Articles | Volume 14, issue 6
https://doi.org/10.5194/gmd-14-3521-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3521-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0)
Urban and Regional Planning Community, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Maxence Locatelli
Urban and Regional Planning Community, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Perrine Hamel
Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
Roy P. Remme
Natural Capital Project, Stanford University, Stanford, USA
Jérôme Chenal
Urban and Regional Planning Community, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Stéphane Joost
Laboratory of Geographic Information Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Urban and Regional Planning Community, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Related authors
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, https://doi.org/10.5194/gmd-17-4755-2024, 2024
Short summary
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
Alina Bill-Weilandt, Nivedita Sairam, Dennis Wagenaar, Kasra Rafiezadeh Shahi, Heidi Kreibich, Perrine Hamel, and David Lallemant
EGUsphere, https://doi.org/10.5194/egusphere-2025-3706, https://doi.org/10.5194/egusphere-2025-3706, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Flooding is a major cause of agricultural loss globally. We introduce a framework for developing and evaluating flood damage models for crops. The study presents the most comprehensive review of such models for rice to date and offers practical guidance on model selection and expected errors when transferring models across regions. We provide models and lookup tables that can be used in flood risk assessments in rice-producing regions.
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, https://doi.org/10.5194/gmd-17-4755-2024, 2024
Short summary
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
H. Mharzi Alaoui, H. Radoine, J. Chenal, H. Hajji, and H. Yakubu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W3-2022, 83–86, https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-83-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W3-2022-83-2022, 2022
Cited articles
Angel, S., Sheppard, S., Civco, D. L., Buckley, R., Chabaeva, A., Gitlin, L.,
Kraley, A., Parent, J., and Perlin, M.: The dynamics of global urban
expansion, Citeseer, Transport and Urban Development Department of The World Bank, Washington D.C., 2005. a
Angel, S., Blei, A. M., Civco, D. L., and Parent, J.: Atlas of urban expansion,
Lincoln Institute of Land Policy Cambridge, MA, 2012. a
Arnfield, A. J.: Two decades of urban climate research: a review of turbulence,
exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23,
1–26, 2003. a
Avdan, U. and Jovanovska, G.: Algorithm for automated mapping of land surface
temperature using LANDSAT 8 satellite data, J. Sensors, 2016, 1480307, 2016. a
Bosch, M.: DetecTree: Tree detection from aerial imagery in Python, J. Open Source Softw., 5, 2172, https://doi.org/10.21105/joss.02172, 2020a. a
Bosch, M.: Urban footprinter: a convolution-based approach to detect urban
extents from raster data, Zenodo, https://doi.org/10.5281/zenodo.3699310,
2020b. a
Bosch, M.: Lausanne agglomeration extent [Data set], Zenodo, https://doi.org/10.5281/zenodo.4311544, 2020c. a
Bosch, M.: Lausanne tree canopy [Data set], Zenodo, https://doi.org/10.5281/zenodo.4310112, 2020d. a
Bosch, M.: martibosch/lausanne-heat-islands: GMD published (Version gmd-published) [code], Zenodo, https://doi.org/10.5281/zenodo.4916285, 2021. a
Bosch, M., Jaligot, R., and Chenal, J.: Spatiotemporal patterns of urbanization
in three Swiss urban agglomerations: insights from landscape metrics, growth
modes and fractal analysis, Landscape Ecol., 35, 879–891, 2020. a
Breiman, L.: Random forests, Mach. Learning, 45, 5–32, 2001. a
Burgstall, A.: Representing the Urban Heat Island Effect in Future Climates,
Scientific Report MeteoSwiss No. 105, Zürich, Switzerland, 2019. a
Clinton, N. and Gong, P.: MODIS detected surface urban heat islands and sinks:
Global locations and controls, Remote Sens. Environ., 134, 294–304,
2013. a
Conference des Services Cantonaux du Cadastre: Degré de spécification en
mensuration officielle – Couche d’information de la couverture du sol,
available at:
https://www.cadastre.ch/content/cadastre-internet/fr/manual-av/publication/guidline.download/cadastre-internet/fr/documents/av-richtlinien/Richtlinie-Detaillierungsgrad-BB-fr.pdf (last access: 26 Februrary 2020), 2011 (in French). a
Fabrizi, R., Bonafoni, S., and Biondi, R.: Satellite and ground-based sensors
for the urban heat island analysis in the city of Rome, Remote Sens., 2,
1400–1415, 2010. a
Gao, B.-C.: NDWI – A normalized difference water index for remote sensing of
vegetation liquid water from space, Remote Sens. Environ., 58,
257–266, 1996. a
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X.,
and Briggs, J. M.: Global change and the ecology of cities, Science, 319,
756–760, 2008. a
Grimmond, S. and Oke, T.: Evapotranspiration rates in urban areas, in:
Proceedings of the Impacts of Urban Growth on Surface Water and Groundwater
Quality HS5, 235–243, International Association of Hydrological Sciences
Publications, Birmingham, UK, 1999.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Eng. Agric., 1, 96–99, 1985. a
Jin, M. and Dickinson, R. E.: Land surface skin temperature climatology:
Benefitting from the strengths of satellite observations, Environ.
Res. Lett., 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004, 2010. a, b
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.: Optimization by simulated
annealing, Science, 220, 671–680, 1983. a
Koppe, C., Sari Kovats, R., Jendritzky, G., and Menne, B.: Heat-waves: risks and responses, Tech. rep., WHO Regional Office for Europe,
Copenhagen, 2004. a
Liu, Z., He, C., Zhou, Y., and Wu, J.: How much of the world’s land has been
urbanized, really? A hierarchical framework for avoiding confusion, Landscape
Ecol., 29, 763–771, 2014. a
Nistor, M.-M.: Mapping evapotranspiration coefficients in the Paris
metropolitan area, GEOREVIEW Scientific Annals of Ştefan cel Mare
University of Suceava, Geography Series, 26, 138–153, 2016. a
Nistor, M.-M. and Porumb, G. C. G.: How to compute the land cover
evapotranspiration at regional scale? A spatial approach of Emilia-Romagna
region, GEOREVIEW: Scientific Annals of Stefan cel Mare University of
Suceava, Geography Series, 25, 38–53, 2015. a
Nistor, M.-M., Gualtieri, A. F., Cheval, S., Dezsi, Ş., and Boţan,
V. E.: Climate change effects on crop evapotranspiration in the Carpathian
Region from 1961 to 2010, Meteorol. Appl., 23, 462–469, 2016. a
Oke, T. R.: City size and the urban heat island, Atmos. Environ., 7, 769–779, 1973. a
Oke, T. R.: The energetic basis of the urban heat island, Q. J.
Roy. Meteor. Soc., 108, 1–24, 1982. a
Oliveira, E. A., Andrade Jr, J. S., and Makse, H. A.: Large cities are less
green, Sci. Rep., 4, 1–13, 2014. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Burcher, M., Perrot, M. and Duchesnay, É.:
Scikit-learn: Machine learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a
Phelan, P. E., Kaloush, K., Miner, M., Golden, J., Phelan, B., Silva III, H.,
and Taylor, R. A.: Urban heat island: mechanisms, implications, and possible
remedies, Annu. Rev. Environ. Resour., 40, 285–307, 2015. a
Rebetez, M., von Arx, G., Gessler, A., Pannatier, E. G., Innes, J. L., Jakob,
P., Jetel, M., Kube, M., Nötzli, M., Schaub, M., Schmitt, M., Sutter, F., Thimonier, A., Waldner, P., and Haeni, M.: Meteorological
data series from Swiss long-term forest ecosystem research plots since 1997,
Ann. Forest Sci., 75, 41, https://doi.org/10.1007/s13595-018-0709-7, 2018. a
Santamouris, M., Cartalis, C., Synnefa, A., and Kolokotsa, D.: On the impact of
urban heat island and global warming on the power demand and electricity
consumption of buildings – A review, Energ. Buildings, 98, 119–124,
2015. a
Schwarz, N., Lautenbach, S., and Seppelt, R.: Exploring indicators for
quantifying surface urban heat islands of European cities with MODIS land
surface temperatures, Remote Sens. Environ., 115, 3175–3186, 2011. a
Schwarz, N., Schlink, U., Franck, U., and Großmann, K.: Relationship of
land surface and air temperatures and its implications for quantifying urban
heat island indicators – An application for the city of Leipzig (Germany),
Ecol. Ind., 18, 693–704, 2012. a
Seabold, S. and Perktold, J.: statsmodels: Econometric and statistical modeling
with python, in: 9th Python in Science Conference, 28 June–3 July, Austin, Texas, 2010. a
Sharp, R., Tallis, H., Ricketts, T., Guerry, A., Wood, S., Chaplin-Kramer, R.,
Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A. L., Rogers, L., Bierbower, W., Denu, D., and Douglass, J.: InVEST 3.8.0
User's Guide, The Natural Capital Project, Natural Capital Project, Stanford, California, 2020. a, b, c, d
Sobrino, J., Oltra-Carrió, R., Sòria, G., Bianchi, R., and Paganini,
M.: Impact of spatial resolution and satellite overpass time on evaluation of
the surface urban heat island effects, Remote Sens. Environ., 117,
50–56, 2012. a
Song, J., Du, S., Feng, X., and Guo, L.: The relationships between landscape
compositions and land surface temperature: Quantifying their resolution
sensitivity with spatial regression models, Landscape Urban Plan.,
123, 145–157, 2014. a
Stewart, I. D.: A systematic review and scientific critique of methodology in
modern urban heat island literature, Int. J. Climatol.,
31, 200–217, 2011. a
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900,
2012. a
Swiss Federal Statistical Office: City Statistics (Urban Audit), Data
collection, available at:
https://www.bfs.admin.ch/bfs/en/home/statistics/cross-sectional-topics/city-statistics.html (last access: 14 May 2020), 2018. a
Tallis, H. and Polasky, S.: Mapping and valuing ecosystem services as an
approach for conservation and natural-resource management, Ann. NY Acad. Sci., 1162, 265–283, 2009. a
United Nations: World Urbanization Prospects: The 2014 Revision, United Nations, Department of Economic and Social Affairs, Population Division, New York City, New York, 2015. a
Weng, Q., Lu, D., and Schubring, J.: Estimation of land surface
temperature–vegetation abundance relationship for urban heat island studies,
Remote Sens. Environ., 89, 467–483, 2004. a
Yang, L., Wu, X., Praun, E., and Ma, X.: Tree detection from aerial imagery,
in: Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 131–137, ACM, 2009. a
Zander, K. K., Botzen, W. J., Oppermann, E., Kjellstrom, T., and Garnett,
S. T.: Heat stress causes substantial labour productivity loss in Australia,
Nat. Clim. Change, 5, 647–651, 2015. a
Zanter, K.: Landsat 8 (L8) Data User Handbook Version 1.0, EROS. South Dakota,
2015. a
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking,
S., Yao, R., Qiao, Z., and Sobrino, J. A.: Satellite remote sensing of
surface urban heat islands: progress, challenges, and perspectives, Remote
Sens., 11, 48, https://doi.org/10.3390/rs11010048, 2019. a, b
Zhou, W., Wang, J., and Cadenasso, M. L.: Effects of the spatial configuration
of trees on urban heat mitigation: A comparative study, Remote Sens.
Environ., 195, 1–12, 2017. a
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
The article presents a novel approach to simulate urban heat mitigation from land use/land cover...