Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2441-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2441-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D
Alessandro Lechmann
CORRESPONDING AUTHOR
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
David Mair
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Akitaka Ariga
Albert Einstein Center for Fundamental Physics, Laboratory for High
Energy Physics, University of Bern, Bern, 3012, Switzerland
Tomoko Ariga
Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0385,
Japan
Antonio Ereditato
Albert Einstein Center for Fundamental Physics, Laboratory for High
Energy Physics, University of Bern, Bern, 3012, Switzerland
Ryuichi Nishiyama
Earthquake Research Institute, The University of Tokyo, Tokyo,
113-0032, Japan
Ciro Pistillo
Albert Einstein Center for Fundamental Physics, Laboratory for High
Energy Physics, University of Bern, Bern, 3012, Switzerland
Paola Scampoli
Albert Einstein Center for Fundamental Physics, Laboratory for High
Energy Physics, University of Bern, Bern, 3012, Switzerland
Physics Department “Ettore Pancini”, University of Naples Federico
II, Naples, 80126, Italy
Mykhailo Vladymyrov
Albert Einstein Center for Fundamental Physics, Laboratory for High
Energy Physics, University of Bern, Bern, 3012, Switzerland
Fritz Schlunegger
Institute of Geological Sciences, University of Bern, Bern, 3012,
Switzerland
Related authors
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Hoda Moradi, Gerhard Furrer, Michael Margreth, David Mair, and Christoph Wanner
The Cryosphere, 18, 5153–5171, https://doi.org/10.5194/tc-18-5153-2024, https://doi.org/10.5194/tc-18-5153-2024, 2024
Short summary
Short summary
Detailed monitoring of a rock glacier spring in the Eastern Alps showed that more than 1 tonne of toxic solutes, such as aluminum, nickel, and manganese, is mobilized each year from a small permafrost area. The strong mobilization is caused by rock weathering and long-term accumulation of toxic solutes in permafrost ice. Today, climate-change-induced permafrost degradation leads to a quick and focused export in summer. This forms an unexpected, novel hazard for alpine and high-latitude areas.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Michael A. Schwenk, Laura Stutenbecker, Patrick Schläfli, Dimitri Bandou, and Fritz Schlunegger
E&G Quaternary Sci. J., 71, 163–190, https://doi.org/10.5194/egqsj-71-163-2022, https://doi.org/10.5194/egqsj-71-163-2022, 2022
Short summary
Short summary
We investigated the origin of glacial sediments in the Bern area to determine their route of transport either with the Aare Glacier or the Valais Glacier. These two ice streams are known to have joined in the Bern area during the last major glaciation (ca. 20 000 years ago). However, little is known about the ice streams prior to this last glaciation. Here we collected evidence that during a glaciation about 250 000 years ago the Aare Glacier dominated the area as documented in the deposits.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Cited articles
Agostinelli, S., Allison, J., Amako, K. et al.: Geant4 – a simulation toolkit, Nucl. Instrum.
Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 506,
250–303, https://doi.org/10.1016/S0168-9002(03)01368-8, 2003.
Aitchison, J.: The Statistical Analysis of Compositional Data, 1st edn., Monographs on Statistics and Applied Probability, Chapman and Hall Ltd, London & New York, ISBN 9780412280603, 1986.
Alvarez, L. W., Anderson, J. A., El Bedwei, F., Burkhard, J., Fakhry, A.,
Girgis, A., Goneid, A., Hassan, F., Iverson, D., Lynch, G., Miligy, Z.,
Moussa, A. H., Mohammed-Sharkawi, and Yazolino, L.: Search for Hidden
Chambers in the Pyramids, Science, 167, 832–839, 1970.
Ambrosino, F., Anastasio, A., Basta, D., Bonechi, L., Brianzi, M., Bross,
A., Callier, S., Caputo, A., Ciaranfi, R., Cimmino, L., D'Alessandro, R.,
D'Auria, L., Taille, C. de L., Energico, S., Garufi, F., Giudicepietro, F.,
Lauria, A., Macedonio, G., Martini, M., Masone, V., Mattone, C., Montesi, M.
C., Noli, P., Orazi, M., Passeggio, G., Peluso, R., Pla-Dalmau, A., Raux,
L., Rubinov, P., Saracino, G., Scarlini, E., Scarpato, G., Sekhniaidze, G.,
Starodubtsev, O., Strolin, P., Taketa, A., Tanaka, H. K. M., Vanzanella, A.,
and Viliani, L.: The MU-RAY project: detector technology and first data from
Mt. Vesuvius, J. Instrum., 9, C02029,
https://doi.org/10.1088/1748-0221/9/02/C02029, 2014.
Ambrosino, F., Anastasio, A., Bross, A., Béné, S., Boivin, P.,
Bonechi, L., Cârloganu, C., Ciaranfi, R., Cimmino, L., Combaret, C.,
D'Alessandro, R., Durand, S., Fehr, F., Français, V., Garufi, F.,
Gailler, L., Labazuy, P., Laktineh, I., Lénat, J.-F., Masone, V.,
Miallier, D., Mirabito, L., Morel, L., Mori, N., Niess, V., Noli, P.,
Pla-Dalmau, A., Portal, A., Rubinov, P., Saracino, G., Scarlini, E.,
Strolin, P., and Vulpescu, B.: Joint measurement of the atmospheric muon
flux through the Puy de Dôme volcano with plastic scintillators and
Resistive Plate Chambers detectors, J. Geophys. Res.-Sol. Ea., 120,
7290–7307, https://doi.org/10.1002/2015JB011969, 2015.
Anghel, V., Armitage, J., Baig, F., Boniface, K., Boudjemline, K., Bueno,
J., Charles, E., Drouin, P.-L., Erlandson, A., Gallant, G., Gazit, R.,
Godin, D., Golovko, V. V., Howard, C., Hydomako, R., Jewett, C., Jonkmans,
G., Liu, Z., Robichaud, A., Stocki, T. J., Thompson, M., and Waller, D.: A
plastic scintillator-based muon tomography system with an integrated muon
spectrometer, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers
Detect. Assoc. Equip., 798, 12–23,
https://doi.org/10.1016/j.nima.2015.06.054, 2015.
Ariga, A., Ariga, T., Ereditato, A., Käser, S., Lechmann, A., Mair, D.,
Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, F., and Vladymyrov,
M.: A Nuclear Emulsion Detector for the Muon Radiography of a Glacier
Structure, Instruments, 2, 7, https://doi.org/10.3390/instruments2020007,
2018.
ASTM C914-09: Standard Test Method for Bulk Density and Volume of Solid Refactories by Wax Immersion, ASTM International, West Conshohocken, PA, https://doi.org/10.1520/C0914-09R15, 2015.
Barnaföldi, G. G., Hamar, G., Melegh, H. G., Oláh, L., Surányi,
G., and Varga, D.: Portable cosmic muon telescope for environmental
applications, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers
Detect. Assoc. Equip., 689, 60–69,
https://doi.org/10.1016/j.nima.2012.06.015, 2012.
Barnoud, A., Cayol, V., Niess, V., Cârloganu, C., Lelièvre, P.,
Labazuy, P., and Le Ménédeu, E.: Bayesian joint muographic and
gravimetric inversion applied to volcanoes, Geophys. J. Int., 218,
2179–2194, https://doi.org/10.1093/gji/ggz300, 2019.
Bellman, R. E.: Adaptive Control Processes A Guided Tour, Princeton
University Press, Princeton, ISBN 9781400874668, 2016.
Betancourt, M. J. and Girolami, M.: Hamiltonian Monte Carlo for Hierarchical Models, arXiv [preprint], arXiv:1312.0906, 3 December 2013.
Blake, G. R. and Hartge, K. H.: Bulk Density, in: Methods of Soil Analysis:
Part 1 – Physical and Mineralogical Methods, vol. 9, edited by: Klute, A.,
American Society of Agronomy and Soil Science Society of America, Madison,
363–375, https://doi.org/10.2136/sssabookser5.1.2ed, 1986.
Bonechi, L., D'Alessandro, R., Mori, N., and Viliani, L.: A projective
reconstruction method of underground or hidden structures using atmospheric
muon absorption data, JINST, 10, P02003,
https://doi.org/10.1088/1748-0221/10/02/P02003, 2015.
Bugaev, E. V., Misaki, A., Naumov, V. A., Sinegovskaya, T. S., Sinegovsky,
S. I., and Takahashi, N.: Atmospheric Muon Flux at Sea Level, Underground,
and Underwater, Phys. Rev. D, 58, 054001,
https://doi.org/10.1103/PhysRevD.58.054001, 1998.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.: Bayesian Data Analysis, 3rd edn., Texts in Statistical Science, CRC Press, Taylor & Francis Group, Boca Raton, ISBN 9781439840955, 2013.
Gerya, T.: Introduction to numerical geodynamic modelling, 1st edn., Cambridge
University Press, Cambridge, New York, ISBN 9780521887540, 2010.
Groom, D. E., Mokhov, N. V., and Striganov, S. I.: MUON STOPPING POWER AND
RANGE TABLES 10 MeV–100 TeV, At. Data Nucl. Data Tables, 78, 183–356,
https://doi.org/10.1006/adnd.2001.0861, 2001.
Guardincerri, E., Rowe, C., Schultz-Fellenz, E., Roy, M., George, N.,
Morris, C., Bacon, J., Durham, M., Morley, D., Plaud-Ramos, K., Poulson, D.,
Baker, D., Bonneville, A., and Kouzes, R.: 3D Cosmic Ray Muon Tomography
from an Underground Tunnel, Pure Appl. Geophys., 174, 2133–2141,
https://doi.org/10.1007/s00024-017-1526-x, 2017.
Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their
applications, Biometrika, 57, 97–109,
https://doi.org/10.1093/biomet/57.1.97, 1970.
Hebbeker, T. and Timmermans, C.: A Compilation of High Energy Atmospheric
Muon Data at Sea Level, Astropart. Phys., 18, 107–127,
https://doi.org/10.1016/S0927-6505(01)00180-3, 2002.
Jonkmans, G., Anghel, V. N. P., Jewett, C., and Thompson, M.: Nuclear waste
imaging and spent fuel verification by muon tomography, Ann. Nucl. Energy,
53, 267–273, https://doi.org/10.1016/j.anucene.2012.09.011, 2013.
Jourde, K., Gibert, D., and Marteau, J.: Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies, Geosci. Instrum. Method. Data Syst., 4, 177–188, https://doi.org/10.5194/gi-4-177-2015, 2015.
Jourde, K., Gibert, D., Marteau, J., de Bremond d'Ars, J., and Komorowski,
J.-C.: Muon dynamic radiography of density changes induced by hydrothermal
activity at the La Soufrière of Guadeloupe volcano, Sci. Rep., 6, 33406,
https://doi.org/10.1038/srep33406, 2016.
Kjaerulff, U. B. and Madsen, A. L.: Bayesian Networks and Influence
Diagrams: A Guide to Construction and Analysis, in: Information Science and Statistics, 1st edn., Springer, New York, ISBN 9780387741000, https://doi.org/10.1007/978-0-387-74101-7, 2008.
Kudryavtsev, V. A.: Muon simulation codes MUSIC and MUSUN for underground
physics, Comput. Phys. Commun., 180, 339–346,
https://doi.org/10.1016/j.cpc.2008.10.013, 2009.
Kusagaya, T. and Tanaka, H. K. M.: Development of the very long-range cosmic-ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan, Geosci. Instrum. Method. Data Syst., 4, 215–226, https://doi.org/10.5194/gi-4-215-2015, 2015.
Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, F., and Vladymyrov, M.: The effect of rock composition on muon tomography measurements, Solid Earth, 9, 1517–1533, https://doi.org/10.5194/se-9-1517-2018, 2018.
Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R.,
Pistillo, C., Scampoli, P., Schlunegger, F., and Vladymyrov, M.: Muon
tomography in geoscientific research – a guide to best practice,
Earth-Sci. Rev., 222, 103842,
https://doi.org/10.1016/j.earscirev.2021.103842, 2021a.
Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R.,
Pistillo, C., Scampoli, P., Schlunegger, F., and Vladymyrov, M.: SMAUG – A
Simulator for Muon Applications Under Ground (Version 1.0), Zenodo [code and data set],
https://doi.org/10.5281/zenodo.5547356, 2021b.
Lelièvre, P. G., Barnoud, A., Niess, V., Cârloganu, C., Cayol, V.,
and Farquharson, C. G.: Joint inversion methods with relative density offset
correction for muon tomography and gravity data, with application to volcano
imaging, Geophys. J. Int., 218, 1685–1701,
https://doi.org/10.1093/gji/ggz251, 2019.
Lesparre, N., Gibert, D., Marteau, J., Déclais, Y., Carbone, D., and
Galichet, E.: Geophysical muon imaging: feasibility and limits, Geophys. J.
Int., 183, 1348–1361, https://doi.org/10.1111/j.1365-246X.2010.04790.x,
2010.
Lesparre, N., Gibert, D., and Marteau, J.: Bayesian dual inversion of
experimental telescope acceptance and integrated flux for geophysical muon
tomography, Geophys. J. Int., 188, 490–497,
https://doi.org/10.1111/j.1365-246X.2011.05268.x, 2012.
Lesparre, N., Cabrera, J., and Marteau, J.: 3-D density imaging with muon
flux measurements from underground galleries, Geophys. J. Int., 208,
1579–1591, https://doi.org/10.1093/gji/ggw482, 2017.
Lohmann, W., Kopp, R., and Voss, R.: Energy Loss of Muons in the Energy
Range 1–10000 GeV, CERN, Geneva, https://doi.org/10.5170/CERN-1985-003, 1985.
Lo Presti, D., Gallo, G., Bonanno, D. L., Bonanno, G., Bongiovanni, D. G.,
Carbone, D., Ferlito, C., Immè, J., La Rocca, P., Longhitano, F.,
Messina, A., Reito, S., Riggi, F., Russo, G., and Zuccarello, L.: The MEV
project: Design and testing of a new high-resolution telescope for muography
of Etna Volcano, Nucl. Instrum. Methods Phys. Res. Sect. Accel.
Spectrometers Detect. Assoc. Equip., 904, 195–201,
https://doi.org/10.1016/j.nima.2018.07.048, 2018.
Mair, D., Lechmann, A., Herwegh, M., Nibourel, L., and Schlunegger, F.: Linking Alpine deformation in the Aar Massif basement and its cover units – the case of the Jungfrau–Eiger mountains (Central Alps, Switzerland), Solid Earth, 9, 1099–1122, https://doi.org/10.5194/se-9-1099-2018, 2018.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines, J.
Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953.
Morishima, K., Kuno, M., Nishio, A., Kitagawa, N., Manabe, Y., Moto, M.,
Takasaki, F., Fujii, H., Satoh, K., Kodama, H., Hayashi, K., Odaka, S.,
Procureur, S., Attié, D., Bouteille, S., Calvet, D., Filosa, C.,
Magnier, P., Mandjavidze, I., Riallot, M., Marini, B., Gable, P., Date, Y.,
Sugiura, M., Elshayeb, Y., Elnady, T., Ezzy, M., Guerriero, E., Steiger, V.,
Serikoff, N., Mouret, J.-B., Charlès, B., Helal, H., and Tayoubi, M.:
Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray
muons, Nature, 552, 386–390, https://doi.org/10.1038/nature24647, 2017.
Niess, V., Barnoud, A., Cârloganu, C., and Le Ménédeu, E.:
Backward Monte-Carlo applied to muon transport, Comput. Phys. Commun., 229, 54–67,
https://doi.org/10.1016/j.cpc.2018.04.001, 2018.
Nishiyama, R., Tanaka, Y., Okubo, S., Oshima, H., Tanaka, H. K. M., and
Maekawa, T.: Integrated processing of muon radiography and gravity anomaly
data toward the realization of high-resolution 3-D density structural
analysis of volcanoes: Case study of Showa-Shinzan lava dome, Usu, Japan, J.
Geophys. Res.-Sol. Ea., 119, 699–710,
https://doi.org/10.1002/2013JB010234, 2014.
Nishiyama, R., Ariga, A., Ariga, T., Käser, S., Lechmann, A., Mair, D.,
Scampoli, P., Vladymyrov, M., Ereditato, A., and Schlunegger, F.: First
measurement of ice-bedrock interface of alpine glaciers by cosmic muon
radiography, Geophys. Res. Lett., 44, 6244–6251,
https://doi.org/10.1002/2017GL073599, 2017.
Nishiyama, R., Ariga, A., Ariga, T., Lechmann, A., Mair, D., Pistillo, C.,
Scampoli, P., Valla, P. G., Vladymyrov, M., Ereditato, A., and Schlunegger,
F.: Bedrock sculpting under an active alpine glacier revealed from
cosmic-ray muon radiography, Sci. Rep., 9, 6970,
https://doi.org/10.1038/s41598-019-43527-6, 2019.
Noli, P., Ambrosino, F., Bonechi, L., Bross, A., Cimmino, L., D'Alessandro,
R., Masone, V., Mori, N., Passeggio, G., Pla-Dalmau, A., Saracino, G.,
Scarlini, E., and Strolin, P.: Muography of the Puy de Dôme, Ann.
Geophys., 60, S0105, https://doi.org/10.4401/ag-7380, 2017.
Oláh, L., Barnaföldi, G. G., Hamar, G., Melegh, H. G., Surányi,
G., and Varga, D.: Cosmic Muon Detection for Geophysical Applications,
Adv. High Energy Phys., 560192, https://doi.org/10.1155/2013/560192, 2013.
Oláh, L., Tanaka, H. K. M., Ohminato, T., and Varga, D.: High-definition
and low-noise muography of the Sakurajima volcano with gaseous tracking
detectors, Sci. Rep., 8, 3207, https://doi.org/10.1038/s41598-018-21423-9,
2018.
Reyna, D.: A Simple Parameterization of the Cosmic-Ray Muon Momentum Spectra
at the Surface as a Function of Zenith Angle, arXiv [preprint], arXiv:hep-ph/0604145, 1 June 2006.
Rosas-Carbajal, M., Jourde, K., Marteau, J., Deroussi, S., Komorowski,
J.-C., and Gibert, D.: Three-dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and garvity data, Geophys. Res.
Lett., 44, 6743–6751, https://doi.org/10.1002/2017GL074285, 2017.
Saracino, G., Amato, L., Ambrosino, F., Antonucci, G., Bonechi, L., Cimmino,
L., Consiglio, L., D'Alessandro, R., Luzio, E. D., Minin, G., Noli, P.,
Scognamiglio, L., Strolin, P., and Varriale, A.: Imaging of underground
cavities with cosmic-ray muons from observations at Mt. Echia (Naples), Sci.
Rep., 7, 1181, https://doi.org/10.1038/s41598-017-01277-3, 2017.
Stoer, J. and Burlisch, R.: Introduction to Numerical Analysis, 3rd edn., Springer, New York, ISBN 978-0-387-95452-3, https://doi.org/10.1007/978-0-387-21738-3, 2002.
Takahasi, H. and Mori, M.: Double Exponential Formulas for Numerical
Integration, Publ. Res. Inst. Math. Sci., 9, 721–741,
https://doi.org/10.2977/prims/1195192451, 1974.
Takamatsu, K., Takegami, H., Ito, C., Suzuki, K., Ohnuma, H., Hino, R., and
Okumura, T.: Cosmic-ray muon radiography for reactor core observation, Ann.
Nucl. Energy, 78, 166–175, https://doi.org/10.1016/j.anucene.2014.12.017,
2015.
Tanabashi, M., Hagiwara, K., Hikasa, K., et al.: (Particle Data Group): Review of Particle Physics,
Phys. Rev. D, 98, 030001, https://doi.org/10.1103/PhysRevD.98.030001, 2018.
Tanaka, H. K. M.: Instant snapshot of the internal structure of Unzen lava
dome, Japan with airborne muography, Sci. Rep., 6, 39741,
https://doi.org/10.1038/srep39741, 2016.
Tang, A., Horton-Smith, G., Kudryavtsev, V. A., and Tonazzo, A.: Muon
Simulations for Super-Kamiokande, KamLAND and CHOOZ, Phys. Rev. D, 74,
053007, https://doi.org/10.1103/PhysRevD.74.053007, 2006.
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, 1st edn., Other Titles in Applied Mathematics, Siam, Philadelphia ISBN 9780898715729, https://doi.org/10.1137/1.9780898717921, 2005.
Thompson, L. F., Stowell, J. P., Fargher, S. J., Steer, C. A., Loughney, K.
L., O'Sullivan, E. M., Gluyas, J. G., Blaney, S. W., and Pidcock, R. J.:
Muon tomography for railway tunnel imaging, Phys. Rev. Res., 2, 023017,
https://doi.org/10.1103/PhysRevResearch.2.023017, 2020.
Tioukov, V., Lellis, G. D., Strolin, P., Consiglio, L., Sheshukov, A.,
Orazi, M., Peluso, R., Bozza, C., Sio, C. D., Stellacci, S. M., Sirignano,
C., D'Ambrosio, N., Miyamoto, S., Nishiyama, R., and Tanaka, H. K. M.:
Muography with nuclear emulsions – Stromboli and other projects, Ann.
Geophys., 60, S0111, https://doi.org/10.4401/ag-7386, 2017.
Vermeesch, P.: On the visualisation of detrital age distributions, Chemical
Geology, 312–313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021,
2012.
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Muon tomography is a technology that is used often in geoscientific research. The know-how of...