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Abstract. Mitigating urban heat islands has become an im-
portant objective for many cities experiencing heat waves.
Despite notable progress, the spatial relationship between
land use and/or land cover patterns and the distribution of air
temperature remains poorly understood. This article presents
a reusable computational workflow to simulate the spatial
distribution of air temperature in urban areas from their land
use and/or land cover data. The approach employs the In-
VEST urban cooling model, which estimates the cooling ca-
pacity of the urban fabric based on three biophysical mech-
anisms: tree shade, evapotranspiration and albedo. An auto-
mated procedure is proposed to calibrate the parameters of
the model to best fit air temperature observations from moni-
toring stations. In a case study in Lausanne, Switzerland, spa-
tial estimates of air temperature obtained with the calibrated
model show that the urban cooling model outperforms spa-
tial regressions based on satellite data. This represents two
major advances in urban heat island modeling. First, unlike
in black-box approaches, the calibrated parameters of the ur-
ban cooling model can be interpreted in terms of the physical
mechanisms that they represent; therefore, they can help pro-
mote an understanding of how urban heat islands emerge in a
particular context. Second, the urban cooling model requires
only land use and/or land cover and reference temperature
data and can, therefore, be used to evaluate synthetic scenar-
ios such as master plans, urbanization prospects and climate
scenarios. The proposed approach provides valuable insights
into the emergence of urban heat islands which can serve to
inform urban planning and assist the design of heat mitiga-
tion policies.

1 Introduction

Since the industrial revolution, the Earth has seen a global
increase in temperature which has been especially prominent
in urban areas (Oke, 1973; Arnfield, 2003; Clinton and Gong,
2013). Such a trend concurs with the unprecedented growth
of urban areas, making contemporary cities a major source
of landscape changes and greenhouse gas emissions (Angel
et al., 2005; Grimm et al., 2008; United Nations, 2015). By
modifying the energy and water balance processes and in-
fluencing the movement of air, urban surfaces alter local cli-
matic characteristics, often resulting in warmer temperatures
than their rural surroundings (Oke, 1982). This phenomenon
is known as the “urban heat island” (UHI) effect.

The quantification of UHIs can be broadly divided into two
main approaches (Schwarz et al., 2011), namely the canopy-
layer UHI, measured by the air temperature, usually at 2 m
height (Stewart, 2011), and the surface UHI, measured by
land surface temperatures (LSTs) derived from remote sens-
ing data (Voogt and Oke, 2003). The increasing availability
of satellite raster datasets has fostered a large body of re-
search on the spatial distribution of LSTs and their relation-
ship with the spatial composition and configuration of urban
landscapes (Voogt and Oke, 2003; Zhou et al., 2019), which
contrasts with the spatial sparsity of meteorological stations
that measure air temperature. Despite exhibiting some cor-
relations, air temperature and LST are essentially different
physical quantities. Air temperature is closer to thermal com-
fort felt by humans and can therefore be employed to evalu-
ate the influence of UHIs on key matters such as the energy
demand for air conditioning or human health. Additionally,
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depending on the satellite overpass time, the differences be-
tween air temperature and LST can range from a few degrees
(◦C) up to tens of degrees (Jin and Dickinson, 2010; Sobrino
et al., 2012), which calls for special caution when employing
satellite-derived LST data for the study of UHIs.

Although notable studies have explored the relationship
between satellite-derived LST raster data and air tempera-
ture measurements to provide high-resolution insights into
the canopy-layer UHI (Fabrizi et al., 2010; Schwarz et al.,
2012; Anniballe et al., 2014; Sheng et al., 2017; Shiflett et al.,
2017), they have mostly focused on finding statistical rela-
tionships between UHIs and the spatial distribution of terrain
features such as vegetation indices, without exploring how
the observed patterns relate to the biophysical mechanisms
that explain the canopy-layer UHI. Such a limitation is im-
portant when models are used in simulations – for example,
to examine the effect of urban planning scenarios on air tem-
peratures. As part of the Integrated Valuation of Ecosystem
Services and Tradeoffs (InVEST) software, a suite of spatial
models to quantify and value the goods and services from
nature that sustain and fulfill human life (Sharp et al., 2020),
an urban cooling model has been developed following recent
research on the effects of surface materials and vegetation
cover on UHIs (Phelan et al., 2015; Zardo et al., 2017). The
aim of the urban cooling model is to simulate the spatial dis-
tribution of UHIs based on three key mechanisms, namely
the shade provided by trees, the evapotranspiration of urban
vegetation and the albedo of the urban surface. In a prelim-
inary application of the model, Hamel et al. (2020) showed
its capability to represent the spatial pattern of nighttime air
temperature of the 2003 heat waves in the Île-de-France re-
gion.

The main objective of this study is to extend such pre-
liminary experiments by proposing a reusable computational
workflow to apply the InVEST urban cooling model to pre-
dict the spatial distribution of air temperature in a given study
area. The validity of the simulated results is optimized by cal-
ibrating some key parameters to best fit a set of air temper-
ature measurements from monitoring stations. Additionally,
the simulated spatial pattern of air temperature is compared
with one obtained using an alternative approach, namely a
spatial regression over features extracted from satellite data.

2 Materials and methods

2.1 Study area

Situated at the western end of the Swiss Plateau and on
the shores of Lake Geneva, Lausanne is the fourth largest
Swiss urban agglomeration with 420 757 inhabitants as of
January 2019 (Swiss Federal Statistical Office, 2018). As
the second most important student and research center in
Switzerland (after Zurich), the urban agglomeration of Lau-
sanne has experienced substantial growth during recent

decades, which has mostly occurred in the form of subur-
banization (Bosch et al., 2020).

A notable geographic feature of Lausanne is its eleva-
tion difference of about 500 m between the lake shore at
372 m a.s.l. and the northeastern part of the agglomeration
(see Fig. 1). The area is characterized by a continental tem-
perate climate with mean annual temperatures of 10.9 ◦C and
mean annual precipitation of 1100 mm, and a dominating
vegetation of mixed broadleaf forest.

Spatial extent of the study

In line with urban economics and regional sciences, many
works rely on administrative boundaries to define the spatial
extent of the study. However, the way in which boundaries
are constructed overlooks the characteristic scales at which
landscape changes and environmental processes unfold, and
might thus lead to equivocal results (Liu et al., 2014; Oliveira
et al., 2014). Considering such issues, the spatial extent for
this study was determined quantitatively by following the
method employed in the Atlas of Urban Expansion (Angel
et al., 2012). The core idea is that a pixel is considered part
of the spatial extent depending on the proportion of built-
up pixels that surround it. In this study, a pixel is consid-
ered part of the spatial extent when more than 15 % of the
pixels that lay within a 500 m radius are built-up. Addition-
ally, in order to evaluate how temperatures change across the
urban–rural gradient, the spatial extent has been extended by
a 1000 m buffer. The above procedure has been applied to the
rasterized land use and/or land cover (LULC) map by means
of the Urban footprinter (Bosch, 2020b) Python library. The
obtained spatial extent, displayed in Fig. 1, has a surface of
112.46 km2.

2.2 Data

2.2.1 Land use and/or land cover data

The LULC maps were obtained by rasterizing the vector
geometries of the official cadastral survey of August 2019
to a 10 m resolution. Such a dataset is provided and main-
tained (i.e., updated weekly) by the cantonal administration
of Vaud, and it features the whole spatial extent of the can-
ton of Vaud (Association pour le Système d’information du
Territoire Vaudois, 2018). The classification distinguishes 25
LULC classes that are relevant to the urban, rural and wild
landscapes encountered in Switzerland (Conference des Ser-
vices Cantonaux du Cadastre, 2011). Moreover, a 1 m binary
tree canopy mask was derived from the SWISSIMAGE or-
thomosaic (Federal Office of Topography, 2019), by means
of the DetecTree (Bosch, 2020a) Python library, which im-
plements the methods proposed by Yang et al. (2009). The
tree canopy mask of the spatial extent of the study is shown
in Fig. 1.
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Figure 1. Study area. The upper left plot (A) shows the computed spatial extent (in orange) over the repartition of urban pixels (in black)
derived from the rasterized cadastral survey (Association pour le Système d’information du Territoire Vaudois, 2018). The upper right
plot (B) shows the locations of the air temperature measurement stations (see Appendix A2). The bottom row shows, for the computed spatial
extent of the study, (C) the tree canopy map derived from the SWISSIMAGE orthomosaic (Federal Office of Topography, 2019) and (D) the
altitude map derived from the free version of the digital height model of Switzerland (Federal Office of Topography, 2004). The basemap
of plots (A), (C) and (D) is based on the World Shaded Relief (© 2009 Esri). The basemap tiles of plot (B) have been provided by Stamen
Design (https://stamen.com, last access: 28 July 2020), under a Creative Commons BY 3.0 License (http://creativecommons.org/licenses/
by/3.0, last access: 28 July 2020), with data from OpenStreetMap (https://openstreetmap.org, last access: 28 July 2020, © OpenStreetMap
contributors 2021, distributed under a Creative Commons BY-SA License).

2.2.2 Elevation data

The elevation map for the study area, which is displayed in
Fig. 1, is extracted from the free version of the digital height
model of Switzerland (Federal Office of Topography, 2004),
provided at a 200 m resolution by the Federal Office of To-
pography.

2.2.3 Satellite data

The satellite dataset consists of the eight Landsat 8 images
in 2018 and 2019 that do not feature clouds over the study
area and comprise days on which the maximum observed air
temperature was over 25 ◦C (see the list of selected image
tiles in Appendix A1). Data from Landsat 7 were excluded
because of the scan line corrector malfunction.

2.2.4 Air temperature data

A dataset of consistent air temperature measurements in the
study area was assembled by combining data from 11 sta-

tions operated by various governmental and research sources,
which are shown in Fig. 1. The temporal resolution of the sta-
tions ranges from 10 to 30 min. Given that the UHI effect in
Switzerland reaches its maximal intensity around 21:00 CET
(Burgstall, 2019), the remainder of this study evaluates it
based on the air temperature observations at the abovemen-
tioned time.

2.3 Simulation with the InVEST urban cooling model

The simulation of the spatial distribution of UHIs employs
the InVEST urban cooling model, version 3.8.0 (Sharp et al.,
2020), which is based on the heat mitigation provided by
shade, evapotranspiration and albedo. The main inputs are a
LULC raster map, a reference evapotranspiration raster and
a biophysical table containing model information of each
LULC class of the map. Each row of the biophysical table
represents a LULC class and features the following columns:

– lucode – the LULC class code as represented in the
LULC raster map;
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– Shade – a value between zero and one representing the
proportion of tree cover in such a LULC class;

– Kc – the evapotranspiration coefficient;

– Albedo – a value between zero and one representing
the proportion of solar radiation directly reflected by the
LULC class;

– Green_area – whether the LULC class should be
considered a green area or not;

– Building_intensity – a value between zero and
one representing the ratio between floor area and land
area (for nighttime simulations).

2.3.1 Model description

The data inputs described above are used to compute the
cooling capacity index, which is based on the physical mech-
anisms that contribute to cooling urban temperatures. More
precisely, the cooling capacity index used in the InVEST
urban cooling model builds upon the indices proposed by
Zardo et al. (2017), which are based on shading and evapo-
transpiration, and extends them by adding a factor to account
for the albedo. For each pixel i of the LULC raster map, the
cooling capacity index is computed as follows:

CCi = wS · Si +wAL ·ALi +wET ·ETIi, (1)

where Si , ALi and ETIi represent the respective tree shading,
albedo and evapotranspiration values of pixel i as defined in
the biophysical table, and wS, wAL and wET represent the
weights attributed to each respective component. The values
of Si and ALi are retrieved from the biophysical table accord-
ing to the LULC class k of the pixel i (see Appendix A3).
The tree shading is computed by overlaying the binary tree
canopy mask with the rasterized LULC map so that for each
LULC class k, the shade coefficient Sk corresponds to the
average proportion of tree cover over all the LULC pixels of
class k, as follows:

Sk =
1
|�k|

∑
j∈�k

xj . (2)

Here, �k is the set of pixels of the tree canopy mask whose
location corresponds to class k in the LULC raster, and xj
is the value of pixel j of the tree canopy mask, i.e., one if j
corresponds to a tree and zero otherwise. The albedo coef-
ficients are based on the local climate zone classification by
Stewart and Oke (2012).

The evapotranspiration index ETI is computed as a nor-
malized value of the potential evapotranspiration as follows:

ETI=
Kc ·ETref

ETmax
, (3)

where Kc is the evapotranspiration coefficient, ETref is the
reference evapotranspiration raster for the period and area of

interest, and ETmax is the maximum evapotranspiration value
observed in the area of interest.

In line with the studies of Nistor and Porumb (2015), Nis-
tor et al. (2016) and Nistor (2016), the evapotranspiration co-
efficients are attributed to each LULC class by distinguishing
four cases, namely the crop coefficient for single crops for
vegetation LULC classes, the water evaporation coefficient
for surface water, the rock and soil evaporation coefficient
for bare soils and rocks, and evaporation coefficients for arti-
ficial LULC classes (e.g., urban areas). The evapotranspira-
tion coefficients attributed to the LULC classes of the Swiss
cadastral survey are listed in Table A3.

Following the recommendations of Allen et al. (1998), the
daily evapotranspiration ETref (in mm/d) was estimated for
each pixel using the Hargreaves equation (Hargreaves and
Samani, 1985) as follows:

ETref = 0.0023 · (Tavg+ 17.8) · (Tmax− Tmin)
0.5
·Ra, (4)

where Tavg, Tmax and Tmin correspond to the average, maxi-
mum and minimum Tair (in ◦C) of each day, respectively, and
Ra is the extraterrestrial radiation (in mm/d), which is esti-
mated for the latitude of Lausanne (i.e., 46.519833◦) for each
date following the methods of Allen et al. (1998, Eq. 21). The
temperature values of each day have been extracted from the
inventory of gridded datasets provided by the Federal Of-
fice of Meteorology and Climatology (MeteoSwiss), which
feature the minimum, average and maximum daily Tair for
the extent of the whole country at a resolution of 1 km.
Such a dataset is obtained by interpolating 100 Tair stations
across Switzerland (including the MeteoSwiss Pully station
in Fig. 1) based on nonlinear thermal profiles of major basins
and non-Euclidean distance weighting that accounts for ter-
rain effects (Frei, 2014).

In order to account for the cooling effect of large green
spaces, the computed cooling capacity index of pixels that
are part of large green areas (> 2 ha) is adjusted as follows:

CCgreen
i =

∑
j∈�i

gi ·CCj · e
−
d(i,j)
dcool , (5)

where gi is one when the pixel i is a green area and zero oth-
erwise (as defined in the biophysical table), d(i,j) is the dis-
tance between pixels i and j , dcool is a parameter that defines
the distance over which a green space has a cooling effect,
and �i is the set of pixels whose distance to i is lower than
dcool.

A heat mitigation (HM) index is then computed as follows:

HMi =


CCi if i is part of a large green area

or CCi > CCgreen
i

CCgreen
i otherwise.

(6)

In order to simulate the spatial distribution of Tair, the model
requires two additional inputs. The first is the rural reference
temperature Tref, where the UHI effect is not observed, e.g.,
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in the rural surroundings of the city. The second is the mag-
nitude of the UHI effect UHImax, namely the difference be-
tween the rural reference temperature and the maximum Tair
observed in the city center. The two parameters are combined
with HMi to compute the Ti for each pixel i of the study area
as follows:

T no mix
i = Tref+ (1−HMi) ·UHImax. (7)

Finally, the Tair values of each pixel T no mix
i are spatially aver-

aged using a Gaussian function with a kernel radius r defined
by the user.

2.3.2 Calibration and evaluation of the model

To compare the InVEST urban cooling model with the spa-
tial regression based on satellite features, the urban cool-
ing model is used to simulate the spatial distribution of Tair
for the same eight dates used to train the spatial regression
model, i.e., the dates of the selected Landsat images. It is im-
plicitly assumed that no significant LULC changes have oc-
curred throughout study period (i.e., from May 2018 to Au-
gust 2019); therefore, all simulations depart from the same
LULC raster, i.e., the rasterized cadastral survey of the can-
ton of Vaud as described above. Given the rugged terrain of
the study area, the Tref was set as the minimum average Tair
observed among the monitoring stations, while UHImax was
set as the difference between the maximum average Tair ob-
served among the monitoring stations and Tref. The values
of Tref and UHImax for the 8 d considered in this study are
displayed in Fig. A1.

Although the documentation of the InVEST urban cooling
model (Sharp et al., 2020) provides some suggested values
for several parameters of the model, their suitability depends
strongly on the local geographic conditions of the study area.
Therefore, calibration of the parameters is required in order
to better understand how the physical mechanisms beyond
the emergence of UHIs take place in the context of Lau-
sanne. Following the manual calibration approach drafted by
Hamel et al. (2020), the target parameters are the weights at-
tributed to the tree shading (wS), albedo (wA) and evapotran-
spiration (wET), the distance over which green spaces have
a cooling effect (dcool) and the Tair mixing radius (r). As an
additional contribution, this article implements an automated
calibrated procedure based on simulated annealing optimiza-
tion (Kirkpatrick et al., 1983) that aims at the minimization
of the R2 between the Tair values observed in the monitor-
ing stations and those predicted by the model1. The param-
eter values suggested in the documentation of the model are
set as the initial state of the simulation annealing procedure,
which corresponds to a Tair mixing radius of r = 500 m, a
green area cooling distance of dcool = 100 m, and weights

1The calibration module has been designed as a reusable
open-source Python package (see https://github.com/martibosch/
invest-ucm-calibration; last access: 11 September 2020)

attributed to tree shading, albedo and evapotranspiration of
wS = 0.6, wA = 0.2 and wET = 0.2, respectively. The num-
ber of calibration iterations is set to 100.

Given that the Tref and UHImax parameters in this study
were obtained from observations from each simulated day,
metrics such as the mean absolute error (MAE) and the root
mean squared error (RMSE) are effectively constrained to the
[0, UHImax] range, which affects the interpretation of these
metrics. Therefore, in order to evaluate the ability of the In-
VEST urban cooling model to spatially simulate UHIs, the
coefficient of adjustment R2, MAE and RMSE of the cali-
brated model are compared with those computed in two ad-
ditional experiments. The first experiment consisted of ran-
domly sampling the Tair values from a uniform distribution
over the [Tref, UHImax] range of each date. In the second ex-
periment, the Tair values of each date were randomly sampled
from a normal distribution with the mean and standard devia-
tion of the Tair measurements of the monitoring stations. For
both experiments, the three evaluation metrics are reported
as their average over 10 runs.

2.4 Spatial regression of air temperature based on
satellite data

The spatial regression to predict Tair from features derived
from satellite data is performed over a raster dataset on a
per-pixel basis. A regression model is then trained to fit the
observed Tair measurements by minimizing the error at the
pixels that correspond to the locations of the monitoring sta-
tions.

The regression operates in each pixel with the Tair as the
target variable, and the elevation, the LST and the normalized
difference water index (NDWI) (Gao, 1996) as independent
variables. Additionally, to account for the influence of the
temperature and moisture surface conditions of each pixel,
the LST and NDWI are spatially averaged over a series of cir-
cular neighborhoods with radii of 200, 400, 600 and 800 m,
thereby reckoning eight supplementary features. Based on
previous research on the sensitivity of the landscape pattern–
UHI relationships to the spatial resolution (Weng et al., 2004;
Song et al., 2014), the target resolution was set to 200 m.

2.4.1 Computation of satellite-derived features

The estimation of the LST from Landsat 8 images followed
the methods of Avdan and Jovanovska (2016). On the one
hand, the data from the near-infrared (NIR) and red bands
of Landsat 8 (i.e., bands 4 and 5, respectively) were used to
compute the normalized difference vegetation index (NDVI),
which was then used to estimate the ground emissivity (ελ).
On the other hand, following the Landsat 8 Data Users Hand-
book (Zanter, 2015), the data from the thermal band of Land-
sat 8 (i.e., band 10) were first converted to top-of-atmosphere
spectral radiance (Lλ), from which brightness temperature
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(BT) was estimated (in ◦C) as follows:

BT=
K2

ln((K1/Lλ)+ 1)
− 273.15. (8)

Here, K1 and K2 are band-specific thermal conversion con-
stants embedded in the Landsat image metadata. Finally, the
ground emissivity (ελ) and the brightness temperature (BT)
were used to compute the LST by inversion of Planck’s Law:

LST=
BT

1+ λ · (BT/ρ) · ln(ελ)
, (9)

where ρ = 1.438× 10−2 m K is a constant computed as a
product of the Boltzmann constant and Planck’s constants
divided by the velocity of the light, and λ= 10.895×10−9 is
the average of the limiting wavelengths of the thermal band.

The NDWI is computed from the green and near-infrared
(NIR) bands of Landsat 8 (i.e., bands 3 and 5, respectively)
as follows:

NDWI=
Xgreen−XNIR

Xgreen+XNIR
. (10)

2.4.2 Model selection and evaluation

Based on the work of Ho et al. (2014), three regression mod-
els have been considered, namely a multiple linear regression
model, a support-vector machine (SVM) model and a ran-
dom forest model. The accuracy of each regression model
is assessed by means of a k-fold cross-validation procedure,
where the regression samples are first shuffled and parti-
tioned into three folds. For each fold k, a regression model
is then trained using the other two folds, and it is validated
using the samples of the k fold. Finally, the model that shows
the best validation score (i.e., the R2 averaged over 10 repe-
titions of the k-fold procedure) is selected. Additionally, the
MAE and RMSE are computed in order to evaluate the devi-
ations between the observed Tair and the predictions of each
model.

The importance of each feature is also evaluated by com-
puting its permutation importance (Breiman, 2001), namely
the average decrease in the regression accuracy when a fea-
ture is randomly shuffled. The training of the regression mod-
els, the cross-validation and the permutation feature impor-
tance described above have been implemented by means of
the Scikit-learn library (Pedregosa et al., 2011).

3 Results

3.1 Spatial regression of air temperature based on
satellite data

When including all of the samples, the R2 for the linear
regression, SVM and random forest are 0.832, 0.014 and
0.960, respectively, with a respective MAE of 1.198, 2.671

and 0.580 ◦C, and a respective RMSE of 1.508, 3.652 and
0.738 ◦C. The coefficients suggest that SVM is not well
suited for such a regression in this study area, whereas the
linear regression and random forest models obtain a very
strong fit – with the latter achieving the best performance.
Nevertheless, the average cross-validation scores suggest that
the linear regression (average score R2

= 0.733) is more ro-
bust to missing data and also less likely to over-fit the ob-
servations than the random forest regressor (average score
R2
= 0.658). Thus, the remainder of the article only consid-

ers the results obtained with a linear regression model trained
with all of the samples.

The importance of features of the chosen linear regres-
sion model can be evaluated by means of an F test, as im-
plemented in the statsmodels (Seabold and Perktold, 2010)
Python library (see Table B1). With a significance level of
p = 0.05, the results of the F test suggest that the most sig-
nificant variable for the linear regression is the NDWI spa-
tially averaged over a 800, 600 and 400 m radius (in decreas-
ing order of significance). The following most significant
variable is the NDWI spatially averaged over a 200 m radius
(p = 0.071) and without spatial averaging (p = 0.231), and
the LST spatially averaged over a 400 m radius (p = 0.277).
With a significance level of p = 0.420, the elevation does
not appear to be significant in this particular regression. The
low significance obtained for the LST features in this study
might be attributable to the large time lag between the ac-
quisition time of the Landsat images (which ranges from
11:15 to 11:23 CET) and the time of the Tair measurements
(i.e. 21:00 CET).

The relationship between the predicted and the observed
values is displayed in Fig. B1. The respective MAE and
RMSE values of 1.198 and 1.508 ◦C demonstrate a stronger
fit than the values of 1.82 and 2.31 ◦C obtained in the study
of Ho et al. (2014) in Vancouver. The two plots in Fig. 2
show the relationship between the elevation and Tobs of each
sample and the regression errors. While there is no discern-
able relationship regarding the elevation of the samples (i.e.,
the elevation of the monitoring stations), the regression er-
rors seem to be negatively correlated with Tobs. This pat-
tern, which was also noted by Ho et al. (2014), indicates that
high-temperature samples are systematically underestimated
by the regression model, whereas low-temperature samples
are consistently overestimated.

The series of predicted Tair maps for the eight dates as well
as the prediction errors at the locations of the monitoring sta-
tions are displayed in Fig. 3. While the range of temperatures
exhibits important differences throughout the dates, the spa-
tial distribution of Tair is seemingly consistent. The highest
temperatures persistently occur in the most urbanized areas,
whereas the lowest temperatures take place at higher eleva-
tions located in the east and northeast of the map. Finally,
there seems to be no discernable pattern in space nor time
regarding the prediction errors at the monitoring stations.
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Figure 2. Scatterplot of the spatial regression residuals (y axis) against the elevation of the monitoring station (x axis of panel a) and the
observed Tair (x axis of panel b), colored by the sample date. See Appendix B.

Figure 3. Maps of the Tair predicted by the spatial regression for the eight dates. The points in the map correspond to the location of the
monitoring stations and are colored according to the regression errors.

3.2 Simulation with the InVEST urban cooling model

The parameters of the model that result in the best fit of
the station measurements are a Tair mixing radius of r =
236.02 m, a green area cooling distance of dcool = 89.21 m,
and weights attributed to tree shading, albedo and evapo-
transpiration of wS = 0.59, wA = 0.24 and wET = 0.17, re-
spectively (see Appendix B). The R2, MAE and RMSE of
the calibrated model are 0.903, 0.955 and 1.144 ◦C, respec-

tively; these values suggest better model performance than
randomly sampling from the station measurements. Random
sampling from the station measurements yields a respective
R2, MAE and RMSE of 0.573, 1.947 and 2.405 ◦C when
sampling from a uniform distribution and 0.550, 1.952 and
2.468 ◦C when sampling from a normal distribution. Further-
more, the values of R2, MAE and RMSE obtained with the
calibrated parameters reveal a stronger fit than the spatial re-
gression reported above.
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The relationship between the Tair values at the monitoring
stations simulated with the calibrated parameters and the ac-
tual observed measurements is shown in Fig. B2. The differ-
ences between Tair simulated at the monitoring stations and
the observed values are plotted against the elevation and the
observed temperatures (Tobs) in Fig. 4. The pattern of such
relationships is very similar to that observed in the spatial re-
gression. Conversely, there is no clear relationship between
the prediction error of the urban cooling model and eleva-
tion. Moreover, the prediction errors exhibit a negative cor-
relation with the observed temperature, denoting a system-
atic tendency to both underestimate high temperatures and
overestimate low temperatures – with the former being more
prominent in this case, as is noticeable from the asymmetry
of the y axis in Fig. 4.

The simulated Tair maps for the eight dates and the predic-
tion errors at the monitoring stations are shown in Fig. 5. As
in the spatial regression, the temperature ranges show impor-
tant differences across dates, yet the same spatial pattern of
Tair persists. The simulated distribution of Tair shows its high-
est values in the center of Lausanne and along the most ur-
banized (and hence less forested) zones along the main trans-
portation axes, whereas the lowest temperatures are found in
the forested areas located in the eastern and western extremes
of the upper half of the study area.

3.3 Model comparison

A comparison of the maps predicted by the spatial regres-
sion and the urban cooling model is displayed in Fig. 6.
In line with the temporal consistency of the spatial patterns
predicted by the respective two approaches, the comparison
maps also show a spatial distribution of Tair that persists
throughout the dates. Such a spatial pattern is strongly remi-
niscent of the elevation maps (see Fig. 1 above) and reflects
the fact that elevation is explicitly considered in the spatial
regression but not in the urban cooling model. The over-
all distribution of the Tair pixel differences between the two
approaches follows a normal distribution that ranges from
−9.620 to 11.929 ◦C (reflecting the lower and higher tem-
peratures predicted in the spatial regression, respectively),
which is a considerably large range when compared with the
small overall MAE and RMSE of both approaches. Nonethe-
less, the way in which the histogram is centered around 0 ◦C
suggests that the differences between the two approaches fol-
low no particular correlation other than the spatial regression
predicting more extreme Tair values, which is not surprising
considering that the range of Tair is systematically bounded
in the urban cooling model by the Tref and UHImax parame-
ters.

4 Discussion

The results obtained in this study suggest that both the spa-
tial regression based on satellite data and the InVEST urban
cooling model are capable of predicting the spatial distribu-
tion of air temperature with a large degree of statistical de-
termination. Furthermore, the fact that a similar spatial pat-
tern is predicted by both models suggests that the biophys-
ical mechanisms embedded in the urban cooling model are
well represented. If that is the case, the urban cooling model
presents two central advantages with respect to the spatial
regression.

The first advantage is that, in contrast to regressions and
black-box approaches, the biophysical mechanisms that drive
the emergence of UHIs are represented explicitly; this allows
for a physical interpretation of the parameters of the model.
For example, in a comparative study of the relationship be-
tween the LST and the spatial configuration of trees in Balti-
more and Sacramento, Zhou et al. (2017) suggested that the
distinctive results observed in each city might be related to
how the shading of trees and evapotranspiration contribute
differently to urban cooling in the climatic context of each
city. More precisely, the abovementioned study suggested
that in the dry climate of Sacramento, large patches of trees
ameliorate the efficiency of the evapotranspiration, whereas
the gains from the tree shading are likely more important in
the humid climate of Baltimore. The urban cooling model
provides a suitable means to quantitatively address such mat-
ters – i.e., by calibrating the model in the two cities, we can
explore the weights obtained for each factor to support such a
hypothesis. In the case study of Lausanne reported above, the
weight attributed to the tree shading (wS = 0.59) is higher
than that attributed to the evapotranspiration (wET = 0.17).
This is consistent with the local climatic conditions being
more similar in Lausanne and Baltimore than in Sacramento;
however, the weights obtained in this study might be partly
determined by the initial solution provided. Nonetheless, to
further understand this issue, validation and calibration of the
InVEST urban cooling model in a broader variety of cities is
required. Overall, the way in which the calibrated parame-
ters differ from the recommendations in the documentation
of the model are in consonance with the particular character-
istics of Lausanne. More precisely, the smaller mixing radius
and cooling distances are consistent with the uneven relief of
the study area.

The second major advantage of the urban cooling model
is that once the model is calibrated for a given city, it can be
used to evaluate synthetic scenarios, such as those stemming
from master plans, urbanization prospects or the like, and to
spatially design solutions. This kind of spatially explicit eval-
uation of the impacts of alternative scenarios on ecosystem
services is in fact one of the central purposes of the InVEST
suite of models (Tallis and Polasky, 2009). Statistical models
like the spatial regression are not well suited to such a pur-
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Figure 4. Scatterplot of the differences between the Tair simulated by the InVEST urban cooling model and the values observed at the
monitoring stations (y axis) against the elevation of the monitoring station (x axis of panel a) and the observed Tobs (x axis of panel b),
colored by the sample date.

Figure 5. Maps of the Tair simulated by the InVEST urban cooling model for the eight dates. The points on the map correspond to the
location of the monitoring stations and are colored according to the simulation errors.

pose, as they rely on features, such as the LST, that are hard
to obtain other than empirically.

The approach proposed in this article is nevertheless sub-
ject to some limitations that merit thoughtful consideration.
On the one hand, as acknowledged in its user guide (Sharp
et al., 2020), the design of the InVEST urban cooling model
presents a number of limitations, the most relevant to this
study being the simplified and homogeneous way in which

the air is mixed and the cooling effects of large green spaces.
In complex terrains such as the Lausanne agglomeration,
models with uniform weighting of space show considerable
deviations from the observed distribution of air temperature
(Frei, 2014). On the other hand, the relationship between the
calibration parameters and the resulting R2 is likely to de-
fine a complex optimization landscape with multiple local
optima. As a metaheuristic that strongly depends on random
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Figure 6. Maps comparing the difference between the Tair predicted by the spatial regression T̂sr and the InVEST urban cooling model T̂ucm
for the eight dates (see Appendix B).

decisions, the simulated annealing procedure is susceptible
to convergence to local optima, arbitrarily leading to differ-
ent solutions in each run. A sensitivity analysis of the param-
eters of the urban cooling model as undertaken preliminar-
ily by Hamel et al. (2020) for the Île-de-France region could
serve as a basis to improve the simulated annealing proce-
dure by careful design of an appropriate neighborhood search
and annealing schedule. Finally, the approach of the present
study is based on observations at the moment of maximal
UHI intensity (i.e., 21:00 CET in Switzerland); however, the
factors that influence UHIs are likely to operate differently
across the diurnal UHI cycle. In fact, several studies point
to distinct relationships between the spatial patterns of veg-
etation and daytime and nighttime UHIs (Anniballe et al.,
2014; Sheng et al., 2017; Shiflett et al., 2017; Hamel et al.,
2020). Considering the nature of the implications of UHIs,
e.g., energy consumption, work productivity or human health
(Koppe et al., 2004; Santamouris et al., 2015; Zander et al.,
2015), a sound understanding of the full diurnal UHI cycle
becomes crucial towards the design of robust solutions.

Nevertheless, the limitations on how the urban cooling
model represents the spatial air mixing and the cooling ef-
fects of green spaces seem hard to overcome with the cur-
rent spatial sparsity of monitoring stations. Such a major
shortcoming, which contrasts with the growing availability of

high-resolution LST datasets, is one of the main reasons why
most UHI studies have focused on the latter (Jin and Dick-
inson, 2010; Zhou et al., 2019). As illustrated in this article,
spatial regressions based on remote sensing features such as
the LST and NDWI do not necessarily replicate the air tem-
perature measurements better than biophysical models such
as the InVEST urban cooling model. Therefore, improving
the spatial density of the monitoring network becomes im-
perative for further enlightenment with respect to the UHI
phenomena.

5 Conclusions

The present article presents a spatially explicit approach
to simulate UHIs with the InVEST urban cooling model,
which is based on three biophysical mechanisms, namely
tree shade, evapotranspiration and albedo. The proposed ap-
proach shows how LULC and air temperature data can be
combined to calibrate the parameters of the model to best
fit measurements from monitoring stations by means of an
automated procedure. The simulations performed for the ur-
ban agglomeration of Lausanne show that the InVEST urban
cooling model can outperform spatial regressions based on
satellite-derived features such as LST, NDWI and elevation.
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The way in which both approaches consistently predict the
highest temperatures in the most urbanized parts of the ag-
glomeration suggests that the enhancement of green infras-
tructure can be an effective heat mitigation strategy; however,
further exploration in other climatic contexts is required to
fully understand this issue. To that end, the reusability of the
computational workflow paves the way for further applica-
tion of the urban cooling model to a broad variety of cities,
which can serve to improve the understanding of the UHI
phenomena and support the design of heat mitigation strate-
gies.
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Appendix A: Data

A1 Landsat tiles

The list of product identifiers for the Landsat image tiles are
available as a comma-separated value (CSV) file at https:
//zenodo.org/record/4384675/files/landsat-tiles.csv (last ac-
cess: 13 July 2020).

A2 Monitoring stations

The list of monitoring stations with their operator and
their elevation in meters above sea level is available
as a CSV file at https://zenodo.org/record/4384675/files/
station-tair.csv (last access: 13 July 2020). The operators are
Agrometeo, the Federal Roads Office (ASTRA), the Federal
Office for the Environment (BAFU), the general directorate
for the environment of the canton of Vaud (DGE), and the
Federal Institute of Forest, Snow and Landscape Research
(WSL) (Rebetez et al., 2018).

A3 Biophysical table

The biophysical table used in the computational workflow is
available as a CSV file at https://zenodo.org/record/4384675/
files/biophysical-table.csv (last access 13 July 2020). The
crop and water coefficients are based on Allen et al. (1998),
whereas rock, soil and urban coefficients are derived from the
results of Grimmond and Oke (1999) in the city of Chicago.
Given that the evapotranspiration of the vegetation and crops
is subject to seasonal changes in temperate zones such as
Switzerland (Allen et al., 1998), the values correspond to
the mid-season estimation (June to August) in Nistor (2016).
The albedo values are based on the work of Stewart and Oke
(2012). The shade column, which represents the proportion
of tree cover of each LULC class, has been computed with
a high-resolution tree canopy map of Lausanne and is, there-
fore, specific to the study area. Rows with a dash (–) in the
shade column denote that the corresponding LULC class is
not present in the study area.

A4 Reference temperatures and UHI magnitude

Figure A1. Reference temperatures Tref (i.e., minimum Tair at
21:00 CET among the monitoring stations) and magnitude of the
UHI UHImax (i.e., difference between Tref and the maximum Tair
at 21:00 CET among the monitoring stations) for the eight dates
considered in this study.
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Appendix B: Results

B1 Tables

Table B1. F test of variable significance of the linear regression.

Feature Coefficient SE t P > |t | [0.025 0.975]

const 1.1760 3.369 0.349 0.728 −5.534 7.886
lst_0 0.4944 0.584 0.846 0.400 −0.669 1.658
ndwi_0 −6.1852 5.127 −1.206 0.231 −16.396 4.026
lst_200 −0.3267 0.885 −0.369 0.713 −2.089 1.435
ndwi_200 −28.5531 15.581 −1.833 0.071 −59.585 2.479
lst_400 −1.9332 1.765 −1.095 0.277 −5.449 1.583
ndwi_400 124.2456 46.749 2.658 0.010 31.138 217.353
lst_600 1.0526 2.963 0.355 0.723 −4.849 6.955
ndwi_600 −156.7220 55.931 −2.802 0.006 −268.119 −45.325
lst_800 1.7306 1.685 1.027 0.308 −1.626 5.087
ndwi_800 85.4412 22.732 3.759 0.000 40.167 130.715
elev −0.0026 0.003 −0.810 0.420 −0.009 0.004

B2 Figures

Figure B1. Scatterplot of the Tair predicted by the linear regression model trained with all of the samples (y axis) versus the observed
measurements (x axis).
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Figure B2. Scatterplot of the Tair values simulated with the InVEST urban cooling model (y axis) versus the observed measurements (x axis).
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Code availability. The code materials used in this article are
available at https://doi.org/10.5281/zenodo.4916285 (Bosch, 2021)
and are maintained in a GitHub repository at https://github.com/
martibosch/lausanne-heat-islands (last access: 22 December 2020).

The code for the spatial regression of air temperature from
satellite data is available as a Jupyter Notebook (IPYNB)
at https://github.com/martibosch/lausanne-heat-islands/blob/
gmd-published/notebooks/spatial-regression.ipynb (last access:
9 June 2021).

The code of the spatial simulation of air temperature with the
InVEST urban cooling model is available as a Jupyter Notebook
(IPYNB) at https://github.com/martibosch/lausanne-heat-islands/
blob/gmd-published/notebooks/invest-urban-cooling-model.ipynb
(last access: 9 June 2021).

The code used for the comparison of the spatial regression and
simulation of air temperature is available as a Jupyter Notebook
(IPYNB) at https://github.com/martibosch/lausanne-heat-islands/
blob/gmd-published/notebooks/comparison.ipynb (last access:
9 June 2021).

Data availability. The source files for the biophysical table, list of
landsat tiles, reference evapotranspiration, station locations and sta-
tion temperature measurements for the reference dates can be found
in a dedicated archive at https://zenodo.org/record/4384675 (last
access: 13 July 2020). The reference evapotranspiration raster is
obtained using the minimum, average and maximum temperature
datasets of the copyrighted Spatial Climate Analyses of MeteoSwiss
(Frei, 2014). The temperature observations correspond to monitor-
ing stations operated by Agrometeo, the Federal Roads Office (AS-
TRA), the Federal Office for the Environment (BAFU), the gen-
eral directorate for the environment of the Canton of Vaud (DGE),
and the Federal Institute of Forest, Snow and Landscape Research
(WSL) (Rebetez et al., 2018).

The source files for the spatial extent of the study area and the
respective land use and/or land cover raster map can be found at
a dedicated archive at https://doi.org/10.5281/zenodo.4311544 (last
access: 15 July 2020; Bosch, 2020c). The obtained extent is based
on the official cadastral survey of the canton of Vaud whose exclu-
sive owner is the Canton of Vaud, with the use conditions disclosed
in the norm OIT 8401.

The tree canopy map can be found at a dedicated archive at
https://doi.org/10.5281/zenodo.4310112 (Bosch, 2020d). The map
has been obtained based on the SWISSIMAGE 2016 aerial imagery
dataset.
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Mare University of Suceava, Geography Series, 26, 138–153,
2016.

Nistor, M.-M. and Porumb, G. C. G.: How to compute the land
cover evapotranspiration at regional scale? A spatial approach
of Emilia-Romagna region, GEOREVIEW: Scientific Annals of
Stefan cel Mare University of Suceava, Geography Series, 25,
38–53, 2015.

Nistor, M.-M., Gualtieri, A. F., Cheval, S., Dezsi, Ş., and Boţan,
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