Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2441-2022
https://doi.org/10.5194/gmd-15-2441-2022
Model description paper
 | 
22 Mar 2022
Model description paper |  | 22 Mar 2022

SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D

Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger

Related authors

Grain size of fluvial gravel bars from close-range UAV imagery – uncertainty in segmentation-based data
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022,https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
The role of frost cracking in local denudation of steep Alpine rockwalls over millennia (Eiger, Switzerland)
David Mair, Alessandro Lechmann, Romain Delunel, Serdar Yeşilyurt, Dmitry Tikhomirov, Christof Vockenhuber, Marcus Christl, Naki Akçar, and Fritz Schlunegger
Earth Surf. Dynam., 8, 637–659, https://doi.org/10.5194/esurf-8-637-2020,https://doi.org/10.5194/esurf-8-637-2020, 2020
The effect of rock composition on muon tomography measurements
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Fritz Schlunegger, and Mykhailo Vladymyrov
Solid Earth, 9, 1517–1533, https://doi.org/10.5194/se-9-1517-2018,https://doi.org/10.5194/se-9-1517-2018, 2018
Short summary
Linking Alpine deformation in the Aar Massif basement and its cover units – the case of the Jungfrau–Eiger mountains (Central Alps, Switzerland)
David Mair, Alessandro Lechmann, Marco Herwegh, Lukas Nibourel, and Fritz Schlunegger
Solid Earth, 9, 1099–1122, https://doi.org/10.5194/se-9-1099-2018,https://doi.org/10.5194/se-9-1099-2018, 2018

Related subject area

Solid Earth
Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev., 17, 8521–8533, https://doi.org/10.5194/gmd-17-8521-2024,https://doi.org/10.5194/gmd-17-8521-2024, 2024
Short summary
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024,https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydro-mechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-160,https://doi.org/10.5194/gmd-2024-160, 2024
Revised manuscript accepted for GMD
Short summary
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary

Cited articles

Agostinelli, S., Allison, J., Amako, K. et al.​​​​​​​: Geant4 – a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 506, 250–303, https://doi.org/10.1016/S0168-9002(03)01368-8, 2003. 
Aitchison, J.: The Statistical Analysis of Compositional Data, 1st edn., Monographs on Statistics and Applied Probability, Chapman and Hall Ltd, London & New York, ISBN 9780412280603, 1986. 
Download
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.