Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global, spherical finite-element model for post-seismic deformation using Abaqus
Grace A. Nield
CORRESPONDING AUTHOR
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
Department of Geography, Durham University, Durham, UK
Matt A. King
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania 7001, Australia
Rebekka Steffen
Lantmäteriet, Gävle, Sweden
Bas Blank
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
No articles found.
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data, 17, 1761–1780, https://doi.org/10.5194/essd-17-1761-2025, https://doi.org/10.5194/essd-17-1761-2025, 2025
Short summary
Short summary
Geodetic GPS measurements in Antarctica have been used to track bedrock displacement, which is vital for understanding geodynamic processes such as plate motion and glacial isostatic adjustment. However, the potential of GPS data has been limited by its partially fragmented availability and unreliable metadata. A new dataset, which spans the period from 1995 to 2021, offers consistently processed coordinate time series for 286 GPS sites and promises to enhance future geodynamic research.
John Bright Ayabilah, Matt King, Danielle Udy, and Tessa Vance
EGUsphere, https://doi.org/10.5194/egusphere-2025-1187, https://doi.org/10.5194/egusphere-2025-1187, 2025
Short summary
Short summary
Large-scale climate modes significantly influence Antarctic Ice Sheet (AIS) mass variability. This study investigates AIS variability during different El Niño-Southern Oscillation (ENSO) periods using GRACE data (2002–2022). Results show strong spatial variability driven by changes in the Amundsen Sea Low (ASL) and Southern Annular Mode (SAM). This highlights the importance of understanding these patterns for future ice mass estimates and sea level rise predictions.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Bogdan Matviichuk, Matt King, and Christopher Watson
Solid Earth, 11, 1849–1863, https://doi.org/10.5194/se-11-1849-2020, https://doi.org/10.5194/se-11-1849-2020, 2020
Short summary
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.
Cited articles
Agata, R., Barbot, S. D., Fujita, K., Hyodo, M., Iinuma, T., Nakata, R.,
Ichimura, T., and Hori, T.: Rapid mantle flow with power-law creep explains
deformation after the 2011 Tohoku mega-quake, Nat. Commun., 10, 1385,
https://doi.org/10.1038/s41467-019-08984-7, 2019.
Broerse, D. B. T., Vermeersen, L. L. A., Riva, R. E. M., and van der Wal,
W.: Ocean contribution to co-seismic crustal deformation and geoid
anomalies: Application to the 2004 December 26 Sumatra–Andaman earthquake,
Earth Planet. Sci. Lett., 305, 341–349,
https://doi.org/10.1016/j.epsl.2011.03.011, 2011.
Dziewonski, A. M. and Anderson, D. L.: Preliminary Reference Earth Model,
Phys. Earth Planet. In., 25, 297–356, 1981.
Freed, A. M., Burgmann, R., Calais, E., and Freymueller, J.:
Stress-dependent power-law flow in the upper mantle following the 2002
Denali, Alaska, earthquake, Earth Planet. Sc. Lett., 252,
481–489, https://doi.org/10.1016/j.epsl.2006.10.011, 2006.
Freed, A. M., Hirth, G., and Behn, M. D.: Using short-term postseismic
displacements to infer the ambient deformation conditions of the upper
mantle, J. Geophys. Res.-Sol. Earth, 117, B01409,
https://doi.org/10.1029/2011jb008562, 2012.
Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities, Int. J. Numer.
Methods Eng., 79, 1309–1331, https://doi.org/10.1002/nme.2579, 2009.
Han, S.-C., Sauber, J., and Pollitz, F.: Broadscale postseismic gravity
change following the 2011 Tohoku-Oki earthquake and implication for
deformation by viscoelastic relaxation and afterslip, Geophys. Res. Lett., 41,
5797–5805, https://doi.org/10.1002/2014gl060905, 2014.
Hayes, G. P.: The finite, kinematic rupture properties of great-sized
earthquakes since 1990, Earth Planet. Sc. Lett., 468, 94–100,
https://doi.org/10.1016/j.epsl.2017.04.003, 2017.
Hibbitt, D., Karlsson, B., and Sorenson, P.: Getting Started with ABAQUS –
Version (6.14), Hibbitt, Karlsson & Sorensen, Inc., 2016.
Hirth, G. and Kohlstedt, D.: Rheology of the upper mantle and the mantle
wedge: A view from the experimentalists, in: Inside the Subduction Factory,
edited by: Eiler, J., Geophysical Monograph Series, AGU, 83–105, https://doi.org/10.1029/138GM06, 2003.
Hu, Y. and Wang, K.: Spherical-Earth finite element model of short-term
postseismic deformation following the 2004 Sumatra earthquake, J. Geophys. Res.-Sol. Earth, 117, B05404, https://doi.org/10.1029/2012jb009153, 2012.
Hu, Y., Wang, K., He, J., Klotz, J., and Khazaradze, G.: Three-dimensional
viscoelastic finite element model for postseismic deformation of the great
1960 Chile earthquake, J. Geophys. Res.-Sol. Earth, 109, B12,
https://doi.org/10.1029/2004jb003163, 2004.
Huang, M.-H., Bürgmann, R., and Freed, A. M.: Probing the lithospheric
rheology across the eastern margin of the Tibetan Plateau, Earth
Planet. Sc. Lett., 396, 88–96,
https://doi.org/10.1016/j.epsl.2014.04.003, 2014.
Karato, S. and Wu, P.: Rheology of the Upper Mantle – a Synthesis, Science,
260, 771–778, https://doi.org/10.1126/science.260.5109.771, 1993.
Khazaradze, G. and Klotz, J.: Short- and long-term effects of GPS measured
crustal deformation rates along the south central Andes, J. Geophys. Res.-Sol. Earth, 108, 2289, https://doi.org/10.1029/2002jb001879, 2003.
Khazaradze, G., Wang, K., Klotz, J., Hu, Y., and He, J.: Prolonged
post-seismic deformation of the 1960 great Chile earthquake and implications
for mantle rheology, Geophys. Res. Lett., 29, 7-1–7-4, https://doi.org/10.1029/2002gl015986,
2002.
King, M. A. and Santamaría-Gómez, A.: Ongoing deformation of
Antarctica following recent Great Earthquakes, Geophys. Res. Lett., 43,
1918–1927, https://doi.org/10.1002/2016gl067773, 2016.
Latychev, K., Mitrovica, J. X., Tromp, J., Tamisiea, M. E., Komatitsch, D.,
and Christara, C. C.: Glacial isostatic adjustment on 3-D Earth models: a
finite-volume formulation, Geophys. J. Int., 161, 421–444, 2005.
Masterlark, T.: Finite element model predictions of static deformation from
dislocation sources in a subduction zone: Sensitivities to homogeneous,
isotropic, Poisson-solid, and half-space assumptions, J. Geophys. Res.-Sol. Earth, 108, 2540, https://doi.org/10.1029/2002jb002296, 2003.
Masterlark, T. and Wang, H. F.: Transient Stress-Coupling Between the 1992
Landers and 1999 Hector Mine, California, Earthquakes, B. Seismol. Soc. Am., 92,
1470–1486, 2002.
Masterlark, T., DeMets, C., Wang, H. F., Sánchez, O., and Stock, J.:
Homogeneous vs heterogeneous subduction zone models: Coseismic and
postseismic deformation, Geophys. Res. Lett., 28, 4047–4050, 2001.
Nield, G. A.: ganield/ABAQUS_Postseismic_model
v2.0, Zenodo [data set], https://doi.org/10.5281/zenodo.5897863, 2022.
Okada, Y.: Surface deformation due to shear and tensile faults in a
half-space, B. Seismol. Soc. Am., 75, 1135–1154, 1985.
Peña, C., Heidbach, O., Moreno, M., Bedford, J., Ziegler, M., Tassara,
A., and Oncken, O.: Role of Lower Crust in the Postseismic Deformation of
the 2010 Maule Earthquake: Insights from a Model with Power-Law Rheology,
Pure Appl. Geophys., 176, 3913–3928, https://doi.org/10.1007/s00024-018-02090-3, 2019.
Pollitz, F. F.: Postseismic relaxation theory on the spherical earth, B.
Seismol. Soc. Am., 82, 422–453, 1992.
Pollitz, F. F.: Gravitational viscoelastic postseismic relaxation on a
layered spherical Earth, J. Geophys. Res.-Sol. Earth, 102,
17921–17941, https://doi.org/10.1029/97jb01277, 1997.
Pollitz, F. F.: Transient rheology of the upper mantle beneath central
Alaska inferred from the crustal velocity field following the 2002 Denali
earthquake, J. Geophys. Res.-Sol. Earth, 110, B08407,
https://doi.org/10.1029/2005jb003672, 2005.
Pollitz, F. F.: VISCO1D-v3, USGS [code], https://www.usgs.gov/node/279413 (last access: March 2022), 2007.
Schmidt, P., Lund, B., and Hieronymus, C.: Implementation of the glacial
rebound prestress advection correction in general-purpose finite element
analysis software: Springs versus foundations, Comput. Geosci.-UK, 40, 97–106,
https://doi.org/10.1016/j.cageo.2011.07.017, 2012.
Shao, Z., Zhan, W., Zhang, L., and Xu, J.: Analysis of the Far-Field
Co-seismic and Post-seismic Responses Caused by the 2011 MW 9.0 Tohoku-Oki
Earthquake, Pure Appl. Geophys., 173, 411–424, https://doi.org/10.1007/s00024-015-1131-9,
2016.
Steffen, R., Wu, P., Steffen, H., and Eaton, D. W.: On the implementation of
faults in finite-element glacial isostatic adjustment models, Comput.
Geosci.-UK, 62, 150–159, https://doi.org/10.1016/j.cageo.2013.06.012, 2014.
Suito, H. and Freymueller, J. T.: A viscoelastic and afterslip postseismic
deformation model for the 1964 Alaska earthquake, J. Geophys. Res.-Sol. Earth, 114, B11404, https://doi.org/10.1029/2008jb005954, 2009.
Sun, T., Wang, K., and He, J.: Crustal Deformation Following Great
Subduction Earthquakes Controlled by Earthquake Size and Mantle Rheology,
J. Geophys. Res.-Sol. Earth, 123, 5323–5345,
https://doi.org/10.1029/2017jb015242, 2018.
Takeuchi, C. S. and Fialko, Y.: On the effects of thermally weakened ductile
shear zones on postseismic deformation, J. Geophys. Res.-Sol. Earth, 118, 6295–6310, https://doi.org/10.1002/2013jb010215, 2013.
Tregoning, P., Burgette, R., McClusky, S. C., Lejeune, S., Watson, C. S.,
and McQueen, H.: A decade of horizontal deformation from great earthquakes,
J. Geophys. Res.-Sol. Earth, 118, 2371–2381,
https://doi.org/10.1002/jgrb.50154, 2013.
van der Wal, W., Wu, P., Wang, H. S., and Sideris, M. G.: Sea levels and
uplift rate from composite rheology in glacial isostatic adjustment
modeling, J. Geodyn., 50, 38–48, https://doi.org/10.1016/j.jog.2010.01.006, 2010.
van der Wal, W., Whitehouse, P. L., and Schrama, E. J. O.: Effect of GIA
models with 3D composite mantle viscosity on GRACE mass balance estimates
for Antarctica, Earth Planet. Sc. Lett., 414, 134–143, 2015.
Wang, K. and Fialko, Y.: Observations and Modeling of Coseismic and
Postseismic Deformation Due To the 2015 Mw 7.8 Gorkha (Nepal) Earthquake,
J. Geophys. Res.-Sol. Earth, 123, 761–779,
https://doi.org/10.1002/2017jb014620, 2018.
Wang, R., Lorenzo-Martín, F., and Roth, F.: PSGRN/PSCMP – a new code
for calculating co- and post-seismic deformation, geoid and gravity changes
based on the viscoelastic-gravitational dislocation theory, Comput.
Geosci.-UK, 32, 527–541, https://doi.org/10.1016/j.cageo.2005.08.006, 2006.
Wu, P.: Using commercial finite element packages for the study of earth
deformations, sea levels and the state of stress, Geophys. J. Int., 158,
401–408, https://doi.org/10.1111/j.1365-246X.2004.02338.x, 2004.
Wu, P., Wang, H. S., and Steffen, H.: The role of thermal effect on mantle
seismic anomalies under Laurentia and Fennoscandia from observations of
Glacial Isostatic Adjustment, Geophys. J. Int., 192, 7–17,
https://doi.org/10.1093/gji/ggs009, 2013.
Ye, L., Lay, T., Koper, K. D., Smalley, R., Rivera, L., Bevis, M. G.,
Zakrajsek, A. F., and Teferle, F. N.: Complementary slip distributions of
the August 4, 2003 Mw 7.6 and November 17, 2013 Mw 7.8 South Scotia Ridge
earthquakes, Earth Planet. Sc. Lett., 401, 215–226,
https://doi.org/10.1016/j.epsl.2014.06.007, 2014.
Zhong, S. J., Paulson, A., and Wahr, J.: Three-dimensional finite-element
modelling of Earth's viscoelastic deformation: effects of lateral variations
in lithospheric thickness, Geophys. J. Int., 155, 679–695,
https://doi.org/10.1046/j.1365-246X.2003.02084.x, 2003.
Zhou, X., Sun, W., Zhao, B., Fu, G., Dong, J., and Nie, Z.: Geodetic
observations detecting coseismic displacements and gravity changes caused by
the Mw = 9.0 Tohoku-Oki earthquake, J. Geophys. Res.-Sol. Earth, 117, B05408, https://doi.org/10.1029/2011JB008849, 2012.
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
We present a finite-element model of post-seismic solid Earth deformation built in the software...