,
1966. a
Lamquin, N., Woolliams, E., Bruniquel, V., Gascon, F., Gorroño, J.,
Govaerts, Y., Leroy, V., Lonjou, V., Alhammoud, B., Barsi, J. A., and Czapla-Myers, J. S.: An
inter-comparison exercise of Sentinel-2 radiometric validations assessed by
independent expert groups, Remote Sens. Environ., 233, 111369,
2019. a, b, c, d
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties
and application to Moderate Resolution Imaging Spectroradiometer aerosol
retrieval over land, J. Geophys. Res.-Atmos., 112,
D13210, https://doi.org/10.1029/2006jd007815, 2007a. a
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties over
land from inversion of Moderate Resolution Imaging Spectroradiometer spectral
reflectance, J. Geophys. Res.-Atmos., 112, D13211,
https://doi.org/10.1029/2006jd007811, 2007b. a
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013. a, b
Li, Q., Li, C., and Mao, J.: Evaluation of atmospheric aerosol optical depth
products at ultraviolet bands derived from MODIS products, Aerosol Sci. Technol., 46, 1025–1034, 2012. a
Li, Y., Chen, J., Ma, Q., Zhang, H. K., and Liu, J.: Evaluation of Sentinel-2A
Surface Reflectance Derived Using Sen2Cor in North America, IEEE J.
Sel. Top. Appl., 11,
1997–2021, https://doi.org/10.1109/jstars.2018.2835823, 2018. a
Liang, S.: Narrowband to broadband conversions of land surface albedo I:
Algorithms, Remote Sens. Environ., 76, 213–238,
https://doi.org/10.1016/S0034-4257(00)00205-4, 2001. a
Lipponen, A., Mielonen, T., Pitkänen, M. R. A., Levy, R. C., Sawyer, V. R., Romakkaniemi, S., Kolehmainen, V., and Arola, A.: Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land, Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, 2018. a
Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J.,
Mueller-Wilm, U., Cadau, E., and Gascon, F.: Sentinel-2 Sen2Cor: L2A
processor for users, in: Proceedings Living Planet Symposium 2016,
Spacebooks Online, 1–8, https://elib.dlr.de/107381/ (last access: 22 October 2022), 2016. a
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., and Korkin, S.: Multiangle
implementation of atmospheric correction (MAIAC): 1. Radiative transfer
basis and look-up tables, J. Geophys. Res.-Atmos.,
116, D03211, https://doi.org/10.1029/2010JD014986, 2011. a
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018. a
Masek, J., Vermote, E., Saleous, N., Wolfe, R., Hall, F., Huemmrich, F., Gao,
F., Kutler, J., and Lim, T.: LEDAPS Landsat Calibration, Reflectance,
Atmospheric Correction Preprocessing Code, ORNL DAAC [code],
https://doi.org/10.3334/ornldaac/1080, 2012. a
Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J.,
Storey, J., and Jenstrom, D. T.: Landsat 9: Empowering open science and
applications through continuity, Remote Sens. Environ., 248,
111968, https://doi.org/10.1016/j.rse.2020.111968, 2020. a
McGill, R., Tukey, J. W., and Larsen, W. A.: Variations of box plots,
Am. Stat., 32, 12–16, 1978. a
Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W.: Uncertainty information in climate data records from Earth observation, Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, 2017. a
Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars,
A., Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M., and Schulz, M.: Aerosol
analysis and forecast in the European Centre for medium-range weather
forecasts integrated forecast system: Forward modeling, J. Geophys. Res.-Atmos., 114, D06206, https://doi.org/10.1029/2008JD011235, 2009. a, b, c
MPC Team: Sentinel-2 L1C Data Quality Report Issue 67 (September 2021) –
Sentinel Online,
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report.pdf/6ad66f15-48ca-4e65-b304-59ef00b7f0e0?t=1631086843717,
last access: 24 September 2021. a
NCEO: Dataset Record: NCEO Analysis Ready Data,
CEDA, https://catalogue.ceda.ac.uk/uuid/ad7de4e3b3b34cc0adca86c68e94d3a1 (last access: 21 October 2022),
2021. a
Nie, Z., Chan, K. K. Y., and Xu, B.: Preliminary Evaluation of the Consistency
of Landsat 8 and Sentinel-2 Time Series Products in An Urban Area – An
Example in Beijing, China, Remote Sens., 11, 2957, https://doi.org/10.3390/rs11242957, 2019. a
Niro, F., Goryl, P., Dransfeld, S., Boccia, V., Gascon, F., Adams, J., Themann,
B., Scifoni, S., and Doxani, G.: European Space Agency (ESA)
Calibration/Validation Strategy for Optical Land-Imaging Satellites and
Pathway towards Interoperability, Remote Sens., 13, 3003, https://doi.org/10.3390/rs13153003, 2021. a
Pahlevan, N., Sarkar, S., Franz, B., Balasubramanian, S., and He, J.:
Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic
science applications: Demonstrations and validations, Remote Sens. Environ., 201, 47–56, https://doi.org/10.1016/j.rse.2017.08.033, 2017. a
Pahlevan, N., Chittimalli, S. K., Balasubramanian, S. V., and Vellucci, V.:
Sentinel-2/Landsat-8 product consistency and implications for monitoring
aquatic systems, Remote Sens. Environ., 220, 19–29,
https://doi.org/10.1016/j.rse.2018.10.027, 2019. a
Pérez-Ramírez, D., Whiteman, D. N., Smirnov, A., Lyamani, H., Holben,
B. N., Pinker, R., Andrade, M., and Alados-Arboledas, L.: Evaluation of
AERONET precipitable water vapor versus microwave radiometry, GPS, and
radiosondes at ARM sites, J. Geophys. Res.-Atmos., 119,
9596–9613, 2014. a
Pflug, B., Louis, J., Debraecker, V., Müller-Wilm, U., Quang, C., Gascon,
F., and Boccia, V.: Next updates for atmospheric correction processor
Sen2Cor, in: SPIE 11533, Image and Signal Processing for Remote Sensing
XXVI, p. 1153304, https://doi.org/10.1117/12.2574035, 2020. a
RadCalNet: RadCalNet Guidance Site Selection, Tech. rep., RadCalNet,
2018a. a
RadCalNet: RadCalNet Guidance Site Selection, Tech. rep., RadCalNet,
2018b. a
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins,
J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F.,
Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products,
and Validation, J. Atmos. Sci., 62, 947–973,
https://doi.org/10.1175/jas3385.1, 2005. a
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice,
vol. 2, World scientific, 256 pp., https://doi.org/10.1142/3171, 2000. a, b, c
Rouquié, B., Hagolle, O., Bréon, F.-M., Boucher, O., Desjardins, C.,
and Rémy, S.: Using Copernicus Atmosphere Monitoring Service Products to
Constrain the Aerosol Type in the Atmospheric Correction Processor MAJA,
Remote Sens., 9, 1230, https://doi.org/10.3390/rs9121230, 2017. a
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G.,
Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., and Scambos, T. A.: Landsat-8: Science and product vision for terrestrial global change
research, Remote Sens. Environ., 145, 154–172, 2014. a
Runge, A. and Grosse, G.: Comparing Spectral Characteristics of Landsat-8 and
Sentinel-2 Same-Day Data for Arctic-Boreal Regions, Remote Sens., 11, 1730, https://doi.org/10.3390/rs11141730,
2019. a
Sayer, A. M., Govaerts, Y., Kolmonen, P., Lipponen, A., Luffarelli, M., Mielonen, T., Patadia, F., Popp, T., Povey, A. C., Stebel, K., and Witek, M. L.: A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing, Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, 2020. a, b, c, d
Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir
BRDF Adjusted Refectance Daily L3 Global – 500 m V006, USGS [data set],
https://doi.org/10.5067/MODIS/MCD43A4.006, 2015. a, b, c
Schaaf, C., Strahler, A., Chopping, M., Gao, F., Hall, D., Jin, Y., Liang, S.,
Nightingale, J., Román, M., Roy, D., and Zhang, X.: MODIS MCD43 Product
User Guide V005,
https://lpdaac.usgs.gov/documents/441/MCD43_User_Guide_V5.pdf,
last access: 22 September 2021. a
Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T.,
Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P., Barnsley, M.,
Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont,
R. P., Hu, B., Liang, S., Privette, J. L., and Roy, D.: First operational
BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., x83, 135–148,
https://doi.org/10.1016/S0034-4257(02)00091-3, 2002. a, b
Schowengerdt, R. A.: Remote sensing: models and methods for image processing,
Elsevier, ISBN-13 978-0123694072, 2006. a
Schulz, M., Christophe, Y., Ramonet, M., Wagner, A., Eskes, H. J., Basart, S.,
Benedictow, A., Bennouna, Y., Blechschmidt, A.-M., Chabrillat, S., Cuevas,
E., El-Yazidi, A., Flentje, H., Hansen, K. M., Im, U., Kapsomenakis, J.,
Langerock, B., Richter, A., Sudarchikova, N., Thouret, V., Warneke, T., and
Zerefos, C.: Validation report of the CAMS near-real-time global atmospheric
composition service: Period December 2019–February 2020,
https://doi.org/10.24380/322N-JN39, 2020. a
Shen, J., Jiang, J., Du, Y., and Liu, Y.: Impact of aerosol type on atmospheric
correction of case II waters, in: IOP Conference Series: Earth and
Environmental Science, IOP Publishing, 234, 012019, https://doi.org/10.1088/1755-1315/234/1/012019, 2019. a
Skakun, S., Justice, C. O., Vermote, E., and Roger, J.-C.: Transitioning from
MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for
agricultural monitoring, Int. J. Remote Sens., 39,
971–992, 2018. a
Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D. B., Oimoen, M. J., Zhang, Z.,
Danielson, J. J., Krieger, T., Curtis, B., Haase, J., Abrams, M.: ASTER global
digital elevation model version 2-summary of validation results, Tech. rep.,
NASA, 2011. a
Tan, B., Woodcock, C., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Yang, W.,
Knyazikhin, Y., and Myneni, R.: The impact of gridding artifacts on the local
spatial properties of MODIS data: Implications for validation, compositing,
and band-to-band registration across resolutions, Remote Sens. Environ., 105, 98–114, 2006. a
Tanré, D., Bréon, F. M., Deuzé, J. L., Dubovik, O., Ducos, F., François, P., Goloub, P., Herman, M., Lifermann, A., and Waquet, F.: Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission, Atmos. Meas. Tech., 4, 1383–1395, https://doi.org/10.5194/amt-4-1383-2011, 2011. a
Tirelli, C., Curci, G., Manzo, C., Tuccella, P., and Bassani, C.: Effect of the
Aerosol Model Assumption on the Atmospheric Correction over Land: Case
Studies with CHRIS/PROBA Hyperspectral Images over Benelux, Remote Sens.,
7, 8391–8415, https://doi.org/10.3390/rs70708391, 2015. a
USGS: L8 Biome Cloud Validation Masks – data.doi.gov,
https://data.doi.gov/dataset/l8-biome-cloud-validation-masks (last access: 21 October 2022),
2015. a
USGS: L8 SPARCS Cloud Validation Masks, USGS [data set], https://doi.org/10.5066/F7FB5146, 2016. a
USGS: Landsat 9 Commissioning and Operations Phases after Launch,
https://www.usgs.gov/media/images/landsat-9-commissioning-and-operations-phases-after-launch (last access: 21 October 2022),
2021. a
Vermote, E., Tanré, D., Deuze, J., Herman, M., and Morcette, J.-J.: Second
Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview,
IEEE T. Geoscience Remote, 35, 675–686,
https://doi.org/10.1109/36.581987, 1997a. a
Vermote, E., Justice, C., Claverie, M., and Franch, B.: Preliminary analysis of
the performance of the Landsat 8/OLI land surface reflectance product, Remote Sens. Environ., 185, 46–56, 2016. a
Vermote, E. F. and Kotchenova, S.: Atmospheric correction for the monitoring of
land surfaces, J. Geophys. Res.-Atmos., 113, D23S90,
https://doi.org/10.1029/2007JD009662, 2008. a, b, c
Vermote, E. F. and Saleous, N.: Operational atmospheric correction of MODIS
visible to middle infrared land surface data in the case of an infinite
Lambertian target, in: Earth science satellite remote sensing,
Springer, 123–153, https://doi.org/10.1007/978-3-540-37293-6_8, 2006. a
Vermote, E. F., Tanré, D., Deuzé, J. L., Herman, M., Morcrette, J. J., and Kotchenova, S. Y.: Second
Simulation of a Satellite Signal in the Solar Spectrum-vector (6SV). 6S
User Guide Version, 3, Tech. rep., Department of Geography, University of
Maryland, 2006. a
Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y., and Román, M. O.: Capturing
rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo
(MCD43) products, Remote Sens. Environ., 207, 50–64,
https://doi.org/10.1016/j.rse.2018.02.001, 2018. a
Wang, Z., Schaaf, C., Lattanzio, A., Carrer, D., Grant, I., Román, M.,
Camacho, F., Yu, Y., Sánchez-Zapero, J., and Nickeson, J.: Global Surface
Albedo Product Validation Best Practices Protocol Version 1.0, in: Best Practice for Satellite Derived Land Product Validation, edited by: Wang, Z., Nickeson, J., and
Román, M., Land Product Validation Subgroup (WGCV/CEOS),
45,
https://doi.org/10.5067/DOC/CEOSWGCV/LPV/ALBEDO.001, 2019. a
Wanner, W., Strahler, A. H., Hu, B., Lewis, P., Muller, J.-P., Li, X., Schaaf,
C. L. B., and Barnsley, M. J.: Global retrieval of bidirectional reflectance
and albedo over land from EOS MODIS and MISR data: Theory and
algorithm, J. Geophys. Res.-Atmos., 102,
17143–17161, https://doi.org/10.1029/96jd03295, 1997. a
Wenny, B. N. and Thome, K.: Look-up table approach for uncertainty
determination for operational vicarious calibration of Earth imaging sensors,
Appl. Optics, 61, 1357–1368, 2022. a
Wieland, M., Li, Y., and Martinis, S.: Multi-sensor cloud and cloud shadow
segmentation with a convolutional neural network, Remote Sens. Environ., 230, 111203, https://doi.org/10.1016/j.rse.2019.05.022, 2019.
a, b
Wulder, M. A., Hilker, T., White, J. C., Coops, N. C., Masek, J. G.,
Pflugmacher, D., and Crevier, Y.: Virtual constellations for global
terrestrial monitoring, Remote Sens. Environ., 170, 62–76, 2015. a
Xiong, X. and Butler, J. J.: MODIS and VIIRS calibration history and future
outlook, Remote Sens., 12, 2523, https://doi.org/10.3390/rs12162523, 2020. a
Yin, F.: SIAC-v2.3.5, Zenodo [code], https://doi.org/10.5281/zenodo.6651964, 2022a. a
Yin, F.: SIAC validation data, Zenodo [data set], https://doi.org/10.5281/zenodo.6652892,
2022b. a
Zhang, T., Zang, L., Mao, F., Wan, Y., and Zhu, Y.: Evaluation of
Himawari-8/AHI, MERRA-2, and CAMS Aerosol Products over China, Remote Sens., 12, 1684, https://doi.org/10.3390/rs12101684, 2020. a
Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization, ACM
T. Math. Softw., 23, 550–560,
https://doi.org/10.1145/279232.279236, 1997. a
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection in
Landsat imagery, Remote Sens. Environ., 118, 83–94, 2012. a
Zhu, Z., Zhang, J., Yang, Z., Aljaddani, A. H., Cohen, W. B., Qiu, S., and
Zhou, C.: Continuous monitoring of land disturbance based on Landsat time
series, Remote Sens. Environ., 238, 111116,
https://doi.org/10.1016/j.rse.2019.03.009, 2020. a
Short summary
The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
The proposed SIAC atmospheric correction method provides consistent surface reflectance...