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Abstract. Knowledge about muon tomography has spread
in recent years in the geoscientific community and several
collaborations between geologists and physicists have been
founded. As the data analysis is still mostly done by particle
physicists, much of the know-how is concentrated in particle
physics and specialised geophysics institutes. SMAUG (Sim-
ulation for Muons and their Applications UnderGround), a
toolbox consisting of several modules that cover the various
aspects of data analysis in a muon tomographic experiment,
aims at providing access to a structured data analysis frame-
work. The goal of this contribution is to make muon tomog-
raphy more accessible to a broader geoscientific audience. In
this study, we show how a comprehensive geophysical model
can be built from basic physics equations. The emerging un-
certainties are dealt with by a probabilistic formulation of
the inverse problem, which is finally solved by a Monte Carlo
Markov chain algorithm. Finally, we benchmark the SMAUG
results against those of a recent study, which, however, have
been established with an approach that is not easily accessi-
ble to the geoscientific community. We show that they reach
identical results with the same level of accuracy and preci-
sion.

1 Introduction

Among the manifold geophysical imaging techniques, muon
tomography has increasingly gained the interest of geoscien-
tists during the course of the past years. Before its applica-
tion in Earth sciences, it was initially used for archaeological
purposes. Alvarez et al. (1970) used this method to search for
hidden chambers in the pyramids of Giza, in Egypt; this was
an experiment which was recently repeated by Morishima
et al. (2017), as better technologies have continuously been
developed. Other civil engineering applications include the
monitoring of nuclear power plant operations (Takamatsu
et al., 2015) and the search for nuclear waste repositories
(Jonkmans et al., 2013), as well as the investigation of un-
derground tunnels (e.g. Thompson et al., 2020; Guardincerri
et al., 2017). A serious deployment of muon tomography in
Earth sciences has only begun in the past decades. These un-
dertakings mainly encompass the study of the interior of vol-
canoes in France (Ambrosino et al., 2015; Jourde et al., 2016;
Noli et al., 2017; Rosas-Carbajal et al., 2017), Italy (Am-
brosino et al., 2014; Lo Presti et al., 2018; Tioukov et al.,
2017) and Japan (Kusagaya and Tanaka, 2015; Nishiyama
et al., 2014; Oláh et al., 2018; Tanaka, 2016). Other experi-
ments have been performed in order to explore the geometry
of karst cavities in Hungary (Barnaföldi et al., 2012) and Italy
(Saracino et al., 2017). Further studies (see also review arti-
cle by Lechmann et al., 2021a) have been conducted by our
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group to recover the ice–bedrock interface of Alpine glaciers
in central Switzerland (Nishiyama et al., 2017, 2019).

The core component of every geophysical exploration ex-
periment is formed by the inversion, which might be better
known to other communities as fitting or modelling. This is
where the model parameters are found which best fit the ob-
served data. Up until now, this central part has mostly been
built specifically to meet the needs of the experimental cam-
paign at hand. On the one hand, this approach has the ad-
vantage of allowing the consideration of the peculiarities of
particle detectors, their data processing chain and other mod-
els involved (e.g. the cosmic-ray flux model). On the other
hand, when every group develops a separate inversion al-
gorithm, the reconstruction of the precise calculations per-
formed in the data analysis procedure becomes a challenge.
For a researcher who is not familiar with the intricacies of in-
version, this might be even tougher. We thus see the need for
a lightweight programme that incorporates a structured and
modular approach to inversion, that also allows users with
little inversion experience to familiarise themselves with this
rather involved topic. This programme can be used to directly
analyse experimental data in a stand-alone working environ-
ment, and the modules and theoretical foundations can be
adapted, customised and integrated into new programmes.
For this reason, the code is built in the Python program-
ming language in order to facilitate the exchange between re-
searchers and to enhance modifiability. Moreover, the source
code is freely available online (Lechmann et al., 2021b).

To facilitate the further reading of our code, we intro-
duce the reader at this point to our benchmark experiment,
to which we will refer on multiple occasions throughout
this work. The experimental campaign is explained in de-
tail in Nishiyama et al. (2017), and thus we will resort to
a description of the experimental design at this point. In the
Nishiyama et al. (2017) study, we aimed at recovering the
ice–bedrock interface of an Alpine glacier in central Switzer-
land. Figure 1 shows that we had access to the railway tunnel
of the Jungfrau railway company, where we installed three
detectors. In our measurement, we recorded muons from di-
rections that consisted purely of rock and others where we
knew that the muons must have crossed rock and ice (see the
two cones in Fig. 1). From the former, it was possible, to-
gether with laboratory measurements, to determine the phys-
ical parameters of the rock more precisely. Subsequently, we
utilised the directional measurements of the latter to infer the
3-D structure of the interface between rock and ice under-
neath the glacier. Finally, we will also use the results of that
experiment (Nishiyama et al., 2017) to verify our new algo-
rithm in the present study.

1.1 Inversion – a modular view

The goal of every muon tomography study is essentially to
extract information on the physical parameters (usually den-
sity and/or the thickness of a part of the material) of the

radiographed object through a measurement of the cosmic-
ray muon flux and an assessment of its absorption as the
muons cross that object. In geological applications, these ob-
jects are almost always lithological underground structures
such as magma chambers, cavities or other interfaces with a
high-density contrast. The reconstruction of the geometry of
such structures can only be achieved if the measured muon
data are compared to the results of a muon flux simulation.
As stated earlier, this is the basic principle of the inversion
procedure. However, the aforementioned “muon flux simula-
tion” is not just a simple programme, but it consists of sev-
eral physically independent models that act together. Taking
a modular view, we will call these models “modules” from
here on, as they will inevitably be part of a larger inversion
code. We have visualised the components that are necessary
to build an inversion and how they interact with each other in
Fig. 2.

The first of the modules is the input module for the exper-
iment results, which also considers the detectors that were
used in the experiment. Typical detector setups include nu-
clear emulsion films (e.g. Ariga et al., 2018), cathode cham-
bers (e.g. Oláh et al., 2013), scintillators (e.g. Anghel et al.,
2015) or other hardware solutions. Although the detailed data
processing chain may be comprehensive, the related output
almost always comes in the form of a measured directional
(i.e. from various incident angles) muon flux or equivalently
the measured directional number of muons, which will be the
input to the inversion scheme. Here, we primarily work with
the premise that the muon flux data and the associated errors
are given. The corresponding errors can then be furnished to
the code by means of an interface.

The simulation module on the other hand, consists of
two parts each containing two modules (see Fig. 2). The
model parameterisation is needed in order to abstract the
(geo)physical reality as a mathematical model. Subsequently,
the forward model uses the model parameterisation and sim-
ulates an artificial dataset based on the chosen parameter val-
ues.

As we want to draw inferences on the physical parame-
ters of the involved materials, we need a “rock model” first.
The latter term is used in an earlier publication (Lechmann et
al., 2018) where we split a rock into its mineral constituents
and compute a mean composition and a mean density needed
for further calculations. Even though this is called a “rock
model” (Fig. 2), the approach can be used for other materi-
als (e.g. ice) as well. It is also possible to infuse laboratory
measurements of compositions and density into this family
of models.

Once the materials have been described, it is necessary to
model the experimental situation spatially. This means that
materials as well as detectors have to be attributed a location
in space. The central choice in the “model parameterisation”
is usually to select how the material parameters are discre-
tised spatially (this is hinted in Fig. 2 with the term “bin-
ning”). We refer the reader to Sect. 2.1 for further informa-
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Figure 1. (a) Schematic side view of the experiment from Nishiyama et al. (2017). A muon detector (red) is placed in a tunnel or cavity and
records muons from the cosmic-ray flux that penetrate the material (ice and rock) from different directions. Muons that are detected along
cones yield information on the amount and density of matter between the topographic surface and the detector. Based on this, the interface
between ice and rock (dashed green line) can be reconstructed. (b) Modified Fig. 1 from Nishiyama et al. (2017); overview of the study
region in the central Swiss Alps. Detectors are indicated by yellow pentagrams (D1, D2, D3; including their view field) within the railway
tunnel (black line). The imaged area is outlined in blue and the region that we know from the digital elevation model to contain only rock
is marked in brown. We verified (see Sect. 4) the reconstruction in this study with the one from Nishiyama et al. (2017) along three cross
sections (east, central, west; red lines). Basemap: Orthophotomosaic Swissimage, © Federal Office of Topography swisstopo.

Figure 2. A schematic flowchart showing the different involved models in a muon tomographic experiment. The muon simulation consists
of a model for rocks, detectors, the cosmic-ray flux and a particle physical model on how muons lose energy upon travelling through rocks.
These models allow for a synthetic dataset to be computed. The systematic comparison between synthetic data and actual measured data,
and the subsequent change of the model parameters to find the set of parameters that reproduce the measured data best is an (often iterative)
optimisation problem. This procedure is termed “inversion” (usually) by geophysicists.
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tion on that topic. In order to conduct this parameterisation,
we may employ pre-existing software solutions that mainly
compromise GIS and geological 3-D modelling applications
that excel at capturing geological information from various
sources, e.g. digital elevation models (DEMs), and that also
allow to compile field observations (maps, etc.) into a spa-
tially organised database. Once the structure of the spatial
model is determined, we need a physical model that allows us
to calculate a synthetic dataset, based on the parameter values
that we set up. We note that the parameterisation structure re-
mains fixed for the time of the calculations and that changes
are only performed on the parameter values.

Incident muons, on their way from the atmosphere to the
detector, lose energy while traversing matter. The first step in
the muon simulation is then to determine how great the initial
energy of the muon has to be in order to be able to penetrate
all the material up to the detector. This is done by means of a
muon transportation model which calculates all physical pro-
cesses by which a muon loses kinetic energy while travelling
through matter. The particle physics community has a great
variety of particle simulators, the most prominent being GE-
ometry ANd Tracking (GEANT) 4 (Agostinelli et al., 2003),
a Monte Carlo-based simulator. These have the advantage
that stochastic processes resulting in energy loss are simu-
lated according to their probabilistic occurrence – an upside
that has to be traded off for longer computation times. In con-
trast to obtaining the full energy loss distribution, lightweight
alternatives often resort to the calculation of only the mean
energy loss. The solution of the resulting differential equa-
tion can even be tabulated, as has been done by Groom et
al. (2001).

Lastly, based on that minimum energy, one may calculate
the portion of the atmospheric muon flux that is fast enough
to reach the detector. For this part, a cosmic-ray muon flux
model is needed, which describes the muon abundance in the
atmosphere, and which is generally dependent on the muon
energy, its incidence angle and the altitude of the detector lo-
cation. Lesparre et al. (2010) list and compare various muon
flux models that may be incorporated into an extensive sim-
ulation.

The interplay of these four modules (schematically shown
in Fig. 2) allows then to simulate a dataset. It is then possible
to compare the measured data with a synthetic dataset and to
quantify this difference using a specific metric (usually the
squared sum of residuals, which is also termed the misfit in
Fig. 2). The process of changing the model parameters (here
density of the materials and thicknesses of the segments in
each cone), comparing the synthetic dataset with the mea-
sured dataset and of iteratively tweaking the parameters in
such a way that misfit is minimised is called “inversion” in
Fig. 2. The solution of the inversion depends on the inversion
method used and is either the full statistical distribution of the
model parameters or an estimate thereof (e.g. the maximum
likelihood estimate).

1.2 The need for a consistent inversion environment

The reconstruction of material parameters from muon flux
data has already been performed in a variety of ways and
different methods and codes have already been published.
Bonechi et al. (2015), for example, used a back-projection
method such that size and location of underground objects
can be determined. Jourde et al. (2015), on the other hand,
describe the resolving kernel approach, where they show how
muon flux data and gravimetric data can be combined to im-
prove the resolution on the finally imaged 3-D density struc-
ture. This is a useful approach especially in the planning
stages of an experiment. Barnoud et al. (2019) provide a per-
spective on how such a joint inversion between muon flux
data and gravimetric data can be combined in a Bayesian
framework, whereas Lelièvre et al. (2019) investigate dif-
ferent methods of joining these datasets using unstructured
grids.

Existing frameworks that are especially used in physics
communities are GEANT4 (Agostinelli et al., 2003) or MU-
SIC (Kudryavtsev, 2009). These are Monte Carlo simulators
that excel at modelling how a particle (e.g. a muon) interacts
with matter and propagates in space and time. The Monte
Carlo aspect describes the fact that many particles are simu-
lated to get a statistically viable distribution of different par-
ticle trajectories. This might be a very time-consuming pro-
cess, as for each material distribution such a Monte Carlo
simulation has to be performed, and only a fraction of all
simulated muons actually hit the detector. In order to speed
this calculation up, Niess et al. (2018) devised a backward
Monte Carlo, which only simulates that portion of the muons
that are actually observed.

In their area of use, the above-mentioned sources prove
very valuable. Unfortunately, these tools and approaches
have in common that a rather good understanding of ei-
ther inversion, nuclear physics processes or programming
is required. Even more so, if one wants to tackle our prob-
lem of interface detection, coupled with density inversion,
then various parts of the above codes need to be linked to-
gether. The construction of a specialised programme is then
a time-consuming process, as (a) programmes might not be
freely available, (b) different codes might be written in differ-
ent and specialised programming languages (such as C++),
and/or (c) the compatibility between different modules may
be severely hampered, if the programme interfaces are not
taken into consideration. Therefore, one has to carefully eval-
uate the benefit of such an undertaking, especially if the re-
sulting code will most likely be tailored only to a specific
problem.

We thus see the need for a versatile, user-friendly simu-
lator, which allows users not only to quickly perform the
necessary calculations without the need of additional cod-
ing but also tailor the individual models to custom needs.
A new simulator can be more useful if an inversion func-
tionality is already included. As can be seen in Fig. 2, the
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inversion compares the simulated flux data with the mea-
sured data. This problem is solved by finding the set of pa-
rameters (material density and the thicknesses of the overly-
ing materials) that adhere to the constraints of the available
a priori information and minimise the aforementioned dis-
crepancy between measurement and simulation. This results
in a density or structural rock model which best reproduces
the measured data. As the energy loss equation in general
is nonlinear, also the mathematical optimisation in muon to-
mography is nonlinear. This is classically solved by either a
linearisation of the physical equations or by employing non-
linear solvers. A further difficulty is introduced when work-
ing in 3-D. Monte Carlo techniques are, however, versatile
enough to tackle these challenges, which is our main motiva-
tion for working with them. This circumstance encourages us
to work with a lightweight version of a muon transport sim-
ulator, because a nonlinear inversion of Monte Carlo simu-
lations, although mathematically preferable, is computation-
ally prohibitive. This allows us to make use of methods from
the Bayesian realm that thrive when measurements from dif-
ferent sources (i.e. muon flux measurement, laboratory, geo-
logical field measurements, maps, etc.) have to be combined
into a single comprehensive model. With the code presented
in this paper, we aspire to make muon tomography accessi-
ble to a broader geoscientific community, as the know-how in
this field is mainly concentrated in particle physics laborato-
ries. We want to provide the tools for Earth scientists, or users
that are mainly focused on the application of the method, so
that they can perform their own analyses.

In this contribution, we present our new code, SMAUG
(Simulation for Muons and their Applications Under-
Ground), which allows a broader scientific community to
plan and analyse muon tomographic experiments more eas-
ily, by providing them with data analysis and inversion tools.
Specifically, we describe the governing equations of the
physical models and the mathematical techniques that were
used. Section 2 depicts how the muon flux simulation is con-
ducted by its submodules and how a muon flux simulation
is performed. Section 3 then dives into the inversion module
and explains how the parameters of the inferred density/rock
model can be estimated based on measured data. This section
includes a description of the model and data errors and an ex-
planation of how a subsurface material boundary can be con-
structed. Section 4 discusses the model’s performance based
on the data that we collected in the framework of an earlier
experimental campaign (see the supplement of Nishiyama et
al., 2017). Section 5 then concludes this study by outlining
a way of how this code can be developed further to fit the
needs of the muon tomography and geology community.

In order to provide the reader with quick access to infor-
mation about the vast number of variables that are used in
this work, we refer to the Table 1, where all the parameters
are listed and explained.

2 The muon simulation

In geophysical communities, this part is generally known as
the forward model, i.e. a mathematical model which calcu-
lates synthetic data for given “model” parameters. In muon
tomography experiments, this forward model consists of dif-
ferent physical models which are serially connected.

2.1 A note on the parameterisation

In geophysical problems, there are many ways to parame-
terise a given problem. One frequently used approach is to
partition the space into voxels (i.e. volume pixels of the same
size) and describe them by the material parameters only. This
has the advantage of imposing a fixed geometry (i.e. “thick-
ness” does not enter as a parameter). Unfortunately, the vast
number of parameters to be determined requires very good
data coverage of the voxelised region. Another drawback
might be the use of smoothing techniques (such that neigh-
bouring voxels are forced to yield similar material parame-
ters) that might blur any sharp interface. Because of these
reasons, we employed in our code another parameterisation
that mimics the actual measurement process. We refer the
reader again to Fig. 1a, where two different cones (i and
j ) are shown. These represent two (among many) directions
in which a certain number of incoming muons have been
measured and (over a certain solid angle) binned together.
It is now possible (as shown in cone i) to parameterise the
sharp discontinuity explicitly by adding two segments (ice
and rock) within that cone. As such, the thicknesses of each
material within each coneLmi and their material densities ρm
are explicit parameters in the model.

2.2 Cosmic-ray flux model

The nature of the data used in muon tomography generally
consists of several counts within a directional bin, defined by
two polar and two azimuthal angles. Additionally, the mea-
surement is taken over a defined period of time, as well as
over a given extent within the detector area. The simulated
number of muons, in the ith bin, Nµ,i , can be calculated by
this integral:

Nµ,i =

∫
T

∫ ∫
�

∫ ∫
A

∫
E

d8
dE

dE dAd�dT . (1)

Here, the subscript µ indicates that muons are counted, the
index i ∈ {1, . . . ,Ncones} addresses the bin/cone, T denotes
the exposure time interval, A the detector area, � the solid
angle of the bin and E the energy range of the muons that
were able to be registered by the detector. There are various
differential muon flux models, also referred to as the inte-
grand, d8/dE, in Eq. (1), that can be employed at this stage.
Lesparre et al. (2010) provide a good overview on the differ-
ent flux models, which can broadly be divided in two classes.
On the one hand, there are theoretical models, which capture
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Table 1. List of variables used in this work. Parameters are grouped into sections where they are introduced first. Parameters that are sought
for muon tomography (in our case and also in general) are highlighted in bold font.

Variable Unit Description

Section 1

m 1 Index that runs through all different materials, here m ∈ {rock, ice}
ρm kg m−3 Material density of the mth material
cm 1 Composition of the mth material, given as a weight fraction of major rock-forming oxides
i 1 Index that runs through all different cones/bins, here i ∈ {1, . . . ,Ncones}
Ncones 1 Total number of cones/bins
Lmi m Thickness of the mth material in the ith bin

Section 2.1

Nµ,i 1 Number of simulated muons in the ith bin
Ecut,i eV Cut-off energy in the ith bin
d8
dE eV−1 s−1 m−2 sr−1 Differential muon flux in the ith bin
1T s Exposure time of the detector
1�i sr Solid angle of the ith bin
ϕ̂i rad Mean azimuth angle of the ith bin
θ̂i rad Mean zenith angle of the ith bin
1Aeff,i

(
ϕ̂i , θ̂i

)
m2 Effective area of the detector when seen from an angle given by ϕ̂i , θ̂i

1A m2 Area of the detector
8i(Ecut,i ) s−1 m−2 sr−1 Calculated muon flux in the ith bin according to Eq. (5)
1Ei s m2 sr Exposure in the ith bin
rd 1 Normal vector to the detector surface
rµ,in

(
ϕ̂i , θ̂i

)
1 Direction of mean muon incidence, i.e. unit vector in direction of

(
ϕ̂i , θ̂i

)
; direction vector of

the ith bin
ϕd rad Azimuth angle of the detector-facing direction
θd rad Zenith angle of the detector-facing direction

Section 2.2

x m Position of a muon along a trajectory
E(x) eV Energy of the muon at position x
−

dE
dx eV m−1 Energy loss of a muon traversing some matter

ρ (x) kg m−3 Density at position x
a(x,E) eV m2 kg−1 Ionisation losses
k̃ 1 Index that runs through all three different radiative processes by which a muon can lose energy,

here k̃ ∈ {bremsstrahlung,pair production,photonuclear}
b
k̃
(x,E) m2 kg−1 Radiation losses of the k̃th radiative process

NA mol−1 Avogadro constant
A kg mol−1 Molar mass of the traversed material; written as “A” as it is numerically equivalent to the atomic

mass
ν 1 Fractional energy transfer
dσ
k̃

dν m2 kg−1 Differential cross section of the kth radiative process
E0 eV Energy of the muon when it reaches the detector
Li m Vector of the thicknesses of all m materials in the ith bin
ρ kg m−3 Vector of the material densities of all m materials
c 1 Vector of the compositions of all m materials
rk(Li , ρ, c) eV Numerical solution of the energy loss equation, using a Runge–Kutta integration scheme

Section 3.1

di 1 Measured number of muons in the ith bin
fi s−1 m−2 sr−1 Muon flux as a random variable in the ith bin
µfi s−1 m−2 sr−1 Mean of the flux random variable in the ith bin
σ 2
fi

s−2 m−4 sr−4 Variance of the flux random variable in the ith bin
pk k = ion: eV m2 kg−1 else: m2 kg−1 Energy loss processes
εk 1 Relative error of the energy loss process
k 1 Index that runs through all energy loss processes,

here k ∈ {ionisation,bremsstrahlung,pair production,photonuclear}
M
(
pel,ρ,c,Li

)
s−1 m−2 sr−1 The forward model, encompassing an energy loss calculation and a flux calculation; results in

a simulated flux
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Table 1. Continued.

Variable Unit Description

Section 3.2

d 1 Vector of observed number of muons in all bins
m different Vector of model parameters
m0 different Vector of initial model parameters
mnew different Vector of new model parameters
J different Model proposal distribution
c 1 Scaling factor for model proposal variance
S different Prior model proposal variances
D 1 Number of model parameters
R 1 Odds ratio
pA 1 Acceptance probability

Section 3.3

P 1 Matrix of digital elevation model of the reconstructed interface, also called surface matrix;
elements are denoted Prq

r 1 Number of rows in P
c 1 Number of columns in P
Hi m Height of the interface in the ith cone
1xi m Horizontal distance from interface point to the grid point Prq
1yi m Vertical distance from interface point to the grid point Prq
1cs m Cell size of P
wi 1 Weights of the bilinear interpolation
K 1 Smoothing matrix/kernel

the manifold production paths of muons and condense them
in an analytical equation, e.g. the Tang et al. (2006) model.
They contrast, on the other hand, with empirical models that
were generated by fitting formulae to the results of muon
flux measurements. The model of Bugaev et al. (1998) falls
into this category, with later adjustments for different zenith
angles (Reyna, 2006) and altitude (Nishiyama et al., 2017),
which are also utilised in this study. The details of the for-
mula are explained in Appendix A. The evaluation of Eq. (1)
is rather cumbersome as, strictly speaking, several of the in-
tegration variables depend on each other. We may facilitate
the calculation by considering that the differential muon flux
model is only dependent on energy, E, and zenith angle, θ ,
whereas the effective area, 1Aeff,i , is usually (as long as the
detector records muons on flat surfaces) dependent on the
orientation of the bin. This is the case because muons do not
necessarily hit the detector perpendicularly, such that the ef-
fective target area is usually smaller. By averaging over the
zenith angle and keeping the bin size reasonably small, we
may approximate Eq. (1) by

Nµ,i(Ecut,i)=

∫
∞

Ecut,i

d8
dE

(
E,θ̂i

)
dE×1T

×1Aeff,i(ϕ̂i, θ̂i)×1�i, (2)

where 1T is the exposure time and 1Aeff,i is the effective
detector area. 1�i is the solid angle, ϕ̂i and θ̂i are the mean
azimuth and zenith angle of the ith bin, respectively. Ecut,i ,
called the cut-off energy, describes the energy needed for a
muon to traverse the geological object and to enter the de-
tector. 1Aeff,i has to be scaled by the cosine of the angle

between the bin direction and the detector-facing direction,
which can be calculated using the formula for a scalar prod-
uct:

1Aeff,i =1A×
rd · rµ,in

(
ϕ̂i, θ̂i

)
‖rd‖

∥∥∥rµ,in(ϕ̂i, θ̂i)∥∥∥ , (3)

where rd is the normal vector to the detector surface and
rµ,in

(
ϕ̂i, θ̂i

)
is the mean vector of muon incidence within

the ith bin, both of which can be chosen to feature unit
length. Evaluating the scalar product in spherical coordi-
nates, Eq. (3) yields

1Aeff,i =1A×
[
sin(θd)sin

(
θ̂i

)
cos

(
ϕd− ϕ̂i

)
+cos(θd)cos

(
θ̂i

)]
. (4)

Here, θd and ϕd are the zenith and azimuth angles of the
detector-facing direction. It is important to note that except
for Ecut,i all variables in Eq. (2) are predetermined by the ex-
perimental setup (1T,1A) as well as by the data processing
(ϕ̂i , θ̂i), such that the number of muons Nµ,i can be inter-
preted as a function of one variable, Ecut,i only.

One final tweak can be made to render Eq. (2) more acces-
sible for future uses. We may rewrite the right-hand side of
Eq. (2) in terms of a flux:

8i
(
Ecut,i

)
=

∫
∞

Ecut

d8
dE

(
E,θ̂i

)
dE, (5)

and an exposure

1Ei =1T ×1Aeff,i(ϕ̂i, θ̂i)×1�i . (6)
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In this case, the number of number of muons in the ith bin
may be expressed by

Nµ,i
(
Ecut,i

)
=8i

(
Ecut,i

)
×1Ei . (7)

2.3 Muon transportation model

Since muons permanently lose energy when travelling
through matter, they also need a certain amount of energy
to enter the detector. If the detector is now positioned un-
derground, the muons have to traverse more matter to reach
the detector and consequently need a higher initial energy to
reach the target. For the goal of studying the interactions be-
tween particles and matter, physicists regularly use energy
loss models. We base our calculations in large parts on the
equations of Groom et al. (2001), where the energy loss of a
muon along its path is described by an ordinary differential
equation of first order,

−
dE
dx
= ρ (x)×[a (x,E)+E× b (x,E)]. (8)

In Eq. (8), ρ denotes the density of the traversed material,
a and b are the ionisation loss and radiation loss parame-
ters respectively, and x is the position along the trajectory.
The radiation loss parameter groups the effects related to
the bremsstrahlung, bbrems, the pair production, bpair, and the
photonuclear interactions, bphoto, where

b (x,E)= bbrems (x,E)+ bpair (x,E)+ bphoto(x,E). (9)

Each of the radiative process is, in turn, calculated through

b
k̃
=
NA

A

∫ 1

0
ν

dσ
k̃

dν
dν, (10)

where k̃ ∈ K̃ = {bremsstrahlung,pair production,
photonuclear} is the set of radiative processes, NA is
Avogadro’s number, A is the atomic weight of the traversed
material, ν is the fractional energy transfer, and dσ

k̃
/dν

the differential cross section of the process. Equation (10)
becomes important when modelling errors have to be
included (see Sect. 3). For a detailed discussion of the
equations for a and b, we refer to Groom et al. (2001). The
only exception in Eq. (9) is bpair, which is calculated after
GEANT4 (Agostinelli et al., 2003). We selected the solution
of these latter authors because it is computationally less time
consuming. As the two results agree within 1 %, we deem it
acceptable to exchange the two differential cross sections.

Because Eq. (8) describes the energy loss in response to
the interaction with a single-element material, certain mod-
ifications have to be made to make it also valid for rocks,
which in this context represent a mixture of minerals and el-
ements. In this case, the modified equation takes an equiva-
lent form to Eq. (8) when replacing ρ,a,b with their mixture
counterparts {ρ}rock, {a}rock, {b}rock (Lechmann et al., 2018),
thus yielding

−
dE
dx
= {ρ (x)}rock×[{a (x,E)}rock+E×{b (x,E)}rock]. (11)

We show in Appendix B3 how the rock model (explained in
Sect. 2.4) can be used to determine these quantities.

By applying a change of variables to Eq. (11), i.e. x′ =
−x, the energy loss equation can be transformed to an energy
gain equation. This has the advantage of being much easier
to solve than the “final value problem” in Eq. (11). We can
reorganise Eq. (11) into an initial value problem by setting
the initial energy to E0,

dE
dx
= {ρ (x)}rock×[{a (x,E)}rock+E×{b (x,E)}rock] (12)

E(0)= E0.

In this context, E0 is the minimal energy needed for a muon
to penetrate the detector, which can be influenced by the de-
tector design. Equation (12) is a well-investigated problem
that can be solved by numerous methods. In our work, we
employ a standard Runge–Kutta integration scheme (see, for
example, Stoer and Burlisch, 2002), with a step size of 10 cm.
As a result, it is now possible to write the cut-off energy in a
functional form, where

Ecut,i = rk(Li,ρ,c). (13)

Here, rk(·) is the function that returns the Runge–Kutta so-
lution of Eq. (12) for defined thicknesses of materials, Li ,
with densities ρ and compositional parameters c. Thickness
and density are allowed to be vectors, as there may be more
than just one material. In this case, the final energy, after the
muon has passed through the first segment of materials, is the
initial energy for the second segment, etc. In order to speed
up the computations – especially the calculation of the pair
production cross section, which includes two nested integra-
tions – we utilise customised energy loss tables. In particular,
a log–log table of muon energy vs. radiation loss parameters
is produced, from which the b values, see Eq. (10), can be
interpolated. We justify this approach because the radiative
losses are almost linear in a log–log plot, as can be seen in
Fig. 33.1 of Tanabashi et al. (2018, p. 447) for the exam-
ple of copper. The general shape of the energy loss function
remains the same for various materials even if the absolute
values differ.

2.4 Rock model

Equation (13) shows that for the calculation of the cut-off
energy two types of material parameters are required, which
are the material density ρ and its average composition c. The
pre-tabulated values from Groom et al. (2001), however, in-
clude only pure elements as well as certain compounds. To
extract the relevant parameters in a geological setting, a real-
istic rock model is needed. In an earlier work (Lechmann et
al., 2018), we have shown how an integrated rock model can
be constructed and how the physical parameters for a realistic
rock can be retrieved. In the present work, we generally use
the same approach, apart from a few aspects. First, we mea-
sured the average material density directly in the laboratory,
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using various techniques which are explained in detail in Ap-
pendix B1. Second, in order to be able to compare the results
of this study with the ones in the Nishiyama et al. (2017) pub-
lication, we consider a rock composition that corresponds to
a density-modified standard rock. This is applicable, as the
rock in the study of Nishiyama et al. (2017) is mostly of
granitic/gneissic origin, with thicknesses rarely larger than
200 m, with the consequence that the differences are negli-
gible. However, as the inclusion of compositional data is a
planned feature for a future version of our code, we decided
to include the theoretical treatment in this work. Hence, all
equations are tailored to include the statistical description of
such data. Compositional data for whole rock samples, which
can be scaled to outcrop scale, are usually presented in one
of two forms, the first being the measurement results of X-
ray diffraction (XRD). These kinds of data yield the mineral
phases within a rock. Unfortunately, XRD is a rather time-
consuming method. This is the reason why in muon tomo-
graphic experiment researchers often resort to a bulk chemi-
cal analysis of the rock, which is the second form of composi-
tional data. These types of data are usually the output of ded-
icated X-ray fluorescence (XRF) measurements, describing
the bulk rock composition by major oxide fractions. We note
here that by the absence of information on the spatial distri-
bution of mineral phases within a rock, we implicitly infer
a homogeneous mixture of elements within the rock itself,
which is thus different from our previous work (Lechmann
et al., 2018). From a particle physics perspective, this does
not pose a real problem, as the difference with a mixture of
minerals is rather small. Nevertheless, we lose the power to
obtain meaningful inferences that could be drawn if compo-
sitional information is being considered. As the present work
aims to infer positions and uses material parameters as con-
straints, we can accept this drawback. Details on how com-
positional parameters are derived from XRF measurements,
including an example, can be found in Appendix B2, and an
explanation of the related influence on the energy loss equa-
tion can be found in Appendix B3. Additionally, we assume
that the density of the rock (and also the ice) is homogeneous
throughout the imaged geological body. This is, of course, a
simplification, as there might be weathering processes that
change the density of the rock at various locations. The same
is true for the ice body, which might contain crevasses. As we
used this approximation already in Nishiyama et al. (2017)
and since we intend to compare the calculations in this study
with the earlier one, we will retain the assumption of homo-
geneity for the densities and compositions.

2.5 Spatial models of detectors and materials

In addition to the above explained physical models, we may
also utilise available spatial data for our purposes. In this con-
text, the use of a DEM of the surface allows the visualisation
of the position of the detectors relative to the surface, as well
as the spatial extent of the bins. Additionally, it allows us

to determine the location where these bins intersect with the
topographic surface. As a first deliverable, we can draw con-
clusions on which bins consist of how many parameters. For
example, if we know that the detector is located underground
and that there is ice at the surface, we can already infer the
existence of at least two materials (rock and ice). For this
purpose, we wrote the script “modelbuilder.py”, which al-
lows the user to attach geographic and physical information
to the selected bins. This process of building a coherent geo-
physical model is needed for the subsequent employment of
the inversion algorithm to process all the data.

3 The inverse model: a Bayesian perspective

As stated in the Introduction, we solve the inversion by using
Bayesian methods. An explanation is needed as to why we
chose this way and not another. First, the equations in Sect. 2
enable us to calculate a synthetic dataset for fixed parameter
values. There, one can see that the governing equations con-
stitute a nonlinear relationship between parameter values and
measured data. Despite this being of no particular interest
in the forward model, the estimation of the parameters from
measured data is rendered more complicated. Among muon
tomographers, linearised versions have been extensively used
with deterministic approaches (e.g. Nishiyama et al., 2014;
Rosas-Carbajal et al., 2017), which are successfully applica-
ble when the density or the intersection boundaries are the
only variables. When deterministic approaches are viable,
they efficiently produce good results. Descent algorithms or,
generally speaking, locally optimising algorithms, offer a
valid alternative, as they could cope with the nonlinearity of
the forward model, while including all desired parameters.
One difficulty of such algorithms is that in the case of non-
unique solutions (which occur when there are local minima
that might be a solution to the optimisation) the user has no
constraints to infer if a local or the desired global minimum
has been reached. A further problem of descent methods is
the calculation of the derivatives of the forward model with
respect to the parameter values. The analytical calculation of
the derivatives is enormously tedious because the cut-off en-
ergy results from a numerical solver of a differential equa-
tion, as can be seen in Eqs. (12) and (13). Unfortunately,
numerical derivatives do not produce better results, because
they might easily produce artefacts, which are hard to track
down. This is especially true if the derivative has to be taken
from a numerical result, which is always slightly noisy. In
that case, the differentiation amplifies the “noise”, resulting
in unreliable gradient estimates. A good overview over deter-
ministic inversion methods can be found in Tarantola (2005).

The reasons stated above and our goal to include as much
information on the parameters as possible nudges us to-
wards employing probabilistic methods. Those approaches
are also known as Bayesian methods. The main feature that
distinguishes them from the deterministic methods described
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above is the consistent formulation of the equations and ad-
ditional information in a probabilistic way, i.e. as probability
density functions (PDFs). This allows us to (i) incorporate,
for example, density values that were measured in the lab (in-
cluding its error), (ii) set bounds on the location of the mate-
rial interface, or (iii) define a plausible range for the compo-
sition of the rock. All these changes act on the PDF of the re-
spective parameter and naturally integrate into the Bayesian
inversion. We have to add that Bayesian methods do not solve
the non-uniqueness problem, but they provide the user with
enough information to spot these local solutions of the op-
timisation. Readers may find the book of Tarantola (2005)
very resourceful for the explanation and illustration of prob-
abilistic inversion. Several studies in the muon tomography
community have already employed such methods with suc-
cess (e.g. Lesparre et al., 2012; Barnoud et al., 2019).

The flexibility of being able to include as much informa-
tion on the parameters as we consider useful comes at the
price of having to solve the inversion in a probabilistic way.
This can either be done using Bayes’ theorem and solving
for the PDFs of the parameters of interest, or if the analyt-
ical way is not possible by employing Monte Carlo tech-
niques. As the presence of a numerical solver renders the
analytical solution impossible, we resort to the Monte Carlo
approaches. In the following sections, we guide the reader
through the various stages of how such a probabilistic model
can be set up, how probabilities may be assigned, and how
the inversion can finally be solved.

3.1 Probabilistic formulation of the forward model

The starting point for a probabilistic formulation is denoted
by the equations that were elaborated on in Sect. 2. These de-
terministic equations need to be upgraded into a probabilis-
tic framework, where their attributed model and/or parameter
uncertainties are inherently described. In the following para-
graphs, we describe how each model component can be ex-
pressed by a PDF before the entire model is composed at the
end of this section. The model is best visualised by a directed
acyclic graph (DAG) (see Kjaerulff and Madsen 2008) that
depicts which variables enter the calculation at what point.
For our muon tomography experiment, this is visualised in
Fig. 3. In the following, the PDFs are denoted with the bold
Greek letter π to differentiate them from normal parameters.

3.1.1 Muon data

The data in muon tomography experiments are usually count
data, i.e. a certain number of measured tracks within a direc-
tional bin, which have been collected over a certain exposure
time and detector area. As the measured number of muons
is always an integer, we may model such data by a Poisson
distribution:

π
(
di |Nµ,i

)
=

(
Nµ,i

)di e−Nµ,i
di !

, (14)

Figure 3. Directed acyclic graph (DAG) for the problem of muon
tomography. Variables in a square (�) denote fixed; i.e. known val-
ues and variables in a circle/ellipse (©) are generally unknown and
have to be represented by a PDF. Solid arrows (→) denote a de-
terministic relation, i.e. within a physical model, whereas dashed
arrows ( ) indicate a probabilistic relationship, i.e. a parame-
ter within the statistical description of the variable. ρ, c are the
density and composition for different materials, whereas pel con-
tains the errors on the different processes in the energy-loss equa-
tion. σf describes the error on the cosmic-ray flux model. Within
each cone, Li denote the thicknesses of rock and ice, respectively,
M(Li ,ρ,c,pel) is the calculated flux (i.e. energy-loss model and
flux model combined), fi the actual muon flux and di the observed
number of muon tracks.

where di denotes the measured number of muons in the ith
bin and Nµ,i is the Poisson parameter in the same bin, which
can be interpreted as mean and variance of this distribution.
According to Eq. (7), we may rewrite Eq. (14) in terms of a
flux, f :

π (di |fi)=
(fi1εi)

di e−(fi1εi )

di !
. (15)

The variable here is explicitly denoted fi to emphasise that it
is not the exact calculated flux,8, from before but a separate
variable subject to uncertainties. These two variables will be
linked with each other in the next subsection.

3.1.2 Flux model

The next step is to set up a probabilistic model for the muon
flux. First, we observe that “flux” is a purely positive param-
eter, i.e. fi ∈ [0,∞) . Thus, it is natural to model it by a log-
normal probability distribution if estimates of mean and vari-
ance are readily available. The uncertainty on the muon flux
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is generally taken around 15 % (e.g. Lechmann et al., 2021a)
of the mean value. As it is possible, with Eq. (5), to calcu-
late a flux for a given cut-off energy, which we interpret as
the mean of the non-logarithmic values, the parameters of the
log-normal distribution (i.e. µfi ,σ

2
fi

) may be expressed by

σ 2
fi
= ln

(
1+

(
8i(Ecut,i)× 0.15

8i(Ecut,i)

)2
)
= ln(1.0225) (16)

and

µfi = ln
(
8i(Ecut,i)

)
−
σ 2
fi

2
, (17)

which yield the probability density function for the flux, con-
ditional on the cut-off energy:

π
(
fi |µfi ,σ

2
fi

)
= π

(
fi |Ecut,i

)
=

1
√

2π × fi × σfi

× exp

(
−

1
2

(
ln(fi)−µfi (Ecut,i)

σfi

)2
)
.

(18)

3.1.3 Energy loss model

The energy loss model has multiple sources of errors that
have to be taken into account. Most notably, the relative
errors on the different physical energy loss processes are
given by Groom et al. (2001) as εion = 6 %, εbrems = 1 %,
εpair = 5 %, εphotonucl = 30 %. As it is not clearly stated as to
what this error relates to, i.e. 1 or more standard deviations,
we interpret an error like εion = 6 % as “within a factor of
1.06”, which can be written as
pk

(1+ εk)
≤ pk ≤ pk (1+ εk) , (19)

where k ∈K = {ionisation, bremsstrahlung, pair production,
photonuclear} runs through all energy loss processes, includ-
ing ionisation losses and pion = a, pbrems = bbrems, ppair =

bpair, pphoto = bphoto denote the respective energy loss terms
from Eq. (12). Dividing this inequality by σk and taking the
logarithm yields

− ln(1+ εk)≤ 0≤ ln(1+ εk) . (20)

Thus, we may attribute a Gaussian PDF in the log space for
a “log-correction factor, lpk” by setting its mean to zero and
its standard deviation to ln(1+ εk); i.e.

π
(
lpk
)
=

1
√

2π × ln(1+ εk)
exp

(
−

1
2

(
lpk

ln(1+ εk)

)2
)
. (21)

With a change of variables, using the Jacobian rule as ex-
plained in Tarantola (2005), we get

π (pk)=
1

√
2π ×pk × ln(1+ εk)

exp

(
−

1
2

(
ln(pk)

ln(1+ εk)

)2
)
, (22)

the log-normal PDF for the correction factor. The pdf for the
energy loss uncertainty π

(
pel
)

can now be written as a prod-
uct of the four different PDFs described by Eq. (22):

π
(
pel
)
=

∏
k∈K

π (pk) , (23)

as the errors of the individual energy loss processes are
stochastically independent from each other.

The calculated energy loss depends also on the material
parameters and subsequently on their uncertainties. How-
ever, these will be explained in detail in Sect. 3.1.4. A last
uncertainty enters by the numerical solution of the ordinary
differential equation, Eq. (12). We decided not to model this
error, as its magnitude is directly controlled by the user (by
setting a small enough step length in the Runge–Kutta al-
gorithm) and thus can be made arbitrarily small. Lastly, we
assume that all the errors in the energy loss model are ex-
plained by uncertainties in the energy loss terms as well as in
the material parameters. Although this assumption is rather
strong, since it excludes the possibility of a wrong model,
we argue that this approach works as long as the variation in
these parameters can explain the variation in the calculated
cut-off energy. If this requirement is met, we may model the
PDF for the energy loss model as a delta function,

π
(
Ecut,i |pel,ρ,c,Li

)
= δ

(
Ecut,i − rk(pel,ρ,c,Li)

)
, (24)

where pel = (pk), ρ is the vector of all material densities,
c is the vector of all compositions and Li is the vector of
thicknesses of segments used in this cone. It is now already
possible to eliminate Ecut,i as a parameter by first multiply-
ing Eqs. (18) and (24), which yields

π(fi,Ecut,i |pel,ρ,c,Li)= π
(
fi |Ecut,i

)
×π

(
Ecut,i |pel,ρ,c,Li

)
. (25)

From this expression, one can then marginalise the parameter
Ecut,i , by simply integrating over it; i.e.

π
(
fi |pel,ρ,c,Li

)
=

∫
π(fi,Ecut,i |pel,ρ,c,Li)dEcut,i . (26)

Due to the presence of the delta function in Eq. (24), this
integral is solved analytically, resulting in

π
(
fi |pel,ρ,c,Li

)
=

1
√

2π × fi × σfi

× exp

(
−

1
2

(
ln(fi)−µfi (rk(pel,ρ,c,Li))

σfi

)2
)
, (27)

where the parameters are given by

σ 2
fi
= ln

(
1+

(
M(pel,ρ,c,Li)× 0.15

M(pel,ρ,c,Li)

)2
)

= ln(1.0225) (28)
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and

µfi = ln
(
M(pel,ρ,c,Li)

)
−
σ 2
fi

2
. (29)

Please note that M
(
pel,ρ,c,Li

)
=8i(rk(pel,ρ,c,Li)) de-

scribes the combined parts of the forward model that include
the energy loss and the integrated flux calculation, which is
basically a composition of functions.

3.1.4 Rock model

The density model can take different forms of probability
densities (see Appendix B1), such as normal, log normal,
uniform, etc. For either form, it is possible to describe it
by a generic function π (ρ), which is a short version of a
multidimensional PDF; i.e. π (ρice,ρrock) if the ith cone is
known to consist of two segments with two specific den-
sities. Equivalently, the PDF for the composition (see Ap-
pendix B2) is either fixed or a multidimensional Gaussian
distribution in the space of log ratios. Thus, π (c) can be split
up to π (cice,crock), like in the example above. Generally, we
may assume that in our problem j different materials exist.
We note here that the description of the composition is al-
ready probabilistic. However, the inversion in that case is not
functional and works only with the mean values of the mul-
tidimensional Gaussian. The support for composition inver-
sion is planned for a future version of the code.

The situation for the thicknesses of the segments, π (Li),
within the ith cone presents itself in a similar way as that for
the compositions (e.g. Fig. 1). We know the total thickness,
due to our information on the detector position and the sur-
face position from digital elevation models. Thus, we have,
equal to the compositions’ weight fractions (that add up to 1),
a sum constraint (i.e. the sum of lengths of all segments must
equal the total distance from the detector to the surface). The
mathematical structure of the parameter subspace is conse-
quently the also the same. One can therefore safely assume
that the thickness parameters can be presented in a log-ratio
space, within which we a priori possess no additional infor-
mation. Thus, we attribute the thickness parameters a multi-
dimensional uniform distribution within the log-ratio space.

3.1.5 The joint probability density function

With the help of the DAG, introduced in Fig. 3, it is now
straightforward to factorise the joint probability distribution
for the whole problem, as their structure is equal. This results
in

π
(
d,f ,pel,ρ,c,L

)
=[∏Ncones

i=1
π (di |fi)π

(
fi |pel,ρ,c,Li

)
π (Li)

]
×

[∏Nmaterials

m=1
π (ρm)π (cm)

]
×

[∏
k∈K

π (pk)
]
, (30)

or equivalently (and this will also be of a much better use
later on) the log joint PDF:

lπ
(
d,f ,pel,ρ,c,L

)
=[∑Ncones

i=1 lπ (di |fi)+ lπ
(
fi |pel,ρ,c,Li

)
+ lπ (Li)

]
+

[∑Nmaterials
m=1 lπ (ρm)+ lπ (cm)

]
+

[∑
k∈K

lπ (pk)
]
, (31)

where the prefix “l” denotes the logarithm of the PDF. This
has the benefit of reducing the size of numbers that the code
has to cope with. Moreover, many computational statistics
packages already have this feature included, which renders it
easy to use.

Equation (30) depicts the full joint PDF. However, the re-
lations between the parameters, as shown by the DAG (see
Fig. 3), classify this model as a hierarchical model (Betan-
court and Girolami, 2013). The key characteristic of such
models is their tree-like parameter structure; i.e. the mea-
sured number of muons is related to the thickness or the den-
sity of the material by the flux parameter only, which “re-
lays” the information. A central problem of such models is
the presence of a hierarchical “funnel” (see Figs. 2 and 3 of
Betancourt and Girolami, 2013), which renders it very diffi-
cult for standard Monte Carlo methods to adequately sample
the model space. In high-dimensional parameter spaces, this
problem is exacerbated even more.

Our aim to provide a simple and easy-to-use pro-
gramme somewhat contradicts this necessity of a sophisti-
cated method (which inevitably requires the user to possess
a strong statistical background). As the main problem is the
rising number of parameters, it should be possible to mend
the joint PDF by imposing thought-out simplifications.

We first get rid of the flux parameter, as for our problem
it merely is a nuisance parameter. This is an official term for
a parameter in the inversion which is of no particular inter-
est but still has to be accounted for. Specifically, we mean
that even though the calculation of the muon flux is impor-
tant, we do not want to treat it as an explicit parameter that
is simulated by the code. To achieve this, we integrate over
all possible values of the muon flux, f within its uncertainty
and we can relate the results of the energy loss calculation
(encoded in µfi ; see Eq. 29) directly to the measured number
of muons, di . This effectively reduces the number of param-
eters and thus the number of dimensions of the model space.
This can be achieved by marginalising the flux parameter out
of the joint PDF:

π
(
d,pel,ρ,c,L

)
=

∫
π
(
d,f ,pel,ρ,c,Li

)
df . (32)

This is effectively reduced to a problem where the new like-
lihoods have to be calculated (as di is given):

π
(
di |pel,ρ,c,Li

)
=

∫
π (di |fi)π

(
fi |pel,ρ,c,Li

)
dfi, (33)
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or fully:

π
(
di |pel,ρ,c,Li

)
=

∫
∞

0

(fi1Ei)
di e−(fi1Ei )

di !

×
1

√
2π × fi × σfi

exp

(
−

1
2

(
ln(fi)−µfi

σfi

)2
)

dfi, (34)

which is a multiplication of Eqs. (15) and (27). In Eq. (34),
µfi and σfi are given by Eqs. (28) and (29), respectively.
This integral is not solvable analytically but can be evalu-
ated by numerical integration schemes. The likelihood has a
maximum when the Poisson and the log-normal PDFs fully
overlap. Interestingly, this directly shows the trade-off be-
tween the flux model uncertainty and the data uncertainty.
Usually, we want to measure enough muons so that the sta-
tistical counting error is smaller than the systematic uncer-
tainty of the flux model (i.e. the width of the Poisson PDF
is smaller than the width of the log-normal PDF). This can
be controlled directly by the exposure of the experiment, via
a larger detector area, a coarser binning or a longer expo-
sure time. A guide for how such a calculation may be done
(especially when planning a measurement campaign) can be
found, e.g. in Lechmann et al. (2021a).

This marginalisation roughly halves the number of param-
eters, but there is still another simplification, which we may
use. Many muon tomography applications deal with a two-
material problem, while there may also be measurement di-
rections where only one material is present. If we conceptu-
ally split those two problems and solve them independently,
it is possible to further reduce the number of simultaneously
modelled parameters. In the study of Nishyiama et al. (2017),
the results of which we will use later, these two cases encom-
pass bins where we measured only rock and others where we
know there is ice and rock. The joint PDF for rock bins sub-
sequently is

π
(
d,pel,ρrock,crock

)
=

[∏N rock
cones

i=1
π
(
di |pel,ρrock,crock

)]
×π (ρrock)π (crock)×

[∏
k∈K

π (pk)
]
, (35)

which leaves the problem effectively with only a handful of
parameters. Solving Eq. (35), for the rock density we retrieve
π̃ (ρrock), the posterior marginal PDF for the rock density.
We refer the reader to Sect. 3.2 for the details of how to solve
this inverse problem. Theoretically, we could also retrieve
π̃ (ρice), but this would require the detector to be positioned
within the glacier which poses more of a practical difficulty
than a mathematical one.

For the second problem, we can interpret π̃ (ρrock) as the
new prior PDF for the rock density. At this point, we em-
ploy one last simplification by assuming that the parameters
between different cones are independent form each other.
This is a rather strong presumption, which must be justi-
fied. The main mathematical problem lies in consideration of

the hierarchical nature of the density parameter, which is the
same for each cone and therefore not independent in different
cones. We, however, argue that in cones with two materials,
there are more parameters than in bins with only rock, such
that we may expect the posterior PDF of the rock density
of this second kind of model to be less informative than the
posterior rock density PDF of Eq. (35). This, in turn, means
that the posterior rock density PDF of the two-material model
largely equals the prior one if we select the posterior of the
first kind of model as the prior of the second kind of model.
The same is valid for the composition ci and the energy loss
error parameters pel. As long as this assumption is valid, we
may decompose the joint PDF into independent joint PDFs
for each cone:

π
(
di,pel,i,ρi,ci,Li

)
= π

(
di |pel,i,ρi,ci,Li

)
×π (Li)×

[∏Nmaterials

m=1
π̃ (ρim) π̃ (cim)

]
×

[∏
k∈K

π̃ (pik)
]
. (36)

Our inversion programme enables the user to choose the type
of model parameterisation, which is either the full hierar-
chical model given by Eqs. (30) and (31) or the simplified
single-cone-bin inversion model (“Sicobi” model) given by
Eqs. (35) and (36).

3.2 Solution to the inverse problem

Usually in Bayesian inference, the goal is to calculate the
posterior PDF, given the measured data, i.e. the quantity

π
(
pel,ρ,c,L|d

)
=
π
(
d,pel,ρ,c,L

)
π (d)

. (37)

This can be interpreted as the inferences one may draw on the
parameters in a model given measured data. The denominator
on the right-hand side of Eq. (37), also called the “evidence”,
can be rewritten as the data marginal of the posterior; i.e.

π (d)=

∫ ∫ ∫ ∫
π
(
d,pel,ρ,c,L

)
dpel dρ dcdL. (38)

As Eq. (36) basically describes an integration over the whole
model parameter space, this may become such an extensive
computation (especially when the number of model parame-
ters is large), that it cannot be solved in a meaningful time.
However, as the evidence usually is a fixed value, the left-
and right-hand sides of Eq. (37) are merely scaled by a scalar
and are thus proportional to each other; i.e.

π
(
pel,ρ,c,L|d

)
∝ π

(
d,pel,ρ,c,L

)
. (39)

This is the starting point of Monte Carlo Markov chain
(MCMC) methods.

3.2.1 The Metropolis–Hastings algorithm

The basic MCMC algorithm, which we also use in this study,
is the Metropolis–Hastings (MH) algorithm (Hastings, 1970;
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Metropolis et al., 1953), which allows for the sampling of
the joint PDF to obtain a quantitative sample. We note, how-
ever, that many different MCMC algorithms exist for various
purposes and that the MH has no special status except for
being comparatively simple to use and implement. An exam-
ple of another MCMC algorithm in muon tomography can be
found in Lesparre et al. (2017). The authors used a simulated
annealing technique on the posterior PDF in order to extract
the maximum a posteriori (MAP) model. As every simulated
annealing algorithm has some type of MH algorithm at its
core, we directly use the MH algorithm in its original form
such that we not only retrieve a point estimate but a PDF
for the posterior parameter distribution. The algorithm is ex-
plained in detail by Gelman et al. (2013), such that we only
provide a short pseudo-code description.

Algorithm (Metropolis–Hastings):

1. Draw a starting model, m0 = (pel,0,ρ0,c0,L0), by
drawing pel,0,ρ0,c0,L0 from their respective prior
PDFs and determine the log-PDF value of this model

2. Until convergence:

a. Propose a new model according to mnew =m0+

c2J(0,S), where c = 2.4/
√
D, in which D is the

number of parameters, and c2J(0,S) is a model
change drawn from a multidimensional Gaussian
distribution with mean vector of 0 and covariance
matrix of S (i.e. matrix of prior variances of the
model parameters).

b. Evaluate log-PDF value of mnew and calculate the
odds ratio:

R = exp(lπ (mnew)− lπ(m0))

c. Evaluate the acceptance probability, pA =

min(1,R) and draw a number q from the uniform
distribution U(0,1).

d. If q < pA: sample mnew and set mnew→m0,
else: sample m0.

The advantage of this algorithm, compared to a “normal”
sampling, lies in its efficiency. It is often not possible, or even
reasonable, to probe the whole model space, as the largest
part of the model space is “empty”, where the PDF value of
the posterior is uninterestingly small. The fact that regions
of high probability are scarce, and this becomes worse in
high-dimensional model spaces, is known as the “curse of di-
mensionality” (Bellman, 2016). MCMC algorithms (includ-
ing the here-presented MH algorithm) allows one to focus
on regions of high probability, and therefore we are able to
construct a reliable and representative sample of the posterior
PDF. We again refer to Gelman et al. (2013) for a discussion
of why the MH algorithm converges to the correct distribu-
tion and why we may use samples that were gained this way
to estimate the posterior probability density.

Figure 4. Example of a trace plot (two independent chains; blue and
orange) of a MH run with 500 draws. This plot shows the parameter
value (here material density) vs. number of steps of a collection of
cones in which we (Nishyiama et al., 2017) knew that only rock is
present. This is a calculation that is included in the code base. The
warm-up phase of this MH algorithm takes roughly 150 simulations
indicated by the subsequent oscillation around a parameter value of
∼ 27–28 g cm−3.

3.2.2 Assessing convergence, mixing and retrieving the
samples

The above-stated advantages, however, come at a price. First
and foremost, we must ensure that the algorithm advances
fast enough, but not too fast, through the model space. This is
mainly controlled by the proposal distribution J (0,S), which
is taken to be a multivariate Gaussian distribution. Ideally, the
covariance matrix of the proposal distribution S is equal to
the covariance structure of the posterior PDF. We acknowl-
edge that at the start of the algorithm one generally has no
idea what this looks like, but we assume that a combination
of the prior variances is a reasonable starting point. After a
certain number of steps, it is possible to approximate the co-
variance matrix of the proposal distribution with the samples
taken up to at this point.

A second crucial point is the presence of a warm-up pe-
riod. The starting point, which usually lies in a region of high
prior probability, does not necessarily lie in a region of high
posterior probability. The time it takes to move from the lat-
ter to the former is exactly this warm-up. This can usually be
visualised by a trace plot, e.g. Fig. 4, in which the value of
a parameter is plotted against the number of iterations. After
this warm-up phase, the algorithm can be run in operational
mode and “true” samples can be collected.

As in a Markov chain the actual sample is dependent on
the last one, we need a criterion to argue that the samples
created in that way really represent “independent” samples.
Qualitatively, we may say that if the Markov chain forgets the
past samples fast enough, then we may sooner treat them as
independent from each other. Gelman et al. (2013) suggests
that in order to assess this quantitatively, multiple MH chains
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could be run in parallel, and statistical quantities within and
between each chain are analysed. For a detailed discussion
thereof, we refer the reader to Appendix C.

Once a satisfying number of samples has been drawn from
the posterior PDF, a marginalisation of the nuisance param-
eters can be done by looking at the parameters of interest
only. These samples may then be treated like counts in a his-
togram, i.e. distributional estimates, or simply the interesting
statistical moments, such as mean and variance, can be ob-
tained.

3.3 Construction of the bedrock–ice interface

The main analysis programme allows us to export all param-
eters either as a full-chain dataset, where every single draw
is recorded, or as a statistical summary (i.e. mean and vari-
ance). Both are then converted to point data, i.e. (x, y, z)
data. For the subsequent construction of the interface be-
tween rock and ice (see Sect. 4 and Fig. 1 for the presen-
tation of the test experiment), we only need the full-chain
point data. In the present study, we restrict ourselves to a
probabilistic description until the bedrock positions within a
cone. It would also be possible to treat the bedrock construc-
tion within a Bayesian framework; however, this would go
beyond the scope of this study and is therefore left for a fu-
ture adaption of the code. Nonetheless, in order to construct
a surface, we rely on deterministic methods, which are ex-
plained in detail in what follows.

3.3.1 Interpolation to a grid

The “modelviewer.py” routine is able to read datasets from
different detectors (which are saved as JSON files) and com-
putes for each cone the statistic, which the user is interested
in (see “sigma” entry in programme). Thus, it is possible to
use the mean or, for example, the+1σ position of each cone.
From here onwards, this point cloud is named H and con-
tains one interface position (x, y and z coordinates) per cone.
These are shown as triangles (N) in Fig. 5.

As a second step, the programme interpolates this point
cloud in a bilinear way to a rectangular grid with a user spec-
ified cell size, 1cs. This grid can be described by a matrix
P ∈ RNrow×Ncol , where Nrow and Ncol are the number of rows
and columns (i.e. the number of y and x cells needed to
cover the whole grid). The procedure is similar to the bilin-
ear interpolation of Lagrangian markers (that carry a physical
property) to a (fixed) Eulerian grid in geodynamical mod-
elling (see Gerya, 2010, p. 116), with the difference that our
physical property is the height of the ice–bedrock interface
(Fig. 1).

We could also have fitted a surface through the resulting
point cloud. However, by formulating this surface as a ma-
trix, we gain access to the whole machinery of linear alge-
bra. Moreover, P can directly be interpreted as a rasterised
DEM, which can be easily loaded and visualised in any GIS

Figure 5. Two-dimensional stencil, used to summarise the bilinear
interpolation of interface positions within cones (Hi , N) to a fixed
grid (Prq, �) with a user-defined cell size 1cs. Every interface po-
sition within a ±1cs interval contributes to the grid height Prq.

software. Thus, from a modular design perspective, we think
that the matrix formulation has more advantages than draw-
backs. The bilinear interpolation is shown in more detail in
Fig. 5.

In order to calculate the height at a grid point, Prq, one
has to form a weighted sum over the entire cone interface
positions within a ±1cs interval; i.e.

Prq =

∑
iwiHi∑
iwi

, (40)

where Hi is the height of the bedrock–ice interface in the ith
cone and the weights, wi, are given by

wi =

(
1−

1xi

1cs

)
×

(
1−

1yi

1cs

)
. (41)

In Eq. (41), 1xi and 1yi are the horizontal and vertical dis-
tances from the interpolated grid point Prq.

3.3.2 Damping and smoothing

The concept of damping usually revolves around the idea to
force parameters to a certain value (e.g. in deterministic in-
version by introducing a penalty term in the misfit function
for deviations from that value). From a Bayesian viewpoint,
this would be accomplished by setting the prior mean to a
specific value. In our code, we implemented this idea by al-
lowing the user to read a DEM and a “damping weight” to the
code (see “fixed length group” in code). The programme ef-
fectively computes a weighted average between the bedrock
positions within the cones and a user-defined DEM. The
higher the chosen damping weight, the more the resulting
interface will match the DEM when pixels overlap.
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The matrix formulation also enables us to use a further
data processing technique without much tinkering. As geo-
physical data are often quite noisy, a standard procedure in
nearly every geophysical inversion is a smoothing constraint.
This effectively introduces a correlation between the param-
eters and forces them to be similar to each other. From a
Bayesian perspective, we could have achieved this correla-
tion by defining a prior covariance matrix of the thickness
parameters, such that neighbouring cones should have sim-
ilar thicknesses (which makes sense as we do expect the
bedrock–ice interface to be relatively continuous; Fig. 1). As
we work with independent cones in this study, we leave the
exploration of this aspect open for a future study. Neverthe-
less, we offer the possibility in our code to use a smoothing
on the final interpolated grid. This is achieved by a convolu-
tion of a smoothing kernel, K (see Appendix D for details),
with the surface matrix P, which results in a smoothed sur-
face matrix:

PS
=K~P. (42)

Please note that the ~ operator in Eq. (42) denotes a convo-
lution. In index notation, the advantage of the linear algebra
formalism becomes clear, as PS can be expressed by

PS
rq =

∑s

k=−s

∑s

l=−s
Kk+s+1,l+s+1Pr+k,q+l . (43)

The user is free to choose the number of neighbouring pix-
els, s, across which the programme performs a smoothing.
As a related matrix, we use an approximation to a Gaussian
kernel, which corresponds to a Gaussian blur in image pro-
cessing. Whereas “smoothing” is a general term used in the
geophysical community where such a process is used with
an aim to force a correlation of parameters, in our case where
the parameters describe a surface (Fig. 1), the convolution ef-
fectively smooths the surface, i.e. removes small-scale varia-
tions.

Finally, we added a checkbox to our code to allow it to
change the order of the damping and smoothing operations.
Sometimes when a strong damping is necessary, this may re-
sult in rather unsmooth features at DEM boundaries, such
that it makes sense to perform a smoothing only afterwards.

4 Model verification

In this part, we test the presented reconstruction algorithm
on previously published data. For this purpose, we compare
our calculations to the ones already published in the study
by Nishiyama et al. (2017), where the goal was to measure
the interface between the glacier and the rock, in order to
determine the spatial distribution of the rock surface (also
below the glacier). This study was conducted in the central
Swiss Alps in a railway tunnel that featured a glacier (part
of the Great Aletsch Glacier) above. A situation sketch is
shown in Fig. 1. For a detailed verification of the energy loss
calculations, we refer the reader to Appendix E.

Figure 6. Western cross section. The brown and dashed blue lines
indicate the ice–bedrock interface solutions of this study and the one
from Nishiyama et al. (2017), respectively. The 1σ error margins
are shown in yellow (upper) and red (lower). The dotted margins
encompass only the statistical variation of the interface position,
whereas the dash-dotted margins include a ±2 m systematic error
which stems from the inherent DEM uncertainty. For completeness,
we also show the position of the railway tunnel as a black square.

The results shown below (Figs. 6–8) represent the
bedrock–ice interface interpolated to an 8 m grid, which was
first damped (weight 8) and then smoothed (two grid pixels,
i.e. s = 2 in Eq. 43). We assess the goodness of fit according
to the three cross sections (east, central, west) that are shown
in Fig. 1. The crosscuts are nearly perpendicular to the train
tunnel and roughly 40 m apart from each other. In every plot,
we also indicate the solution from Nishiyama et al. (2017).
Please note that we added a systematic error of 2 m to the un-
certainty planes, as the DEM we are working with has itself
an uncertainty of ±2 m. The dash-dotted lines mark thus the
most conservative error estimate. Moreover, we highlighted
the parts of the cross section that had either been damped to
the bedrock DEM or that have been solely resolved by the
measurement (see “damping marker” in Figs. 6–8).

Figure 6 shows the western profile, where our bedrock–
ice interface and the one from the previous study agree well
and both lie within the given error margins. The lack of fit
in areas where the steepness changes rapidly (i.e. around 40
and 80 m) can be explained as a smoothing artefact. Towards
the end of the profile, the decreasing data coverage becomes
evident as the uncertainties rise. This effect can also be seen
in the jagged behaviour of the interface curves around 100
to 120 m, hinting at the effect where the interpolation has
occurred with few data.
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Figure 7. Central cross section. The brown and dashed blue lines
indicate the ice–bedrock interface solutions of this study and the one
from Nishiyama et al. (2017), respectively. The 1σ error margins
are shown in yellow (upper) and red (lower). The dotted margins
encompass only the statistical variation of the interface position,
whereas the dash-dotted margins include a ±2 m systematic error,
which stems from the inherent DEM uncertainty. For completeness,
we also show the position of the railway tunnel as a black square.

Figure 7 presents the central profile. Similar to the west-
ern profile (Fig. 6), the fits match quite well and are within
the error margins. It may be possible that the point where
the actual bedrock begins might be further down (i.e.∼ 80 m
instead of 65 m). Here, we used the same DEM and aerial
photograph as in the previous study. This means that newer
versions might be available that show more bedrock (due to
the glacial retreat as a response to global warming).

The eastern profile is shown in Fig. 8. One sees that the
results from this study are internally consistent. The surface
from the previous study plunges down earlier with respect
to the surfaces calculated here. This may in fact be a damp-
ing effect, as the bedrock–ice interface from Nishiyama et
al. (2017) has not been constrained to the bedrock (via damp-
ing) and thus plunges down before the damping mark at
∼ 72 m. Still, the two surfaces agree within 5 m, which we
consider as acceptable.

In all three results (Figs. 6, 7 and 8), it can be seen that the
reconstructed surfaces in the bedrock region are following
the DEM within 5–10 m. The reason for this deviation may
be explained by the smoothing. At the beginning of this sec-
tion, we explained that the reconstructed interface has been
smoothed by two grid pixels, which corresponds on an 8 m
grid to a smoothing of 16 m to each side. This is also valid
for the direction perpendicular to the cross sections shown
in Figs. 6–8. Thus, the over-/underestimation can very well

Figure 8. Eastern cross section. The brown and dashed blue lines
indicate the ice–bedrock interface solutions of this study and the one
from Nishiyama et al. (2017), respectively. The 1σ error margins
are shown in yellow (upper) and red (lower). The dotted margins
encompass only the statistical variation of the interface position,
whereas the dash-dotted margins include a ±2 m systematic error
which stems from the inherent DEM uncertainty. For completeness,
we also show the position of the railway tunnel as a black square.

be a smoothing effect. The behaviour of the reconstruction in
the western cross section (Fig. 6) further supports this expla-
nation, as we see at 40 m an underestimation and at 80 m an
overestimation of the height. This is a typical behaviour of
smoothing around “sharper” edges.

It might also be possible that the over-/underestimation
might be due to heterogeneities of the rock density due to
uneven fracturing and/or weathering. However, during our
fieldwork (see Mair et al., 2018), when we also inspected the
train tunnel from within, we did not see any signs of such
a heterogeneous behaviour. These observations are still only
superficial. For an in-depth study of this effect, one would
need, for example, a much longer muon flux exposure, such
that the density of the rock could be better resolved. Alter-
natively a borehole, or another geophysical study could be
performed. As we are not in possession of such information,
we will not draw a definite conclusion here. Nevertheless, the
performance of the whole workflow, which is shown in this
study, produces results which are similar to the ones pub-
lished in the previous study (Nishiyama et al., 2017). We use
the results of this comparison to validate the base of our code.
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5 Conclusion

In this study, we have presented an inversion scheme that
allows us to integrate geological information into a muon
tomography framework. The inherent problem of parameter
estimation has been formulated in a probabilistic way and
solved accordingly. The propagation of uncertainties thus oc-
curs automatically within this formalism, providing uncer-
tainty estimates on all parameters of interest. We also con-
sidered approaches including DAGs or the simplex subspace
of compositions which could be helpful to the muon tomog-
raphy community while tackling their own research. We con-
densed these approaches in a modular toolbox. This assort-
ment of Python programmes allows the user to address the
subproblems during the data analysis of a muon tomogra-
phy experiment. The programmes are modular in the sense
that the user can always access the intermediate results, as
the files are mostly in a portable format (JSON). Thus, it is
perfectly possible to only use one submodule of the toolbox
while working with an own codebase. As every “tool” is em-
bedded in a GUI, the programme is made accessible with-
out the need to first read and consider several thousand code
lines. Furthermore, we have shown that the results we obtain
with our code are largely in good agreement with an earlier,
already published experiment. The small deviations may be
attributed to data analysis subtleties.

In its current state, SMAUG may be of help to researchers
who (a) plan to use muon tomography in their own research,
such that the feasibility of the use of this technology can be
evaluated in a virtual experiment, (b) want to use a submod-
ule for the analysis of their own muon tomography or (c)
plan to perform a subsurface interface reconstruction similar
to our study. We would like to stress that this work is merely
a foundation upon which many extensions can be built when
it is used in other applications as well. Future content might,
for example, include a realistic treatment of multiple scatter-
ing and the inclusion of compositional uncertainties in the
inversion, for which we laid out the basis in this study.

Appendix A: Muon flux model

As many empirical muon flux models, the one that we em-
ployed consists of an energy spectrum for vertically incident
muons at sea level at its core. An accepted instance is the
energy spectrum of Bugaev et al. (1998) that takes the form

d8B
dE

(p)= AB ×p
−
(
α3log3

10(p)+α2log2
10(p)+α1log10(p)+α0

)
, (A1)

where p denotes the momentum of the incident muon in
GeV× c−1. The values of the αi and AB are, for example,
listed in Lesparre et al. (2010). This model is an extended
version of Reyna (2006), to account for different incident an-
gles:

d8R
dE

(p,θ)= cos3 (θ)
d8B
dE

(p× cos(θ)) , (A2)

where θ is the zenith angle of the incident muon. It is im-
portant to note that the parameter values in Eq. (A1) are
changed to α0 = 0.2455, α1 = 1.288, α2 =−0.2555, α3 =

0.0209, and AB = 0.00253. In order to include height above
sea level as an additional parameter, Hebbeker and Timmer-
mans (2002) proposed to model the altitude dependency as
an exponential decay, which modifies Eq. (A2) into

d8
dE

(p,θ,h)=
d8R
dE

(p,θ)× exp
(
−
h

h0

)
. (A3)

The scaling height, h0, is usually to be taken as h0 = 4900+
750×p, where p is the momentum of the incident muon in
GeV× c−1. However, as this formula is only valid up to an
altitude of 1000 m above sea level, Nishiyama et al. (2017)
adapted it to h0 = 3400+1100×p×cos(θ). This was done in
order to fit the energy spectrum up to 4000 m above sea level.
This formula is now valid for momenta above 3GeV× c−1,
zenith angles between 0◦ and 70◦ and an altitude below
4000 m above sea level. Please note that the muon momen-
tum, p is related to its energy by the relativistic formula:

p2c2
= E−m2

µc
4. (A4)

Thus, it holds that

d8
dE
(p,θ,h)≡

d8
dE
(p(E),θ,h)≡

d8
dE
(E,θ,h). (A5)

Appendix B: Rock model

B1 Density model

The density distribution of a lithology can be determined
through various methods. In our work, we estimated the
density of the lithology by analysing various rock samples
from our study area in the laboratory. Two experimental se-
tups were employed to gain insight into the grain, skeletal
as well as the bulk density of the rocks. Grain and skele-
tal density were measured by means of the AccuPyc 1340
He pycnometer, which is a standardised method that yields
information on the volume. Bulk density values were then
determined based on Archimedes’ principle, where paraffin-
coated samples were suspended into water (ASTM C914-09,
2015; Blake and Hartge, 1986).

Every sample j = 1, . . . ,N (usually the size of a normal
hand sample) has been split up into smaller subsamples i =
1, . . . ,Sj that were measured. The bulk density of the ith
subsample can be calculated by

ρbulk,ij =

ρH2O×ms,ij(
ms,ij +mp,ij +mt,ij −msus,ij

)
−

(
mp,ij×ρH2O

ρp

)
− (

mt,ij×ρH2O
ρT

)
, (B1)

where ρH2O,ρp,ρT denote the density of water, paraffin and
the thread that was used to dip the sample into the liquid,
respectively. ms,ij ,mp,ij ,mt,ij , msus,ij describe the mass of
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the sample, the paraffin coating, the thread and the apparent
mass of all three components suspended in water.mp,ij , mt,ij
can then be simply obtained through

mp,ij =ms,t,p,ij −ms,t,ij , (B2)

as ms,t,p,ij denote the mass of the sample including thread
and paraffin coating on one hand and ms,t,ij only the mass
of the sample and the thread on the other hand. Further, the
mass of the thread is given by

mt,ij =ms,t,ij −ms,ij . (B3)

The maximal precision of the reading is estimated at ±5×
10−5 g, and the commonly ignored effects regarding buoy-
ancy in air have been estimated to introduce an error on the
order of ±2× 10−4 g. This error has been attributed to all
direct mass measurements. Moreover, because small pieces
of material may detach from the sample upon attaching the
thread to the sample and during the paraffin coating, we
set an error of ±2× 10−2 g to all measurement results. The
variables in Eq. (B1) are strictly positive values. Following
Tarantola (2005), we model these “Jeffreys parameters” by
log-normal distributions, as they inherently satisfy the pos-
itivity constraint. Because Eq. (B1) does not simply allow
a standard uncertainty propagation, the script “subsample_
analysis.py” performs a Monte Carlo simulation for each
subsample and attributes a final log-normal probability den-
sity function to the resulting histogram. Fig. B1 illustrates
such an example, where the calculation has been performed
for subsample JT-20-1.

We have found 10 000 draws per subsample to be suffi-
cient to retrieve a solid final distribution. However, this pa-
rameter can easily be changed in the script, depending on
the user’s preference of precision and/or speed. From this
point onwards, we may work with a Gaussian distribution
as Fig. B1 assures us that a normal PDF describes the results
of the Monte Carlo simulation rather well.

The determination of the grain and skeletal densities is
simpler than the bulk density measurements because the cor-
responding method consists of a mass and a volume measure-
ment, respectively. The density formula reads then simply

ρskeletal/grain,ij =
mij

Vij
. (B4)

The question remains as to how it is possible to construct a
PDF that represents the knowledge about the whole lithol-
ogy. There are two possible methods that can be readily
employed at this point. The first, largely following Taran-
tola (2005), performs a so-called disjunction of the PDFs
that corresponds to an averaging of all subsample PDFs. As
Vermeesch (2012) points out, even though this might seem a
“sensible strategy at first glance”, there might be some prob-
lems with this method. The main problem lies in the small
error on the subsamples, such that the variation between dif-
ferent subsamples may be larger than their attributed errors.

This would not be a problem if enough subsamples could
be measured, such that the resulting lithology PDF might be
sampled correctly. On the other hand, when one is faced with
a situation where data are rather scarce, then the approach
of Tarantola (2005) would result in a rather spiky PDF that
would be hard to handle. For this reason, we adopted the
methodology of Vermeesch (2012) where the lithology PDF
is estimated by a kernel density estimation. The main differ-
ence lies in the fixed “bandwidth” of the subsample distribu-
tions. We refer to Vermeesch (2012) for more details and an
in-depth discussion of this problem.

The kernel density estimation has the advantage that only
the mean values of the subsamples have to be processed as
the bandwidth is determined from the spread of the subsam-
ple means. Following the methodology of Vermeesch (2012),
we end up with a PDF like the one visualised in Fig. B2. We
could at this point use the kernel density estimated (KDE)
PDF for further calculations. However, for simplicity we ap-
proximate the KDE with a normal distribution and intend to
add support for the KDE in a later code version.

One word of warning has to be made here. The measured
densities of rock might be affected with a systematic error.
Namely, the rock samples that are analysed were all gathered
from near-surface locations (in our case inside the tunnel or
outside, i.e. where rocks are accessible). This means that they
could have been subject to weathering processes that alter
the density of the rock in such a way that the samples are
not representative of the whole rock body anymore. Possible
countermeasures would be to compare drilled samples from
deeper within the rock body with the surface samples, etc.

B2 Composition model

We have seen in Eq. (12) that the material density parameter
enters the energy loss calculations rather directly. Contrari-
wise, the compositional model affects the energy loss equa-
tions much more subtly through the average {Z/A}rock val-
ues and mean excitation energies that need to be calculated
for the entire lithology. Likewise, information on the weight
percentages of the main elements within the rock is required
for the quantification of the radiation loss term.

Although a modal mineral analysis (i.e. the quantitative
determination of mineral volumes) is preferable and can be
treated according to Lechmann et al. (2018), its execution is
a rather time-consuming effort. This is the reason why com-
positional data in muon tomography experiments predomi-
nantly consist of XRF data, which show the abundance of
major oxides within the rock. We describe here a method to
incorporate such type of information in a probabilistic way
thereby following Aitchison (1986). Compositional data are
usually available in the form of Table B1, which presents an
excerpt of four samples for illustration purposes. We refer to
the excel sheet in the Supplement of the present work for the
full data.
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Figure B1. Example output of “subsample_ analysis.py” for a bulk density measurement of subsample JT-27-1 (see the Supplement for
data). Green bars represent the histogram of 10 000 Monte Carlo simulation draws. The orange curve indicates the fitted normal probability
density function.

Figure B2. Example output of “materializer.py”. Here, a set of sub-
sample mean values (red crosses) is processed in a kernel density
estimate (solid blue line). Finally, a normal distribution is fitted to
the kernel density estimate (dashed yellow line).

There are several challenges to these kinds of data. First,
the parameters (i.e. the oxide percentages) can take a value
between 0 and 1. This means that normal as well as log-
normal distributions are not suitable to describe these param-
eters. Second, the requirement that the sum of all parameters
has to ideally equal 1 poses a constraint on this parameter
space, which effectively reduces the number of independent
parameters by 1. Third, due to measurement uncertainties,
this sum is never exactly 1.

Spaces which have this unit sum condition can be viewed
as a simplex; e.g. if we had three compositional parameters,
the simplex would be a two-dimensional surface (i.e. a sub-
space) in this three-dimensional parameter space. The last is-

Table B1. Excerpt of XRF data for four samples. Data in column
denote weight percentages of major oxides within the rock samples.

Sample JT01 JT02 JT19 JT20

Oxides

SiO2 0.6131 0.5981 0.6997 0.6139
TiO2 0.0123 0.0067 0.0076 0.0094
Al2O3 0.1567 0.1873 0.1481 0.1921
Fe2O3 0.087 0.0791 0.0496 0.0686
MnO 0.001 0.0012 0.0009 0.0009
MgO 0.0359 0.0285 0.0206 0.0288
CaO 0.0202 0.0071 0.0201 0.0137
Na2O 0.0228 0.0248 0.0404 0.0323
K2O 0.0343 0.0465 0.0287 0.0469
P2O5 0.0041 0.0029 0.0021 0.0027

Sum 0.9874 0.9822 1.0178 1.0093

sue, of not summing up exactly to 1, can be remedied by pro-
jecting each sample dataset back to the simplex (Aitchison,
1986, pp. 257–261). This works only if the measurement im-
precisions are not too large, which works well for the exam-
ples in Table B1. With respect to the energy loss calculation,
it is preferable to decompose the oxides into Nele elements,
which can be done by the following formula:

wtele,i =
∑

j∈{oxides}
wtj ×

nijmi

mj
, (B5)

where mi and mj denote the molar mass of the ith element
and the j th oxide, wtj is the j th datum in the column, and
nij is the number of atoms of the ith element within the j th
oxide. The two transformations are visualised in Table B2.
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Figure B3. Visual test for multivariate normality of the log-ratio data from Table B3 (this plot shows the full dataset, of which Table B3
is only an excerpt). Each subplot checks for marginal normality. Oxygen is the denominator variable (arbitrarily chosen) and does thus not
appear in the plot.

Table B2. Element weight percent data, transformed from oxide
weight percent data with the use of Eq. (B5). All data have addi-
tionally been scaled to satisfy the unit sum constraint.

Sample JT01 JT02 JT19 JT20

Elements

Si 0.2902 0.2846 0.3213 0.2843
Ti 0.0075 0.0041 0.0045 0.0056
Al 0.0840 0.1009 0.0770 0.1007
Fe 0.0616 0.0563 0.0341 0.0475
Mn 0.0008 0.0009 0.0007 0.0007
Mg 0.0219 0.0175 0.0122 0.0172
Ca 0.0146 0.0052 0.0141 0.0097
Na 0.0171 0.0187 0.0294 0.0237
K 0.0288 0.0393 0.0234 0.0386
P 0.0018 0.0013 0.0009 0.0012
O 0.4716 0.4711 0.4823 0.4707

Sum 1 1 1 1

In order for the data to be in a statistically convenient form,
Aitchison (1986) suggests to further transform the data in
Table B2 by first forming a ratio with an arbitrary element
(in the list) and then taking the logarithm. For the exemplary
dataset, this is shown in Table B3.

The rationale behind this transformation is as follows. The
division by an arbitrarily present element effectively trans-
forms the space into an (Nele− 1)-dimensional open space,
where the parameters (i.e. ratios) may have values between 0
and∞. The subsequent application of the logarithm further
changes the space, such that the new parameters can have
values between −∞ and∞. This results in so-called log ra-
tios, which should ideally be following a multivariate normal
distribution. As a consequence, we can describe this distribu-
tion by the mean log-ratio vector across all samples as well as
its corresponding covariance matrix. In addition to these sta-
tistical parameters, the script “compo_analysis.py” outputs
a graph that plots for all samples an order statistic, zr (see
Aitchison, 1986). This enables us to visualise how different
the data are from a multivariate normal distribution. If equal,
they should fall on the red line shown in Fig. B3.

With a graph like that in Fig. B3, it is possible to check if
the multivariate normal distribution is an appropriate model
to describe the elemental composition data. For the example
shown in Fig. B3, this looks acceptable, with only slight devi-
ations for silicon, aluminium, manganese and sodium. Once
the normality has been verified, it is possible to generate ran-
dom samples from this distribution. For every drawn sample,
it is then possible to calculate the weight percentages of the
single elements by using the inverse formula to the log-ratio
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Table B3. Log ratio of element weight percentages, with respect to oxygen wt %.

Sample JT01 JT02 JT19 JT20

Element log ratios

ln(Si/O) −0.48531565 −0.50379579 −0.40607778 −0.5042219
ln(Ti/O) −4.14567399 −4.74687577 −4.68001075 −4.43477381
ln(Al/O) −1.72531 −1.54064159 −1.83464118 −1.54183733
ln(Fe/O) −2.03494223 −2.12384752 −2.64974526 −2.29276806
ln(Mn/O) −6.39894857 −6.21033707 −6.55719484 −6.52451934
ln(Mg/O) −3.06839321 −3.29293646 −3.67672517 −3.30896536
ln(Ca/O) −3.47357746 −4.51287533 −3.53142599 −3.88207448
ln(Na/O) −3.31519303 −3.22481996 −2.79600952 −2.98709658
ln(K/O) −2.79436382 −2.48376691 −3.0254978 −2.50170175
ln(P/O) −5.56150947 −5.90149576 −6.28344485 −5.99945492
ln(O/O) 0 0 0 0

transformations:

wtele,i =
exp(ri)

1−
∑Nele−1
j=1 exp

(
rj
) , (B6)

for all numerator elements and

wtele,Nele =
1

1−
∑Nele−1
j=1 exp

(
rj
) (B7)

for the denominator element (here oxygen). In Eqs. (B6) and
(B7), the ri denote the log ratios from Table B3, Nele is the
total number of elements (in Table B2), and the index i runs
through all elements and the index j runs through all ele-
ments except the denominator variable.

B3 Energy loss equation for rocks

As stated in Eq. (11), the energy loss equation for rocks needs
parameters that differ from the ones for pure elements. First,
the expression for density can directly be exchanged accord-
ing to the density model (see Appendix B1). Second, it is
possible to generate an expression for the average ionisation
loss within a rock by exchanging three parameters. Density
values that also enter within {a}rock can again be directly
changed. The average {Z/A}rock may be exchanged with the
elemental Z/A by using

{Z/A}rock =
∑Nele

i=1
wtele,i ×

Zi

Ai
. (B8)

wtele,i are the weight fractions from Eqs. (B6) and (B7).
Lastly, the mean excitation energy, {I }rock, for the rock can
be computed by

ln {I }rock =

∑Nele
i=1wtele,i ×

Zi
Ai
× lnIi

{Z/A}rock
. (B9)

The radiation loss term, {b}rock, must be calculated as a
weighted radiation energy loss over all i elements. This

means that the average can be written in a rather concise
form:

{b}rock =
∑Nele

i=1
wtele,i × bele,i . (B10)

Appendix C: Metropolis–Hastings technicalities

This Appendix is a short summary of Gelman et al. (2013,
pp. 284–287) and we refer to these pages for a detailed dis-
cussion of the calculations. This work presents a concept of
how to assess the quality of a MCMC run. In particular, the
aforementioned author proposes to analyse two quantities,
the potential scale reduction factor R̂ and the effective num-
ber of simulation draws n̂eff for every parameter of interest.
For every chain of a parameter, the variance between differ-
ent chains and within one chain is calculated. The posterior
variance of the parameter is then estimated as a weighted
average of these two types of variances. Finally, R̂ is the
quadratic ratio between the posterior variance and the vari-
ance within one chain. This quantity shows if the various
chains have mixed or not, i.e. if they have explored the same
region of the model space. If the posterior variance is much
larger than the variances of the single chains, then the chains
have not sufficiently explored the same region. Gelman et
al. (2013) propose to employ a threshold of 1.1 as a rule of
thumb, below which the value of R̂ would lie.

One problem that arises in MCMC algorithms is the inher-
ent dependence of one simulation on the one before (this is
the definition of a Markov chain). One considers that such a
dependency does not introduce a bias if enough samples are
drawn. However, this also means, that the effective, indepen-
dent sample size is much smaller than the number of simula-
tions. Therefore, Gelman et al. (2013) proposes to calculate
the effective number of simulation draws, n̂eff, in order to
assess if one has enough independent samples The underly-
ing idea here is to evaluate the correlations within the chains.
An accepted threshold value for this parameter is 5mchains,
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wheremchains is the number of subchains. For the calculation
of R̂ and n̂eff, the chains may be cut in half to generate more
chains. Note, however, that n̂eff can also be larger, which only
means that the simulation standard error decreases. In our ex-
ample, we performed the calculations with two chains and
a subdivision by 2, which means that our target quantity is
around 20(= 5× 4). Most of our thickness parameters (i.e.
cones with bedrock and ice; see Figs. 1 and 6) have, in fact,
a n̂eff > 100, with only a few below.

Appendix D: Construction of the smoothing kernel

As stated in the main text, the user specifies the number of
neighbouring pixels s to smooth over. The main idea is to
construct a roughly Gaussian smoothing kernel by approxi-
mating it with a binomial distribution. With the help of the
binomial coefficient, we can construct a vector of weights
with L= (2× s+1) entries. The weight vector is then given
by

wi =
1

22×s

(
L− 1
i

)
, (D1)

with i ∈ {0, . . . ,L− 1}. It is now possible to create a matrix
by forming the dyadic product of w with itself; i.e.

K = w⊗w, (D2)

or in index notation,

Kij = wi×wj . (D3)

As an example, we show how a smoothing kernel that
smooths over two neighbouring pixels (i.e. s = 2) is con-
structed. This is incidentally also the smoothing kernel we
used to construct our ice–bedrock interface. The weight vec-
tor in this case is given by

w =
1

16
×
(

1 4 6 4 1
)
. (D4)

The weight vectors are, in fact, only the odd rows from Pas-
cal’s triangle, interpreted as vectors and normalised by a L1
norm. The smoothing matrix then takes the form

K =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 . (D5)

Appendix E: Energy loss calculations for various
elements and compounds

E1 Verification of energy loss calculations

The energy loss model that we use in our code generally
reproduces the literature values well (the relative error is

generally below 1 %) across the different energy loss pro-
cesses and relevant energies. In Fig. E1, we present the en-
ergy loss calculations for each energy loss process (i.e. ioni-
sation, bremsstrahlung, pair production and photonuclear in-
teractions) across energies from 10 MeV to 100 TeV for sili-
con.

The overall characteristics between the different elements
are the same with minor differences regarding the position
of the critical energy and the 1 % radiative point. In Fig. E2,
we show the relative error of our calculations to the tabulated
values from Groom et al. (2001) for the whole energy range.

We note that the energy losses by ionisation are repro-
duced very well over the entire energy range. We also note
that the relative error on the radiative energy losses is rather
large below 10 GeV. This does not, however, introduce a ma-
jor bias, because below this energy, radiative energy losses
are negligible compared to ionisation losses, as can be seen
in Fig. E1. Furthermore, the related errors are in an accept-
able range at the energy level at which radiative losses be-
gin to become noticeable (i.e. around 100 GeV). This can be
seen in Fig. E2, in the sense that the total relative error re-
mains well bounded within 0.5 %. In the ionisation domain
(i.e. below 100 GeV), the total relative error is dominated by
the ionisation relative error, whereas above this energy level
the relative errors on radiative losses start to prevail. A close-
up of this energy range is given in Fig. E3.

There are different sources and circumstances that con-
tribute to the error in the different energy losses processes.
The scatter of the relative ionisation-loss error around 0 with
a rather small deviation can be viewed as simple round-
ing errors. The errors on the radiative processes, however,
seem to be of a more systematic nature. We explain this be-
haviour through a different numerical integration scheme in
Eq. (10), which tends to systematically under-/overestimate
the true value, especially when the integrand comprises ex-
ponential functions. Whereas we used a double exponential
integration scheme (see Takahasi and Mori, 1974), the inte-
gration scheme from Groom et al. (2001) is not discernible.
However, as the relative errors on the processes of energy
loss remain well within the theoretical uncertainties (see
Sect. 3.1.3), we consider that our calculation accurately re-
produces the literature values for elements.

The above calculations were performed for pure silicon.
The respective figures for other four important elements in
the Earth’s crust (Al, Fe, Ca and O) can be found in Ap-
pendix E2. Those elements are, however, not representative
of any real material encountered in geological applications.
For this reason, we compiled the same computations for four
selected, geologically important compounds (SiO2, CaCO3,
ice) that are also listed in Appendix E2. We summarise that,
with the exception of standard rock, all calculations yield re-
sults that are similar to the silicon calculation above. The dis-
crepancy for standard rock stems from its inconsistent defi-
nition, with respect to the different parameters. In particu-
lar, the “standard rock” according to Lohmann et al. (1985)
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has an atomic number Z of 11 (i.e. sodium) and an atomic
weight A of 22, which yield the characteristic parameter val-
ues of 〈Z/A〉 = 0.5 and 〈Z2/A〉 = 5.5, respectively. Note
that Groom et al. (2001) list sodium as the only constituent
of a standard rock. However, this material cannot be mod-
elled by any mixture of pure elements, as common sodium
consists of one neutron more and thus has a higher atomic
weight (i.e. ANa = 23). Consequently, the use of standard
sodium would lead to different characteristic parameter val-
ues, i.e. 〈Z/A〉 = 0.478 and 〈Z2/A〉 = 5.263, thus leading
to an inconsistency. This is often conveyed by the phrase
that standard rock “is not-quite-sodium” (Groom et al. 2001,
p. 203). In order to circumvent this problem, we advocate
the exchange of 23

11Na with its 22
11Na isotope. This would lead

to the characteristic parameter values 〈Z/A〉 = 0.500 and
〈Z2/A〉 = 5.501, which are much closer to the actual def-
inition of standard rock. For this reason, we extended the
element and compound list (which is available from http://
pdg.lbl.gov/2019/AtomicNuclearProperties/expert.html, last
access: 6 March 2022) by the 22

11Na isotope, assuming that all
parameters are equal to the ones from 23

11Na. Additionally, we
redefined the standard rock (i.e. material number 281 in the
list) to consist only of 22

11Na. With this change, standard rock
does not need any more special treatment and can be calcu-
lated in a way that is consistent with all other compounds.
Furthermore, the relative error between the tabulated values
and our modified calculation falls in line with the calcula-
tions for the other compounds and elements (Figs. E4 and
E5).

Figure E1. Log–log plot of the stopping power of the different en-
ergy loss processes for silicon. At∼ 10 GeV, the radiative processes
(i.e. bremsstrahlung, pair production and photonuclear interactions)
reach around 1 % of the total stopping power. At a few hundred GeV
(at the so-called “critical energy”), the radiative processes start to
become dominant over the ionisation losses.
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Figure E2. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon. Ionisation
losses agree very well with the literature values (within 0.025 %). At low energies, the relative errors of the radiative processes are large and
converge to a value close to 0 towards higher energies, resulting in a relative error on the total energy loss of around 0.5 % compared to the
literature.

Figure E3. Relative error of our energy loss calculations for silicon compared to the tabulated values from Groom et al. (2001) at higher
energies (100 GeV–100 TeV). The relative errors remain bounded within their theoretical uncertainties (see Sect. 3.1.3).
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Figure E4. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for standard rock (23
11Na)

in the energy ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.

Figure E5. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for standard rock (22
11Na)

in the energy ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.
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Figure E6. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for aluminium in the
energy ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.

Figure E7. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium in the energy
ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.
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Figure E8. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for iron in the energy
ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.

Figure E9. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for oxygen in the energy
ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.
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Figure E10. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium carbonate
(calcite) in the energy ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.

Figure E11. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon dioxide
(quartz) in the energy ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.
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Figure E12. Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for ice in the energy
ranges (a) 10 MeV–100 TeV and (b) 100 GeV–100 TeV.

Appendix F: Main modules of SMAUG

Our toolbox, SMAUG, contains several subprogrammes
which are executed separately. This allows the user to inspect
intermediate results without any difficulty. We also tried to
keep the intermediate results as portable as possible by using
JSON files as often as possible. Here, we explain, in logical
order, the rational of the submodules (a detailed user manual
is available separately):

– MATERIALIZER.py. This subroutine allows the user to
create their own material that will be used in the sub-
sequent model builder. The user may choose a density
(either from measurements or directly insert mean and
standard deviations) and a composition (also either from
data or from the list of Groom et al., 2001).

– DATA_ BINNING.py. As the name suggests, this sub-
routine is used to spatially bin the recorded track data.
The bin data (i.e. the output hereof) are then fed to the
model builder.

– MODEL_ BUILDER.py. The model builder takes the
bin data and the materials as inputs and allows the user,
with help of DEMs, to allocate data and materials to
certain cones. This is basically the spatial setup of the
model. The resulting model file is then provided to the
inversion code.

– INVERSION.py. This is the main module in SMAUG,
providing the functionality to perform a MCMC
algorithm on the probabilistic model created with
MODEL_BUILDER.py. It also includes several analy-
sis tools to assess MCMC performance.

– MODEL_ VIEWER.py. The model viewer allows us to
visualise the interface results, obtained and exported by
INVERSION.py. It also has the functionality to dampen
and smooth the resulting surfaces.

Code availability. The source code of SMAUG 1.0 is publicly and
freely available at https://doi.org/10.5281/zenodo.5547356 (Lech-
mann et al., 2021b). The Python packages required to run SMAUG
are listed in the “requirements.txt” file.

Data availability. The data of the density and XRF measurements
are included (i) in the files that can be downloaded from https://
doi.org/10.5281/zenodo.5547356 (Lechmann et al., 2021b), as well
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