Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-1899-2021
https://doi.org/10.5194/gmd-14-1899-2021
Methods for assessment of models
 | 
09 Apr 2021
Methods for assessment of models |  | 09 Apr 2021

Analytical solutions for mantle flow in cylindrical and spherical shells

Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson

Related authors

Anisotropic metric-based mesh adaptation for ice flow modelling in Firedrake
Davor Dundovic, Joseph G. Wallwork, Stephan C. Kramer, Fabien Gillet-Chaulet, Regine Hock, and Matthew D. Piggott
EGUsphere, https://doi.org/10.5194/egusphere-2024-2649,https://doi.org/10.5194/egusphere-2024-2649, 2024
Short summary
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024,https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Towards automatic finite-element methods for geodynamics via Firedrake
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022,https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations
Tuomas Kärnä, Stephan C. Kramer, Lawrence Mitchell, David A. Ham, Matthew D. Piggott, and António M. Baptista
Geosci. Model Dev., 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018,https://doi.org/10.5194/gmd-11-4359-2018, 2018
Short summary

Related subject area

Solid Earth
Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev., 17, 8521–8533, https://doi.org/10.5194/gmd-17-8521-2024,https://doi.org/10.5194/gmd-17-8521-2024, 2024
Short summary
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024,https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydro-mechanical problems with applications
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-160,https://doi.org/10.5194/gmd-2024-160, 2024
Revised manuscript accepted for GMD
Short summary
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024,https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024,https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary

Cited articles

Backus, G.: Poloidal and toroidal fields in geomagnetic field modeling, Rev. Geophys., 24, 75–109, 1986. a, b
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient management of parallelism in object-oriented numerical software libraries, in: Modern software tools for scientific computing, Birkhauser, Boston Inc., 163–202, 1997. a
Baumgardner, J. R.: Three-dimensional treatment of convective flow in the Earth's mantle, J. Stat. Phys., 39, 501–511, https://doi.org/10.1007/BF01008348, 1985. a
Bernardi, C.: Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal., 26, 1212–1240, 1989. a
Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., Moore, D., Olson, P., Schmeling, H., and Schnaubelt, T.: A benchmark comparison for mantle convection codes, Geophys. J. Int., 98, 23–38, https://doi.org/10.1111/j.1365-246X.1989.tb05511.x, 1989. a
Download
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.