Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-1899-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-1899-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analytical solutions for mantle flow in cylindrical and spherical shells
Stephan C. Kramer
CORRESPONDING AUTHOR
Department of Earth Science and Engineering, Imperial College London, London, UK
D. Rhodri Davies
Research School of Earth Sciences, The Australian National University, Canberra, Australia
Cian R. Wilson
Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
Related authors
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168, https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Melting ice sheets drive solid Earth deformation and sea-level change on timescales of decades to thousands of years. Here, we present G-ADOPT, which models movement of the solid Earth in response to surface loads. It has flexibility in domain geometry, deformation mechanism parameterisation, and is scalable on high performance computers. Automatic derivation of adjoint sensitivity kernels also provides a means to assimilate historical and modern observations into future sea-level forecasts.
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025, https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Short summary
Accurate numerical studies of glaciers often require high-resolution simulations, which often prove too demanding even for modern computers. In this paper we develop a method that identifies whether different parts of a glacier require high or low resolution based on its physical features, such as its thickness and velocity. We show that by doing so we can achieve a more optimal simulation accuracy for the available computing resources compared to uniform-resolution simulations.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
William Scott, Mark Hoggard, Thomas Duvernay, Sia Ghelichkhan, Angus Gibson, Dale Roberts, Stephan C. Kramer, and D. Rhodri Davies
EGUsphere, https://doi.org/10.5194/egusphere-2025-4168, https://doi.org/10.5194/egusphere-2025-4168, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Melting ice sheets drive solid Earth deformation and sea-level change on timescales of decades to thousands of years. Here, we present G-ADOPT, which models movement of the solid Earth in response to surface loads. It has flexibility in domain geometry, deformation mechanism parameterisation, and is scalable on high performance computers. Automatic derivation of adjoint sensitivity kernels also provides a means to assimilate historical and modern observations into future sea-level forecasts.
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
Geosci. Model Dev., 18, 4023–4044, https://doi.org/10.5194/gmd-18-4023-2025, https://doi.org/10.5194/gmd-18-4023-2025, 2025
Short summary
Short summary
Accurate numerical studies of glaciers often require high-resolution simulations, which often prove too demanding even for modern computers. In this paper we develop a method that identifies whether different parts of a glacier require high or low resolution based on its physical features, such as its thickness and velocity. We show that by doing so we can achieve a more optimal simulation accuracy for the available computing resources compared to uniform-resolution simulations.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Lior Suchoy, Saskia Goes, Benjamin Maunder, Fanny Garel, and Rhodri Davies
Solid Earth, 12, 79–93, https://doi.org/10.5194/se-12-79-2021, https://doi.org/10.5194/se-12-79-2021, 2021
Short summary
Short summary
We use 2D numerical models to highlight the role of basal drag in subduction force balance. We show that basal drag can significantly affect velocities and evolution in our simulations and suggest an explanation as to why there are no trends in plate velocities with age in the Cenozoic subduction record (which we extracted from recent reconstruction using GPlates). The insights into the role of basal drag will help set up global models of plate dynamics or specific regional subduction models.
Cited articles
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient
management of parallelism in object-oriented numerical software libraries,
in: Modern software tools for scientific computing, Birkhauser, Boston Inc., 163–202, 1997. a
Baumgardner, J. R.: Three-dimensional treatment of convective flow in the
Earth's mantle, J. Stat. Phys., 39, 501–511, https://doi.org/10.1007/BF01008348,
1985. a
Bernardi, C.: Optimal finite-element interpolation on curved domains, SIAM
J. Numer. Anal., 26, 1212–1240, 1989. a
Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P., Schmeling, H., and Schnaubelt, T.: A benchmark comparison for mantle
convection codes, Geophys. J. Int., 98, 23–38,
https://doi.org/10.1111/j.1365-246X.1989.tb05511.x, 1989. a
Buffa, A., De Falco, C., and Sangalli, G.: Isogeometric analysis: stable
elements for the 2D Stokes equation, Int. J. Numer. Meth. Fl., 65, 1407–1422, 2011. a
Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: The effect of
depth–dependent viscosity on the planform of mantle convection, Nature, 279, 436–438, https://doi.org/10.1038/379436a0, 1996. a
Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: A sensitivity study of
3-D-spherical mantle convection at 108 Rayleigh number: effects of
depth-dependent viscosity, heating mode and an endothermic phase change, J.
Geophys. Res., 102, 11991–12007, https://doi.org/10.1029/96JB03806, 1997. a
Busse, F. H., Christensen, U., Clever, R., Cserepes, L., Gable, C.,
Giannandrea, E., Guillou, L., Houseman, G., Nataf, H. C., Ogawa, M.,
Parmentier, M., Sotin, C., and Travis, B.: 3D convection at infinite
Prandtl number in Cartesian geometry – a benchmark comparison, Geophys.
Astrophys. Fluid Dyn., 75, 39–59, https://doi.org/10.1080/03091929408203646, 1994. a
Choblet, G., Cadek, O., Couturier, F., and Dumoulin, C.: OEDIPUS: a new tool to study the dynamics of planetary interiors, Geophys. J. Int., 170, 9–30, https://doi.org/10.1111/j.1365-246X.2007.03419.x, 2007. a, b
Dannberg, J. and Gassmoller, R.: Chemical trends in ocean islands explained by plume-slab interaction, P. Natl. Acad. Sci. USA, 115, 4351–4356,
https://doi.org/10.1073/pnas.1714125115, 2018. a
Davies, D. R. and Davies, J. H.: Thermally–driven mantle plumes reconcile
multiple hotspot observations, Earth Planet. Sc. Lett., 278, 50–54,
https://doi.org/10.1016/j.epsl.2008.11.027, 2009. a
Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity: a fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics, Geochem. Geophy. Geosy., 120, Q06001, https://doi.org/10.1029/2011GC003551, 2011. a, b, c, d
Davies, D. R., Le Voci, G., Goes, S., Kramer, S. C., and Wilson, C. R.: The
mantle wedge's transient 3-D flow regime and thermal structure, Geochem.
Geophy. Geosy., 17, 78–100, https://doi.org/10.1002/2015GC006125, 2016. a
Davies, D. R., Valentine, A. P., Kramer, S. C., Rawlinson, N., Hoggard, M. J., Eakin, C., and Wilson, C.: Earth's multi-scale topographic response to global mantle flow, Nat. Geosci., 12, 845–850, https://doi.org/10.1038/s41561-019-0441-4, 2019. a
Davies, G. F.: Dynamic Earth: plates, plumes and mantle convection, Cambridge University Press, Cambridge, 1999. a
Davies, J. H. and Stevenson, D. J.: Physical Model of Source Region of
Subduction Zone Volcanics, J. Geophys. Res., 97, 2037–2070,
https://doi.org/10.1029/91JB02571, 1992. a
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson,
C. R.: Interaction of subducted slabs with the mantle transition-zone: A
regime diagram from 2-D thermo-mechanical models with a mobile trench and
an overriding plate, Geochem. Geophy. Geosy., 15, 1739–1765,
https://doi.org/10.1002/2014GC005257, 2014. a
Girault, V. and Raviart, P.-A.: Finite element methods for Navier-Stokes
equations: theory and algorithms, vol. 5, Springer Science & Business Media, Berlin, Heidelberg,
2012. a
Gurnis, M.: Phanerozoic marine inundation of continents driven by dynamic
topography above subducting slabs, Nature, 364, 589–593,
https://doi.org/10.1038/364589a0, 1993. a
Gurnis, M. and Davies, G. F.: Mixing in numerical-models of mantle convection
incorporating plate kinematics, J. Geophys. Res., 91, 6375–6395,
https://doi.org/10.1029/JB091iB06p06375, 1986. a
Hager, B. H. and Richards, A. M.: Long–wavelength variations in Earth's
geoid: Physical models and dynamical implications, Philos. T. R. Soc.
London, 328, 309–327, 1989. a
Heister, T., Dannberg, J., Gassmoller, R., and Bangerth, W.: High accuracy
mantle convection simulation through modern numerical methods: II: realistic models and problems, Geophys. J. Int., 210, 833–851,
https://doi.org/10.1093/gji/ggx195, 2017. a, b
Hernlund, J. W. and Tackley, P. J.: Modeling mantle convection inside the
spherical annulus, Phys. Earth Planet. Int., 171, 48–54,
https://doi.org/10.1016/j.pepi.2008.07.037, 2008. a
Hoang, T., Verhoosel, C. V., Auricchio, F., van Brummelen, E. H., and Reali,
A.: Mixed isogeometric finite cell methods for the stokes problem, Comput.
Meth. Appl. M., 316, 400–423, 2017. a
Hunt, S. A., Davies, D. R., Walker, A. M., McCormack, R. J., Wills, A. S.,
Dobson, D. P., and Li, L.: On the increase in thermal diffusivity caused by
the perovskite to post-perovskite phase transition and its implications for
mantle dynamics, Earth Planet. Sc. Lett., 319, 96–103,
https://doi.org/10.1016/j.epsl.2011.12.009, 2012. a
Jarvis, G. T.: Effects of curvature on two–dimensional models of mantle
convection: cylindrical polar coordinates, J. Geophys. Res., 98, 4477–4485, 1993. a
Jones, T. D., Davies, D. R., Campbell, I. H., Wilson, C. R., and Kramer, S. C.:
Do mantle plumes preserve the heterogeneous structure of their deep-mantle
source?, Earth Planet. Sc. Lett., 434, 10–17,
https://doi.org/10.1016/j.epsl.2015.11.016, 2016. a
Jones, T. D., Davies, D. R., and Sossi, P. A.: Tungsten isotopes in mantle
plumes: Heads it's positive, tails it's negative, Earth Planet. Sc. Lett.,
506, 255–267, https://doi.org/10.1016/j.epsl.2018.11.008, 2019. a
King, S. D., Lee, C., van Keken, P. E., Leng, W., Zhong, S., Tan, E., Tosi,
N., and Kameyama, M. C.: A community benchmark for 2-D Cartesian
compressible convection in Earth's mantle, Geophys. J. Int., 179, 1–11,
2009. a
Kloecking, M., White, N. J., Maclennan, J., McKenzie, D., and Fitton, J. G.:
Quantitative Relationships Between Basalt Geochemistry, Shear Wave Velocity, and Asthenospheric Temperature Beneath Western North America, Geochem. Geophy. Geosy., 19, 3376–3404, https://doi.org/10.1029/2018GC007559, 2019. a
Kramer, S. C.: Assess (v1.0), Analytical Solutions for the Stokes Equations in Spherical Shells in python, Zenodo, https://doi.org/10.5281/zenodo.3891545, 2020. a, b, c
Kramer, S. C., Wilson, C. R., and Davies, D. R.: An implicit free-surface
algorithm for geodynamical simulations, Phys. Earth Planet. Int., 194,
25–37, https://doi.org/10.1016/j.pepi.2012.01.001, 2012. a, b, c, d
Kramer, S. C., Wilson, C. R., Davies, D. R., et al.: FluidityProject/fluidity: New test cases Analytical solutions for mantle flow in cylindrical and spherical shells (Version 4.1.17), Zenodo, https://doi.org/10.5281/zenodo.3988620, 2020. a
Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods, Geophys. J. Int., 191, 12–29, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012. a, b
Logg, A., Mardal, K.-A., and Wells, G.: Automated Solution of Differential
Equations by the Finite Element Method: The FEniCS Book, Lecture Notes in
Computational Science and Engineering, Springer, Berlin,
84, https://doi.org/10.1007/978-3-642-23099-8, 2012. a
McKenzie, D. P., Roberts, J. M., and Weiss, N. O.: Convection in the
Earth's mantle: towards a numerical simulation, J. Fluid Mech., 62,
465–538, https://doi.org/10.1017/S0022112074000784, 1974. a
McNamara, A. K. and Zhong, S.: Thermo–chemical structures beneath Africa
and the Pacific Ocean, Nature, 437, 1136–1139, https://doi.org/10.1038/nature04066, 2005. a
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B.,
Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T.,
Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S.,
Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, v.,
Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy:
symbolic computing in Python, PeerJ, 3, e103,
https://doi.org/10.7717/peerj-cs.103, 2017. a
Mitrovica, J. X., Beaumont, C., and Jarvis, G. T.: Tilting of continental
interiors by the dynamical effects of subduction, Tectonics, 8, 1079–1094,
https://doi.org/10.1029/TC008i005p01079, 1989. a
Moresi, L. N. and Solomatov, V. S.: Numerical investigations of 2D convection with extremely large viscosity variations, Phys. Fluid, 7, 2154–2162, https://doi.org/10.1063/1.868465, 1995. a
Morgan, W. J.: Deep mantle convection plumes and plate motions, Am. Assoc.
Petr. Geol. B., 56, 203–213, 1972. a
Nakagawa, T. and Tackley, P. J.: The interaction between the post-perovskite
phase change and a thermo-chemical boundary layer near the core-mantle
boundary, Earth Planet. Sc. Lett., 238, 204–216, 2005. a
Oldham, D. N. and Davies, J. H.: Numerical investigation of layered convection in a three-dimensional shell with application to planetary mantles, Geochem. Geophy. Geosy., 5, Q12C04, https://doi.org/10.1029/2003GC000603, 2004. a
Olson, P., Deguen, R., Hinnov, L. A., and Zhong, S. J.: Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic, Phys. Earth Planet. Int., 214, 87–103, https://doi.org/10.1016/j.pepi.2012.10.003, 2013. a
Popov, I. Yu., Lobanov, I. S., Popov, S. I., Popov, A. I., and Gerya, T. V.: Practical analytical solutions for benchmarking of 2-D and 3-D geodynamic Stokes problems with variable viscosity, Solid Earth, 5, 461–476, https://doi.org/10.5194/se-5-461-2014, 2014. a
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.
T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake:
Automating the Finite Element Method by Composing Abstractions, ACT T.
Math. Softw., 43, 1–24, https://doi.org/10.1145/2998441, 2016. a
Roache, P. J.: Code Verification by the Method of Manufactured Solutions,
J. Fluid. Eng.-T. ASME, 124, 4–10, https://doi.org/10.1115/1.1436090, 2002. a
Solheim, L. P. and Peltier, W. R.: Avalanche effects in phase transition
modulated convection – a model of Earth's mantle, J. Geophys. Res., 99,
6997–7018, 1994. a
Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O.: The dynamics of plate tectonics and mantle flow: from local to global scales, Science, 329, 1033–1038, https://doi.org/10.1126/science.1191223, 2010. a
Stotz, I. L., Iaffaldano, G., and Davies, D. R.: Pressure-Driven Poiseuille
Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion, Geophys. Res. Lett., 45, 117–125, https://doi.org/10.1002/2017GL075697, 2018. a
Tackley, P. J.: Modelling compressible mantle convection with large viscosity
contrasts in a three-dimensional spherical shell using the Yin-Yang grid,
Phys. Earth Planet. Int., 171, 7–18, https://doi.org/10.1016/j.pepi.2008.08.005, 2008. a
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle, Nature, 361, 699–704,
https://doi.org/10.1038/361699a0, 1993. a
Tan, E., Leng, W., Zhong, S., and Gurins, M.: On the location of plumes and
mobility of thermo–chemical structures with high bulk modulus in the 3-D
compressible mantle, Geochem. Geophy. Geosy., 12, Q07005,
https://doi.org/10.1029/2011GC003665, 2011. a
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.6), available at: https://www.sagemath.org (last access: 1 June 2020), 2019. a
Thieulot, C.: Analytical solution for viscous incompressible Stokes flow in a spherical shell, Solid Earth, 8, 1181–1191, https://doi.org/10.5194/se-8-1181-2017, 2017. a, b
Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierová, P., Samuel, H.,
Davies, D. R., Wilson, C. R., Kramer, S. C., Thieulot, C., Glerum, A.,
Fraters, M., Spakman, W., Rozel, A., and Tackley, P. J.: A community
benchmark for viscoplastic thermal convection in a 2-D square box,
Geochem. Geophy. Geosy., 16, 2175–2196,
https://doi.org/10.1002/2015GC005807, 2015. a
Travis, B. J., Anderson, C., Baumgardner, J. R., Gable, C. W., Hager, B. H.,
O'Connell, R. J., Olson, P., Raefsky, A., and Schubert, G.: A benchmark
comparison of numerical methods for infinite Prandtl number thermal
convection in two–dimensional Cartesian geometry, Geophys. Astrophys.
Fluid Dyn., 55, 137–160, 1990. a
van Keken, P. E.: Cylindrical scaling for dynamical cooling models of the
Earth, Phys. Earth. Planet. Int., 124, 119–130, 2001. a
van Keken, P. E. and Ballentine, C. J.: Whole–mantle versus layered mantle
convection and the role of a high–viscosity lower mantle in terrestrial
volatile evolution, Earth Planet. Sc. Lett., 156, 19–32, 1998. a
van Keken, P. E. and Ballentine, C. J.: Dynamical models of mantle volatile
evolution and the role of phase transitions and temperature–dependent
rheology, J. Geophys. Res., 104, 7137–7151, 1999. a
van Keken, P. E. and Yuen, D. A.: Dynamical influences of high viscosity in
the lower mantle induced by the steep melting curve of perovskite: effects of curvature and time–dependence, J. Geophys. Res., 100, 15233–15248,
1995. a
van Keken, P. E., King, S. D., Schmeling, H., Christensen, U. R., Neumeister, D. and Doin, M. P.: A comparison of methods for the modeling of
thermo–chemical convection, J. Geophys. Res., 102, 22477–22495, 1997. a
van Keken, P. E., Kiefer, B., and Peacock, S.: High resolution models of
subduction zones: Implications for mineral dehydration reactions and the
transport of water into the deep mantle, Geochem. Geophy. Geosy., 3, 1056, https://doi.org/10.1029/2001GC000256, 2002. a
van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnioncle, A., He,
J., Katz, R. F., Lin, S., Parmentier, E. M., Spiegelman, M., and Wang, K.: A community benchmark for subduction zone modeling, Phys. Earth Planet. Int., 171, 187–197, https://doi.org/10.1016/j.pepi.2008.04.015, 2008. a
Wilson, C. R., Spiegelman, M., and van Keken, P. E.: TerraFERMA: The
Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences, Geochem. Geophy. Geosy., 18, 769–810,
https://doi.org/10.1002/2016GC006702, 2017. a
Wolstencroft, M., Davies, J. H., and Davies, D. R.: Nusselt-Rayleigh number
scaling for spherical shell Earth mantle simulation up to a Rayleigh
number of 109, Phys. Earth Planet. Int., 176, 132–141,
https://doi.org/10.1016/j.pepi.2009.05.002, 2009. a
Zhong, S., Gurnis, M., and Hulbert, G.: Accurate determination of
surface normal stress in viscous flow from a consistent boundary flux
method, Phys. Earth Planet. Int., 78, 1–8,
https://doi.org/10.1016/0031-9201(93)90078-N, 1993. a, b
Zhong, S., Zuber, M. T., Moresi, L., and Gurnis, M.: Role of
temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 105, 11063–11082,
https://doi.org/10.1029/2000JB900003, 2000.
a, b
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Computational models of Earth's mantle require rigorous verification and validation. Analytical...