Articles | Volume 14, issue 8
https://doi.org/10.5194/gmd-14-5063-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-5063-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
Mineral Exploration Cooperative Research Centre, Centre for
Exploration Targeting, School of Earth Sciences, The University of Western
Australia, Perth, Australia
Vitaliy Ogarko
International Centre for Radio Astronomy Research, The University of
Western Australia, Perth, Australia
ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions
(ASTRO 3D), Perth, Australia
Yohan de Rose
School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
Mark Lindsay
Mineral Exploration Cooperative Research Centre, Centre for
Exploration Targeting, School of Earth Sciences, The University of Western
Australia, Perth, Australia
Ranee Joshi
Mineral Exploration Cooperative Research Centre, Centre for
Exploration Targeting, School of Earth Sciences, The University of Western
Australia, Perth, Australia
Agnieszka Piechocka
Mineral Exploration Cooperative Research Centre, Centre for
Exploration Targeting, School of Earth Sciences, The University of Western
Australia, Perth, Australia
CSIRO, Mineral Resources – Discovery, ARRC, Kensington,
Australia
Lachlan Grose
School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
Miguel de la Varga
Computational Geoscience and Reservoir Engineering, RWTH Aachen, Aachen,
Germany
Laurent Ailleres
School of Earth, Atmosphere and Environment, Monash University, Clayton, Australia
Guillaume Pirot
Mineral Exploration Cooperative Research Centre, Centre for
Exploration Targeting, School of Earth Sciences, The University of Western
Australia, Perth, Australia
Related authors
Vitaliy Ogarko and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1294, https://doi.org/10.5194/egusphere-2025-1294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a new method to reconstruct underground rock layers from drillhole data, using an advanced algorithm to ensure geologically realistic results. By combining data from multiple drillholes, our approach reduces uncertainty and improves accuracy. Tested on South Australian data, it successfully predicted stratigraphy and highlighted ways to enhance data quality. This innovation makes geological analysis more reliable, aiding exploration and resource management.
Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-154, https://doi.org/10.5194/gmd-2024-154, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To facilitate the exploration of alternative hydrogeological scenarios, we propose to approximate costly physical simulations of contaminant transport by more affordable shortest distances computations. It enables to accept or reject scenarios within a predefined confidence interval. In particular, it can allow to estimate the probability of a fault acting as a preferential path or a barrier.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Mahtab Rashidifard, Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 12, 2387–2406, https://doi.org/10.5194/se-12-2387-2021, https://doi.org/10.5194/se-12-2387-2021, 2021
Short summary
Short summary
One motivation for this study is to develop a workflow that enables the integration of geophysical datasets with different coverages that are quite common in exploration geophysics. We have utilized a level set approach to achieve this goal. The utilized technique parameterizes the subsurface in the same fashion as geological models. Our results indicate that the approach is capable of integrating information from seismic data in 2D to guide the 3D inversion results of the gravity data.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Vitaliy Ogarko and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1294, https://doi.org/10.5194/egusphere-2025-1294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a new method to reconstruct underground rock layers from drillhole data, using an advanced algorithm to ensure geologically realistic results. By combining data from multiple drillholes, our approach reduces uncertainty and improves accuracy. Tested on South Australian data, it successfully predicted stratigraphy and highlighted ways to enhance data quality. This innovation makes geological analysis more reliable, aiding exploration and resource management.
Mark Douglas Lindsay, Vitaliy Ogarko, Jeremie Giraud, and Mosayeb Khademi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3754, https://doi.org/10.5194/egusphere-2024-3754, 2025
Preprint archived
Short summary
Short summary
Geophysical data is used to understand the Earth's structure. Geophysical inversion is an optimisation technique that constructs a model of the Earth using geophysical data. Inversion is complex and requires constraints to produce a plausible model. Overfitting is a disadvantageous effect that can affect techniques that rely on optimisation. A new feature in an inversion platform reduces overfitting by informing inversion of spatial uncertainty contained within the geophysical data.
Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-154, https://doi.org/10.5194/gmd-2024-154, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To facilitate the exploration of alternative hydrogeological scenarios, we propose to approximate costly physical simulations of contaminant transport by more affordable shortest distances computations. It enables to accept or reject scenarios within a predefined confidence interval. In particular, it can allow to estimate the probability of a fault acting as a preferential path or a barrier.
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024, https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Short summary
Understanding how glaciers generate sediment and transport it to the ocean is important for understanding ocean ecosystems and developing knowledge of the past cryosphere from marine sediments. This paper presents a new way to simulate sediment transport in rivers below ice sheets and glaciers and quantify volumes and characteristics of sediment that can be used to reveal the hidden record of the subglacial environment for both past and present glacial conditions.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev., 17, 1975–1993, https://doi.org/10.5194/gmd-17-1975-2024, https://doi.org/10.5194/gmd-17-1975-2024, 2024
Short summary
Short summary
Previous work has demonstrated that adding geological knowledge to modelling methods creates more accurate and reliable models. Following this reasoning, we added constraints from magma emplacement mechanisms into existing modelling frameworks to improve the 3D characterisation of igneous intrusions. We tested the method on synthetic and real-world case studies, and the results show that our method can reproduce intrusion morphologies with no manual processing and using realistic datasets.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Fernanda Alvarado-Neves, Laurent Ailleres, Lachlan Grose, Alexander R. Cruden, and Robin Armit
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-88, https://doi.org/10.5194/gmd-2022-88, 2022
Preprint withdrawn
Short summary
Short summary
We introduce a method to model igneous intrusions for 3D geological modelling. We use a parameterization of the intrusion body geometry that could be constrained using field observations. Using this parametrization, we simulate distance thresholds that represent the lateral and vertical extent of the intrusion body. We demonstrate the method with two case studies, and we present a comparison with Radial Basis Function interpolation using a case study of a sill complex located in NW Australia.
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Mahtab Rashidifard, Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 12, 2387–2406, https://doi.org/10.5194/se-12-2387-2021, https://doi.org/10.5194/se-12-2387-2021, 2021
Short summary
Short summary
One motivation for this study is to develop a workflow that enables the integration of geophysical datasets with different coverages that are quite common in exploration geophysics. We have utilized a level set approach to achieve this goal. The utilized technique parameterizes the subsurface in the same fashion as geological models. Our results indicate that the approach is capable of integrating information from seismic data in 2D to guide the 3D inversion results of the gravity data.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Cited articles
Ailleres, L. and Betts, P.: Geometrical and geophysical modelling of an
inverted Middle Proterozoic fault system, Mount Isa Terrain, Australia,
Conference Abstracts: 3D Modelling of Natural Objects: a Challenge for the
2000, vol. 2, Nancy, France, 4–5 June 1998.
Ailleres, L., Grose, L., Laurent, G., Armit, R., Jessell, M. W., Caumon, G.,
de Kemp, E., and Wellmann, J. F.: Loop – a new open source platform for 3D
geo-structural simulations. Three-dimensional geological mapping workshop,
Resources for Future Generations meeting, Vancouver, Canada, 16–21 June 2018, 14–18, 2018.
Aitken, A. R. A., Occhipinti, S. A., Lindsay, M. D., and Trench, A.: A role for
data richness mapping in exploration decision making, Ore Geol. Rev.,
99, 398–410, 2018.
Allmendinger, R. W.: GMDE: Extracting quantitative information from geologic
maps, Geosphere, 16, 1495–1507, 2020.
Alvarado, F., Ailleres, L., Grose, L., Cruden, A., and Armit, R.: Modelling
of Igneous Intrusions Based on Emplacement Mechanisms, American Geophysical
Union, Fall Meeting 2020, abstract #IN048-07, 2020.
Argand, E.: Les nappes de recouvrement des Alpes Pennines et leur
prolongement structuraux, Mat. Carte géol. Suisse, N.S., XXXI livr.,
1911.
Aug, C., Chilès, J. P., Courrioux, G., and Lajaunie, C.: 3-D geological
modelling and uncertainty: the potential field method, in: Geostatistics Banff, edited by: Leuangthong, O.
and Deutsch, C. V., Proceedings Seventh
International Geostatistics Congress, Dordrecht, Kluwer, 145–154, 2005.
Bigi, S., Conti, A., Casero, P., Ruggiero, L., Recanati, R., and Lipparini,
L.: Geological model of the central Periadriatic basin (Apennines, Italy),
Mar. Petrol. Geol., 42, 107–121, 2021.
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt,
J. Struct. Geol., 74, 185–200, 2015.
Bond, C. E., Gibbs, A., Shipton, Z., and Jones, S.: What do you think this
is? “Conceptual uncertainty” in geoscience interpretation, GSA Today, 17,
4–10, 2007.
Bonham-Carter, G. F.: Geographic Information Systems for Geoscientists,
Pergamon, 398 pp., 1994.
Bonham-Carter, G. F. and Broome, J.: Tools for Effective Use of Geological
Map Data: A Topic for GeoComputation Research? Proceedings of the 3rd
International Conference on GeoComputation, University of Bristol, United
Kingdom, 17–19 September 1998, available at: http://www.geocomputation.org/1998/97/gc_97.htm (last access: 9 August 2021), 1998.
Brodaric, B., Fox, P., and McGuinness, D. L.: Geoscience knowledge
representation in cyberinfrastructure, Comput. Geosci., 35,
697–699, https://doi.org/10.1016/j.cageo.2009.01.001, 2009.
Bugge, A. J., Lie, J. E., Evensen, A. K., Faleide, J. I., and Clark, S.:
Automatic extraction of dislocated horizons from 3D seismic data using nonlocal trace matching, Geophysics, 84, IM77–IM86, 2019.
Burns, K. L.: Lithologic Topology and Structural Vector Fields Applied to
Subsurface Prediction in Geology, GIS/LIS'88, Proceedings 3rd Annual
International Conference, Exhibits and Workshops, Volume 1, San Antonio,
Texas, 30 November–2 December 1988, 26–34, 1988.
Calcagno, P., Chilès, J. P., Courrioux, G., and Guillen, A.: Geological
modelling from field data and geological knowledge: part I. Modelling method
coupling 3D potential – field interpolation and geological rules, Phys. Earth
Planet. Int., 171, 147–157, 2008.
Carmichael, T. L. and Ailleres, L.: Method and analysis for the upscaling
of structural data, J. Struct. Geol., 83, 121–133, https://doi.org/10.1016/j.jsg.2015.09.002, 2016.
Caumon, G., Lepage, F., Sword, C. H., and Mallet, J.-L.: Building and editing
a sealed geological model, Math. Geol., 36, 405–424, 2004.
Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Sausse, J., and
Viseur, S.: Surface-based 3-D modelling of geological structures,
Math. Geosci., 41, 927–945, 2009.
Caumon, G., Gray, G., Antoine, C., and Titeux, M.-O.: Three-Dimensional
Implicit Stratigraphic Model Building from Remote Sensing Data on
Tetrahedral Meshes: Theory and Application to a Regional Model of La Popa
Basin, NE Mexico, IEEE T. Geosci. Remote, 51,
1613–1621, 2013.
Colman-Sadd, S. P., Ash, J. S., and Nolan, L. W.: GEOLEGEND: A database system
for managing geological map units in a Geographic Information System,
Comput. Geosci., 23, 715–724, 1997.
Cowan, E. J., Beatson, R. K., Ross, H. J., Fright, W. R., McLennan, T. J., Evans,
T. R., Carr, J. C., Lane, R. G., Bright, D. V., Gillman, A. J., Oshust, P. A., and
Titley, M.: Practical implicit geological modelingodelling, in: Proc.
5th Int. Mining Conf., Australian Inst. Mining Metallurgy, edited by: Dominy, S., Australasian Institute of Mining and Metallurgy, Melbourne, 89–99, 2003.
de Kemp, E. A.: Three-dimensional projection of curvi-linear geological
features through direction cosine interpolation of structural field
observations, Comput. Geosci., 24, 269–284, 1998.
de Kemp, E. A., Jessell, M. W., Aillères, L., Schetselaar, E. M., Hillier,
M., Lindsay, M. D., and Brodaric, B.: Earth model construction in challenging
geologic terrain: Designing workflows and algorithms that makes sense,
Exploration 2017 Conference Paper, Decennial Mineral Exploration Conferences, Toronto, 2017.
de la Varga, M. and Wellmann, J. F.: Structural geologic modelling as an
inference problem: A Bayesian perspective, Interpretation, 4,
SM1–SM16, 2016.
de la Varga, M., Schaaf, A., and Wellmann, F.: GemPy 1.0: open-source stochastic geological modeling and inversion, Geosci. Model Dev., 12, 1–32, https://doi.org/10.5194/gmd-12-1-2019, 2019.
de Rose, Y., Grose, L., Jessell, M., and Thomson, R.: Loop3D/map2loop-2: First Release (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.4288476, 2020.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf,
D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45,
RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Fernández, O.: Obtaining a best fitting plane through 3D georeferenced
data, J. Struct. Geol., 27, 855–858,
https://doi.org/10.1016/j.jsg.2004.12.004, 2005.
Frank, T., Tertois, A. L., and Mallet, J. L.: 3-D-reconstruction of complex
geological interfaces from irregularly distributed and noisy point data,
Comput. Geosci., 33, 932–943, 2007.
Freeman, L. C.: A set of measures of centrality based on betweenness,
Sociometry, 40, 35–41, 1977.
Geological Survey of Western Australia: 1:500 000 State interpreted bedrock
geology of Western Australia, 2016: Geological Survey of Western Australia,
digital data layer, available at: http://www.dmp.wa.gov.au/geoview (last access: 9 August 2021), 2016.
Geoscience Australia: Digital Elevation Model (DEM) Shuttle Radar Topography
Mission (SRTM) 1 Second over Australian Bathymetry Topography: Geoscience
Australia, digital dataset, available at: http://gaservices.ga.gov.au (last access: 9 August 2021), 2016.
Geoscience Australia and Australian Stratigraphy Commission: Australian
Stratigraphic Units Database, available at: https://asud.ga.gov.au/ (last access: 9 August 2021), 2017.
Giraud, J., Lindsay, M., and Jessell, M.: Generalization of level-set
inversion to an arbitrary number of geological units in a regularized
least-squares framework, Geophysics, 86, R612–R637,
https://doi.org/10.1190/geo2020-0263.1, 2020.
Giraud, J., Ogarko, V., Martin, R., Jessell, M., and Lindsay, M.: Structural, petrophysical and geological constraints in potential field inversion using the Tomofast-x v1.0 open-source code, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-14, in review, 2021.
Grose, L., Ailleres, L., Laurent, G., Armit, R., and Jessell, M.: Inversion
of geological knowledge for fold geometry, J. Struct. Geol., 119,
1–14, 2019.
Grose, L., Ailleres, L., Laurent, G., and Jessell, M.: LoopStructural 1.0: time-aware geological modelling, Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, 2021.
Guo, J., Li, Y., Jessell, M.W., Giraud, J., Li, C., Wu, L., Li, F., and Liu,
S.: 3D geological structure inversion from Noddy-generated magnetic data
using deep learning methods, Comput. Geosci., 149, 104701, https://doi.org/10.1016/j.cageo.2021.104701, 2021.
Harrap, R.: A Legend Language for Geologic Maps, Precambrian Times, 1, 1–9,
2001.
Hillier, M., Schetselaar, E. M., de Kemp, E. A., and Perron, G.: 3-D modelling
of geological surfaces using generalized interpolation with radial basis
functions, Math. Geosci., 46, 931–953, https://doi.org/10.1007/s11004-014-9540-3, 2014.
Houlding, S. W.: 3D geoscience modelling computer techniques for geological
characterization, Springer-Verlag. John Wiley & Sons Inc, New York,
London, Sydney, Toronto, 1994.
Jessell, M. W.: “NODDY- An interactive map creation package”, unpublished
MSc thesis, University of London, 52 pp., 1981.
Jessell, M.: Current and future limits to automated 3D geological model construction, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-632, https://doi.org/10.5194/egusphere-egu21-632, 2021.
Jessell, M. W. and Valenta, R. K.: Structural Geophysics: Integrated
structural and geophysical mapping, in: Structural Geology and Personal
Computers, edited by: DePaor, D. G., Elsevier Science Ltd, Oxford, 303–324, 542 pp.,
1996.
Jessell, M. W., Aillères, L., de Kemp, E., Lindsay, M., Wellmann, F.,
Hillier, M., and Martin, R.: Next Generation Three-Dimensional Geologic
Modeling and Inversion, Society of Economic Geologists Special Publication
18, 261–272, 2014.
Jessell, M., de Rose, Y., and Joshi, R.: Loop3D/map2loop2-notebooks: map2loop Notebooks v 1.0 (GMD version) (Version v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5084548, 2021a.
Jessell, M., Ogarko, V., de Rose, Y., Joshi, R., Grose, L., and de la Varga, M.: Loop3D/map2loop-2: GMD 2021 release (Version v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.5084585, 2021b.
Joshi, R., Madaiah, K., Jessell, M., Lindsay, M., and Pirot, G.: dh2loop 1.0: an open-source python library for automated processing and classification of geological logs, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-391, in review, 2021.
Kelka, U., Westwerlund, S., and Peeters, L.: GIS based fault and fracture
network analysis. Abstract, Sub 20 Conference, Perth, Australia, 12–13
February 2020, available at: https://wp.csiro.au/sub20/program/ (last access: 9 August 2021), 2020.
Lajaunie, C., Courrioux, G., and Manuel, L.: Foliation fields and 3-D
cartography in geology: Principles of a method based on potential
interpolation, Math. Geol., 29, 571–84, 1997.
Laurent, G., Caumon, G., Bouziat, A., and Jessell, M. W.: A parametric method
to model 3-D displacements around faults with volumetric vector fields,
Tectonophysics, 590, 83–93, 2013.
Lindsay, M. D., Aillères, L., Jessell, M. W., de Kemp, E. A., and Betts,
P. G.: Locating and quantifying geological uncertainty in three-dimensional
models: Analysis of the Gippsland basin, southeastern Australia,
Tectonophysics, 546–547, 10–27, 2012.
Lindsay, M. D., Occhipinti, S., Laflamme, C., Aitken, A., and Ramos, L.: Mapping undercover: integrated geoscientific interpretation and 3D modelling of a Proterozoic basin, Solid Earth, 11, 1053–1077, https://doi.org/10.5194/se-11-1053-2020, 2020.
Ma, X. and Fox, P.: Recent progress on geologic time ontologies and
considerations for future works, Earth Sci. Informatics, 6, 31–46,
https://doi.org/10.1007/s12145-013-0110-x, 2013.
Mallet, J. L.: Discrete smooth interpolation, Comput.-Aided Des., 24,
263–270, 1992.
Mallet, J. L.: Geomodelling, New York, NY, Oxford University Press, 599 pp.,
2002.
Mallet, J. L.: Space-Time Mathematical Framework for Sedimentary Geology,
Math. Geol., 36, 1–32, 2004.
Martin, R., Monteiller, V., Komatitsch, D., Perrouty, S., Jessell, M. W.,
Bonvalot, S., and Lindsay, M.: Gravity inversion using wavelet-based
compression on parallel hybrid CPU/GPU systems: application to South-West
Ghana, Geophys. J. Int., 195, 1594–1619, https://doi.org/10.1093/gji/ggt334, 2013.
Mayoraz, R., Mann, C. E., and Parriaux, A.: Three-dimensional modelling of
complex geological structures: new development tools for creating 3-D
volumes, in: Computer Modelling of
Geologic Surfaces and Volumes, edited by: Hamilton, D. E. and Jones, T. A., AAPG Computer Applications in Geology, 1,
261–272, 1992.
Moretti, I.: Working in complex areas: New restoration workflow based
control, 2-D and 3-D restorations, Mar. Petrol. Geol., 25,
205–218, 2008.
NASA/JPL: ASTER, available at: https://asterweb.jpl.nasa.gov/gdem.asp (last access: 9 August 2021), 2009.
Ogarko, V.: Loop3D/map2model_cpp: GMD release (Version V1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5084582, 2021.
Pakyuz-Charrier, E., Giraud, J., Ogarko, V., Lindsay, M., and Jessell, M.:
Drillhole uncertainty propagation for three-dimensional geological modelling
using Monte Carlo, Tectonophysics, 747–748, 16–39, https://doi.org/10.1016/j.tecto.2018.09.005, 2018a.
Pakyuz-Charrier, E., Lindsay, M., Ogarko, V., Giraud, J., and Jessell, M.: Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization, Solid Earth, 9, 385–402, https://doi.org/10.5194/se-9-385-2018, 2018b.
Perrin, M. and Rainaud, J.-F.: Shared Earth Modelling: Knowledge Driven
Solutions for Building and Managing Subsurface 3D Geological Models, IFP Energies Nouvelles, 2013.
Ragan, D. M.: Structural Geology: Introduction to Geometrical Techniques,
4th edn., Cambridge University Press, 632 pp., 2009.
Ramsay, J. G.: Folding and Fracturing of Rocks, McGraw-Hill, New York,
1967.
Rauch, A., Sartori, M., Rossi, E., Baland, P., and Castelltort, S.: Trace
Information Extraction (TIE): A new approach to extract structural
information from traces in geological maps, J. Struct. Geol.,
126, 286–300, 2019.
Sopwith, T.: A Treatise on Isometrical Drawing as Applicable to Geological
and Mining Plans, Picturesque Delineations of Ornamental Grounds,
Perspective Views and Working Plans of Buildings and Machinery, and to
General Purposes of Civil Engineering, John Weald, London, 1834.
Spampinato, G. P. T., Ailleres, L., Betts, P. G., and Armit, R. J.: Crustal
architecture of the Thomson Orogen in Queensland inferred from potential
field forward modelling, Austr. J. Earth, 62, 581–601, 2015.
Thiele, S. T., Jessell, M. W., Lindsay, M., Ogarko, V., Wellmann, F., and
Pakyuz-Charrier, E.: The topology of geology 1: Topological analysis,
J. Struct. Geol., 91, 27–38, 2016.
Thorne, A. M. and Trendall, A. F.: Geology of the Fortescue Group, Pilbara Craton, Western Australia: Western Australia
Geological Survey, Bulletin 144, 249 pp., 2001.
Varnes, D. J.: The Logic of Geological Maps, With Reference to Their
Interpretation and Use for Engineering Purposes, U.S. Geological Survey
Professional Paper 837, 54 pp., 1974.
Vasuki, Y., Holden, E. J., Kovesi, P., and Micklethwaite, S.: An interactive
image segmentation method for lithological boundary detection: A rapid
mapping tool for geologists, Comput. Geosci., 100, 27–40, 2017.
Wellmann, F., de la Varga, M., Murdie, R. E., Gessner, K., and Jessell, M.
W.: Uncertainty estimation for a geological model of the Sandstone
greenstone belt, Western Australia – Insights from integrated geological and
geophysical inversion in a Bayesian inference framework, Geological Society,
London, Special Publications, 453, 41–52, 2017.
Wellmann, J. F. and Caumon, G.: 3-D Structural geological models: Concepts,
methods, and uncertainties, Adv. Geophys., 59, 1–121, 2018.
Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning:
Information entropy as a quality measure for 3-D geological models,
Tectonophysics, 526–529, 207–216, 2012.
Wellmann, J. F., Schaaf, A., de la Varga, M., and von Hagke, C.: From Google
Earth to 3D Geology Problem 2: Seeing Below the Surface of the Digital
Earth, Developments in Structural Geology and Tectonics, 5,
189–204, 2019.
Wu, X. and Hale, D.: 3D seismic image processing for faults, Geophysics, 81,
IM1–IM11, 2015.
Wu, Q., Xu, H., and Zou, X.: An effective method for 3-D
geological modelling with multisource data integration, Comput.
Geosci., 31, 35–43, 2005.
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
We have developed software that allows the user to extract sufficient information from...