Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6197-2021
https://doi.org/10.5194/gmd-14-6197-2021
Development and technical paper
 | 
15 Oct 2021
Development and technical paper |  | 15 Oct 2021

Modelling of faults in LoopStructural 1.0

Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit

Related authors

Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev., 17, 1975–1993, https://doi.org/10.5194/gmd-17-1975-2024,https://doi.org/10.5194/gmd-17-1975-2024, 2024
Short summary
Integration of automatic implicit geological modelling in deterministic geophysical inversion
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024,https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
3D geological modelling of igneous intrusions in LoopStructural v1.4.4
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-88,https://doi.org/10.5194/gmd-2022-88, 2022
Preprint withdrawn
Short summary
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021,https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
LoopStructural 1.0: time-aware geological modelling
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021,https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary

Related subject area

Solid Earth
High-precision 1′ × 1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024,https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023,https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023,https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
A new temperature-photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes
Shouzhi Chen, Yongshuo H. Fu, Mingwei Li, Zitong Jia, Yishuo Cui, and Jing Tang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-212,https://doi.org/10.5194/gmd-2023-212, 2023
Revised manuscript accepted for GMD
Short summary
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023,https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary

Cited articles

Allmendinger, R. W.: Propagation Folds, Tectonics, 17, 640–656, https://doi.org/10.1029/98TC01907, 1998. a
Blaikie, T., Ailleres, L., Betts, P. G., and Cas, R. A.: Interpreting subsurface volcanic structures using geologically constrained 3-D gravity inversions: Examples of maar-diatremes, Newer Volcanics Province, southeastern Australia, J. Geophys. Res.-Sol. Ea., 119, 3857–3878, https://doi.org/10.1002/2013JB010751, 2014. a
Calcagno, P. P., Chilès, J., Courrioux, G., Guillen, A., Calcagno, P. P., Courrioux, G., Joly, A., Ledru, P., Courrioux, G., Calcagno, P. P., Chilès, J., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge, Phys. Earth Planet. In., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008. a, b, c, d, e, f, g
Cardozo, N.: Trishear in 3D. Algorithms, implementation, and limitations, J. Struct. Geol., 30, 327–340, https://doi.org/10.1016/j.jsg.2007.12.003, 2008. a
Caumon, G., Gray, G., Antoine, C., and Titeux, M.-O.: Three-Dimensional Implicit Stratigraphic Model Building From Remote Sensing Data on Tetrahedral Meshes: Theory and Application to a Regional Model of La Popa Basin, NE Mexico, IEEE T. Geosci. Remote S., 51, 1613–1621, https://doi.org/10.1109/TGRS.2012.2207727, 2013. a, b, c, d, e, f
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.