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Abstract. Computational models of mantle convection must
accurately represent curved boundaries and the associated
boundary conditions of a 3-D spherical shell, bounded by
Earth’s surface and the core–mantle boundary. This is also
true for comparable models in a simplified 2-D cylindrical
geometry. It is of fundamental importance that the codes un-
derlying these models are carefully verified prior to their ap-
plication in a geodynamical context, for which comparisons
against analytical solutions are an indispensable tool. How-
ever, analytical solutions for the Stokes equations in these
geometries, based upon simple source terms that adhere to
physically realistic boundary conditions, are often complex
and difficult to derive. In this paper, we present the analyt-
ical solutions for a smooth polynomial source and a delta-
function forcing, in combination with free-slip and zero-
slip boundary conditions, for both 2-D cylindrical- and 3-
D spherical-shell domains. We study the convergence of the
Taylor–Hood (P2–P1) discretisation with respect to these so-
lutions, within the finite element computational modelling
framework Fluidity, and discuss an issue of suboptimal con-
vergence in the presence of discontinuities. To facilitate the
verification of numerical codes across the wider community,
we provide a Python package, Assess, that evaluates the an-
alytical solutions at arbitrary points of the domain.

1 Introduction

Mantle convection transports Earth’s internal heat to its sur-
face: it is the “engine” driving our dynamic Earth (e.g.
Davies, 1999). The structure, composition, and flow regime

within the mantle are reflected in near-surface phenomena
such as plate tectonics, mountain building, dynamic topogra-
phy, sea-level change, volcanism, and the activity of Earth’s
magnetic field (e.g. Morgan, 1972; Mitrovica et al., 1989;
Gurnis, 1993; Olson et al., 2013; Kloecking et al., 2019;
Davies et al., 2019). The grand challenge is to understand the
operation of this giant heat engine over geologic time and its
relationship to the surface geological record.

Computational modelling is one of the primary tools avail-
able for tackling this challenge. Whilst 2- and 3-D numerical
models of mantle convection processes in Cartesian domains
have provided important insights into a range of mantle pro-
cesses (e.g. McKenzie et al., 1974; Gurnis and Davies, 1986;
Davies and Stevenson, 1992; Moresi and Solomatov, 1995;
van Keken et al., 2002; Hunt et al., 2012; Garel et al., 2014;
Davies et al., 2016; Jones et al., 2016, 2019), 3-D spheri-
cal geometry is required to simulate global mantle dynamics.
Global 3-D spherical mantle convection models, and stud-
ies focussing on their application, are now in common use
(e.g. Baumgardner, 1985; Tackley et al., 1993; Bunge et al.,
1996, 1997; Zhong et al., 2000; Oldham and Davies, 2004;
McNamara and Zhong, 2005; Choblet et al., 2007; Zhong
et al., 2008; Tackley, 2008; Davies and Davies, 2009; Wol-
stencroft et al., 2009; Stadler et al., 2010; Tan et al., 2011;
Kronbichler et al., 2012; Davies et al., 2013; Burstedde et al.,
2013; Heister et al., 2017; Dannberg and Gassmoller, 2018;
Stotz et al., 2018). However, the use of this geometry for cal-
culations at a realistic convective vigour remains expensive.
As a consequence, simplifying geometries are often used, in-
cluding the axisymmetric spherical shell (e.g. Solheim and
Peltier, 1994; van Keken and Yuen, 1995), the 2-D cylinder
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(e.g. Jarvis, 1993; van Keken and Ballentine, 1998, 1999;
van Keken, 2001; Nakagawa and Tackley, 2005), and the
spherical annulus (e.g. Hernlund and Tackley, 2008). Such
2-D models can also provide a rapid and broad parameter
space appraisal, allowing one to focus on a targeted and more
sparse study in a full 3-D spherical geometry.

Recent decades have seen extensive validation, verifica-
tion, and benchmarking of Cartesian mantle dynamics codes,
in both 2- and 3-D. Verification is typically achieved via com-
parisons of numerical predictions against analytical solutions
(e.g. Zhong et al., 1993; Kramer et al., 2012), with bench-
marking typically undertaken against solutions from other
comparable codes, for incompressible (Blankenbach et al.,
1989; Travis et al., 1990; Busse et al., 1994; van Keken
et al., 1997, 2008; Tosi et al., 2015) and compressible (King
et al., 2009) convection. See also Popov et al. (2014) for an
overview of geodynamical benchmarks. The number of com-
parable studies, within a 2-D cylindrical or 3-D spherical ge-
ometry, however, is more limited. Given a recent surge in the
state-of-the-art tools available for simulating mantle dynam-
ics in these geometries (e.g. Kronbichler et al., 2012; Logg
et al., 2012; Burstedde et al., 2013; Rathgeber et al., 2016;
Heister et al., 2017; Wilson et al., 2017), it is important that
these tools are verified and validated against a range of ana-
lytical and benchmark solutions.

A popular method to obtain analytical solutions is the
method of manufactured solutions (MMS; Roache, 2002).
With this approach, an arbitrary analytical solution is chosen
beforehand and the necessary forcing terms on the right-hand
side are derived by substitution of the solution into the left-
hand side of the flow equations. A drawback of this approach
is that it can be hard to choose solutions (i) that satisfy phys-
ically realistic boundary conditions, in particular, in less triv-
ial domains; and (ii) with a velocity that is divergence free, in
order to avoid unnatural source terms. Alternatively, one can
choose a simple analytical expression for the forcing but the
derivation of the corresponding analytical solutions is often
laborious.

For the Stokes equations, a well-known set of solutions
in the latter category is based on a forcing term in the form
of a delta function, corresponding to an infinitely thin den-
sity anomaly at a certain depth. The solutions to these are
also used in the propagator matrix method, where a convo-
lution of delta-function solutions at different depths is used
to obtain the response to arbitrary density anomalies (e.g.
Hager and Richards, 1989). Solutions for the Cartesian case
have been published (e.g. Zhong et al., 1993; Kramer et al.,
2012). Spherical solutions can be found in, for example, Ribe
(2009). They have previously been used for validation by, for
example, Zhong et al. (2000, 2008), Choblet et al. (2007),
Davies et al. (2013), and Burstedde et al. (2013). The deriva-
tion of these solutions is non-trivial, and often only cases
with simpler free-slip boundary conditions are explicitly pre-
sented. Here, we derive solutions for both free- and zero-slip
boundary conditions. In our convergence analyses, where we

compare the analytical solutions with numerical solutions
obtained using the Fluidity computational modelling frame-
work (Davies et al., 2011), we discuss a limitation of this set
of solutions for the benchmarking of geodynamic codes.

For this reason, we also present solutions based on a
smooth forcing term, with radial dependence formed by a
polynomial of arbitrary order, again for free- and zero-slip
cases. This set of solutions provides a flexible way to test
mantle dynamics codes with physically relevant solutions,
where, for instance, a high-order polynomial forcing can be
used to obtain solutions with a strong gradient near the sur-
face. The radial dependence can be combined with spherical
harmonics of arbitrary degree and order.

A key step in the derivation of these benchmarks is a de-
composition of the solution into poloidal and toroidal com-
ponents in the Mie representation (Backus, 1986). This re-
sults in a biharmonic equation for the poloidal scalar func-
tion. Combined with a set of conditions for the radial depen-
dence of this poloidal function, analytical Stokes solutions
can be obtained that satisfy desired free-slip or zero-slip con-
ditions. Similar techniques have been used in Tosi and Mar-
tinec (2007) and Horbach et al. (2020). In Sect. 5.1, we will
discuss previously published analytical benchmark cases in
shell domains and how they differ from those presented here
(e.g. Blinova et al., 2016; Thieulot, 2017; Horbach et al.,
2020).

Finally, in addition to the delta-function and smooth cases
with either free-slip or zero-slip boundary conditions in a
spherical-shell domain, we present the solutions for the cor-
responding four cases in a 2-D cylindrical-shell domain (an-
nulus). Although, ultimately, mantle convection is a 3-D
phenomenon, a number of processes can be modelled ade-
quately in two dimensions, and accordingly access to bench-
mark cases for 2-D numerical models is equally important.
The number of published analytical Stokes solutions in 2-D
cylindrical-shell domains, which are suitable as geodynam-
ical benchmarks and include a complete derivation, is lim-
ited. By presenting this extensive set of explicit analytical
solutions, we provide a suite of verification cases for use by
the wider community of mantle dynamics code developers.
An implementation of the solutions is provided through the
Python package Assess (Analytical Solutions for the Stokes
Equations in Spherical Shells; Kramer, 2020).

The remainder of this paper is structured as follows. In
Sect. 2, we derive the analytical solutions in cylindrical
(Sect. 2.2) and spherical (Sect. 2.3) geometries. Smooth solu-
tions are first provided, for free-slip and zero-slip cases, fol-
lowed by the delta-function solutions. In Sect. 3, we briefly
describe the Fluidity computational modelling framework,
which is used in Sect. 4 to obtain convergence results of
the P2–P1 finite element discretisation to the analytical so-
lutions. In Sect. 5, we discuss these results and relate the
analytical solutions presented here to those that have previ-
ously been published. In particular, we discuss an issue with
the delta-function cases for discretisations that use continu-
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ous pressure. To demonstrate, we also show results with a
P2bubble–P1DG discretisation that overcomes this issue.

2 Analytical Solutions

2.1 Equations

The following derivation is applicable to the incompressible
Stokes equations:

−∇ · τ +∇p =−gρ′r̂, (1)

τ = ν
[
∇u+∇uT

]
, (2)

∇ ·u= 0, (3)

where the unknowns are velocity u and pressure p, with
an assumed constant kinematic viscosity ν. The buoyancy
force on the right-hand side (RHS) of Eq. (1) is based on a
gravity of constant magnitude g, directed in the inward ra-
dial direction −r̂ , and a dimensionless density deviation ρ′:
ρ = ρ0(1+ρ′), where ρ is the density and the reference den-
sity ρ0 is constant. The equations are solved in a 2-D cylin-
drical or 3-D spherical domain, bounded by R− ≤ r ≤ R+,
where r is the radial distance to the origin.

2.2 Cylindrical

In 2-D, any incompressible velocity field u can be written as
the skew gradient of a streamfunction ψ :

ur =−
1
r

∂ψ

∂ϕ
, uϕ =

∂ψ

∂r
, (4)

where ϕ is the angle from the x axis in polar coordinates,
x = r cos(ϕ),y = r sin(ϕ), and ur and uϕ are the radial and
transverse components of velocity, respectively. The normal
deviatoric stress and shear stress components are given by

τrr = 2νr̂ · [∇u] · r̂ =−2ν
∂

∂r

(
1
r

∂ψ

∂ϕ

)
, (5)

τrϕ = νr̂ · [∇u] · ϕ̂+ νϕ̂ · [∇u] · r̂

= ν

(
∂2ψ

∂r2 −
1
r

∂ψ

∂r
−

1
r2
∂2ψ

∂ϕ2

)
. (6)

The momentum equation (Eq. 1) can be decomposed into ra-
dial and transverse components:

ν

r

∂

∂ϕ
∇

2ψ +
∂p

∂r
=−gρ′, (7)

−ν
∂

∂r
∇

2ψ +
1
r

∂p

∂ϕ
= 0, (8)

where the Laplacian, in polar coordinates, is given by

∇
2ψ =

1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2
∂2ψ

∂ϕ2 . (9)

For a derivation of Eqs. (5)–(8), see Appendix A.
The curl of the momentum equation is obtained by sum-

mation of the operators − 1
r
∂·
∂ϕ

and 1
r
∂
∂r
(r·) applied to the ra-

dial (Eq. 7) and transverse (Eq. 8) components, respectively,
which leads to

−∇
4ψ =

g

ν

1
r

∂ρ′

∂ϕ
. (10)

The general, real-valued solution to the biharmonic equation
∇

4ψ = 0 is given by

ψ(r,ϕ)=
∑
n>1

(
Anr

n
+Bnr

−n
+Cnr

n+2
+Dnr

−n+2
)

(en sin(nϕ)+ fn cos(nϕ))

+

(
A1r +B1r

−1
+C1r

3
+D1r lnr

)
(e1 sin(ϕ)+ f1 cos(ϕ))

+A0+B0 lnr +C0r
2
+D0r

2 lnr, (11)

where An, Bn, Cn, Dn, en, and fn are constant coefficients,
n≥ 0. The An and Bn terms are the standard solutions to the
homogeneous harmonic equation, and the Cn and Dn terms
are obtained as inhomogeneous solutions of the harmonic
equation with the homogeneous harmonic solutions (An and
Bn terms) as the right-hand side. The fact that these (the Cn
and Dn terms) are homogeneous biharmonic solutions then
follows from ∇4

=∇
2
∇

2. In the following, we will, for sim-
plicity, focus on sin(nϕ) solutions for a single n > 1 and set
en = 1,fn = 0.

An equation for pressure can be derived by taking the di-
vergence of the momentum equation:

∇
2p =−

g

r

∂
(
rρ′
)

∂r
. (12)

From Eq. (7), it can be seen that sin(nϕ) solutions for ψ are
associated with cos(nϕ) solutions of p and ρ′. The homoge-
neous solutions, i.e. ρ′ = 0, are thus the standard harmonic
solutions (again neglecting the n= 0,1 solutions)

p(r,ϕ)=
∑
n>1

(
Gnr

n
+Hnr

−n
)

cos(nϕ), (13)

where Gn and Hn are constant coefficients, n > 1.
After substitution of p andψ in Eqs. (7)–(8), the following

relations

Gn =−4νCn(n+ 1), Hn =−4νDn(n− 1), (14)

between the coefficients of the homogeneous solutions for ψ
and p can be derived.

2.2.1 Smooth density profile – cylindrical

In the first test case, we consider a density perturbation of the
following form:

ρ′ =
rk

Rk+
cos(nϕ), (15)
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with k > 0. It is easily verified that an inhomogeneous solu-
tion to Eq. (10) exists of the form

ψ = Erk+3 sin(nϕ),

E =
gR−k+ n

ν
(
(k+ 3)2− n2

)(
(k+ 1)2− n2

) , (16)

assuming k 6= n−3 and k 6= n−1, so that a general solution
can be written as

ψ(r,ϕ)=
(
Arn+Br−n+Crn+2

+Dr−n+2
+Erk+3

)
sin(nϕ). (17)

Note that for the remainder of this derivation we drop the
subscript n in the coefficients for A,B,C, and D.

An inhomogeneous solution for pressure of Eq. (12) is
given by

p(r,ϕ)= Frk+1 cos(nϕ), F =−
gR−k+ (k+ 1)
(k+ 1)2− n2 . (18)

The general solution for pressure is thus

p(r,ϕ)=
(
Grn+Hr−n+Frk+1

)
cos(nϕ), (19)

with G and H given by Eq. (14).
The four remaining coefficients (A,B,C, andD) are fixed

by a choice of boundary conditions at the inner and outer
surfaces of the cylindrical domain at r = R+ and r = R−, re-
spectively. At both, no-normal-flow conditions are imposed
via ∂ψ

∂ϕ
= 0. Two further equations are found by imposing ei-

ther τrϕ = 0 (free slip) or ∂ψ
∂
r = 0 (zero slip) at both bound-

aries.
The solution coefficients for free-slip, no normal flow at

both boundaries are given by

A=
gR−n+3
+

ν

αk+n+3
−α2

4(α+αn)(αn−α)(k+ n+ 1)(k− n+ 3)

B =
gRn+3
+

ν

αk+n+3
−α2n+2

4
(
αn+1+ 1

)(
αn+1− 1

)
(k+ n+ 3)(k− n+ 1)

C =
gR−n+1
+

ν

−αk+n+3
+ 1

4
(
αn+1+ 1

)(
αn+1− 1

)
(k+ n+ 3)(k− n+ 1)

D =
gRn+1
+

ν

−αk+n+3
+α2n

4(α+αn)(αn−α)(k+ n+ 1)(k− n+ 3)
,

where we use α = R−/R+.
The zero-slip solution coefficients are given by

A=
gR−n+3
+ n

ν

[(
αk+n+3

+α2n
)
(k+ n+ 1)(n+ 1)

−

(
αk+n+1

+α2n+2
)
(k+ n+ 3)n−

(
αk+3n+3

+ 1
)

(k− n+ 1)
]/[

2
((
αn+1

−αn−1
)2
n2
−

(
α2n
− 1

)2
)

(
(k+ 3)2− n2

)(
(k+ 1)2− n2

)]
B =

gRn+3
+ n

ν

[
−

(
αk+3n+3

+α2n
)
(k− n+ 1)(n− 1)

+

(
αk+3n+1

+α2n+2
)
(k− n+ 3)n−

(
αk+n+3

+α4n
)

(k+ n+ 1)
]/[

2
((
αn+1

−αn−1
)2
n2
−

(
α2n
− 1

)2
)

(
(k+ 3)2− n2

)(
(k+ 1)2− n2

)]
C =

gR−n+1
+ n

ν

[(
αk+n+1

+α2n
)
(k+ n+ 3)(n− 1)

−

(
αk+n+3

+α2n−2
)
(k+ n+ 1)n+

(
αk+3n+1

+ 1
)

(k− n+ 3)
]/[

2
((
αn+1

−αn−1
)2
n2
−

(
α2n
− 1

)2
)

(
(k+ 3)2− n2

)(
(k+ 1)2− n2

)]
D =

gRn+1
+ n

ν

[
−

(
αk+3n+1

+α2n
)
(k− n+ 3)(n+ 1)

+

(
αk+3n+3

+α2n−2
)
(k− n+ 1)n+

(
αk+n+1

+α4n
)

(k+ n+ 3)
]/[

2
((
αn+1

−αn−1
)2
n2
−

(
α2n
− 1

)2
)

(
(k+ 3)2− n2

)(
(k+ 1)2− n2

)]
.

2.2.2 Green’s function solution – cylindrical

Another set of useful solutions is found considering the fol-
lowing perturbation density,

ρ′ = δ(r − r ′)cos(nϕ), (20)

representing an infinitely thin density anomaly at r = r ′ with
R− < r

′ <R+. Since ρ′ = 0 for r ′ 6= r , the solution is de-
scribed by combining two homogeneous solutions

ψ(r,ϕ)=
ψ−(r,ϕ)=

(
A−r

n
+B−r

−n
+C−r

n+2

+D−r
−n+2)sin(nϕ) for R− ≤ r < r ′,

ψ+(r,ϕ)=
(
A+r

n
+B+r

−n
+C+r

n+2

+D+r
−n+2)sin(nϕ) for r ′ < r ≤ R+.

(21)

We thus have eight coefficients that are fixed by boundary
conditions and conditions at the interface. Boundary condi-
tions at the inner and outer boundaries again provide four
equations. Furthermore, we impose continuity of both veloc-
ity components at the interface:

ψ−(r
′,ϕ)= ψ+(r

′,ϕ), and

∂ψ−

∂r
(r ′,ϕ)=

∂ψ+

∂r
(r ′,ϕ). (22)
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Since no lateral force is being applied at the interface, we
also expect continuity of the shear stress (6) which, in com-
bination with the above, implies

∂2ψ−

∂r2 (r ′,ϕ)=
∂2ψ+

∂r2 (r ′,ϕ). (23)

Finally, the eighth equation is obtained by integrating
Eq. (10) over a small strip r ′− ε ≤ r ≤ r ′+ ε, between two
arbitrary angles ϕ1 ≤ ϕ ≤ ϕ2:

r ′+ε∫
r=r ′−ε

ϕ2∫
ϕ=ϕ1

(
∇

4ψ
)
rdrdϕ

=

r ′+ε∫
r=r ′−ε

ϕ2∫
ϕ=ϕ1

gnsin(nϕ)
νr

δ(r − r ′)rdrdϕ, (24)

 ϕ2∫
ϕ=ϕ1

r̂ · ∇
(
∇

2ψ
)
rdϕ

r=r ′+ε
r=r ′−ε

+

 r ′+ε∫
r=r ′−ε

ϕ̂ · ∇
(
∇

2ψ
)
rdr


ϕ2

ϕ=ϕ1

=

ϕ2∫
ϕ=ϕ1

gnsin(nϕ)
ν

dϕ. (25)

Taking the limit ε→ 0, the second term on the left-hand side
disappears, whereas the first term becomes

ϕ2∫
ϕ=ϕ1

∂

∂r

(
1
r

∂

∂r

(
r
∂ψ+

∂r

)
+

1
r2
∂2ψ+

∂ϕ2

)∣∣∣∣
r=r ′

r ′dϕ

−

ϕ2∫
ϕ=ϕ1

∂

∂r

(
1
r

∂

∂r

(
r
∂ψ−

∂r

)
+

1
r2
∂2ψ−

∂ϕ2

)∣∣∣∣
r=r ′

r ′dϕ.

Again using Eqs. (22) and (23), only the jump term for the
third radial derivative of ψ± remains:

ϕ2∫
ϕ=ϕ1

(
∂3ψ+

∂r3 (r ′,ϕ)−
∂3ψ−

∂r3 (r ′,ϕ)

)
r ′dϕ =

ϕ2∫
ϕ=ϕ1

gnsin(nϕ)
ν

dϕ.

Thus, for this to hold for arbitrary ϕ1 and ϕ2, we need

∂3ψ+

∂r3 (r ′,ϕ)−
∂3ψ−

∂r3 (r ′,ϕ)=
gnsin(nϕ)

νr ′
. (26)

The solution coefficients for free-slip boundary conditions
at r = R− and r = R+ are

A± =
gr ′
−n+2

ν

±

(
α2n−2
∓ − 1

)
8
(
α2n−2
± −α2n−2

∓

)
(n− 1)

B± =
gr ′

n+2

ν

±

(
α2n+2
∓ − 1

)
α2n+2
±

8
(
α2n+2
± −α2n+2

∓

)
(n+ 1)

C± =
gr ′
−n

ν

±

(
α2n+2
∓ − 1

)
8
(
α2n+2
∓ −α2n+2

±

)
(n+ 1)

D± =
gr ′

n

ν

±

(
α2n−2
∓ − 1

)
α2n−2
±

8
(
α2n−2
∓ −α2n−2

±

)
(n− 1)

,

where we use α± = R±/r ′.
Zero-slip conditions at both boundaries lead to

A± =
gr ′
−n+2

ν

[((
α2
+−α

2
−

)
n+α−2n

+ −α−2n
− ± (n+ 1)

)
(n− 1)−

(
α−2n
+ α2

−−α
2
+α
−2n
−

)
n±

(
γ±2n

− γ∓2n2
)]

/[
8
((
γ − γ−1

)2
n2
−
(
γ−n− γ n

)2)
(n− 1)

]
B± =

gr ′
n+2

ν

[((
α2
+−α

2
−

)
n−α2n

+ +α
2n
− ± (n− 1)

)
(n+ 1)

+

(
α2n
+ α

2
−−α

2
+α

2n
−

)
n±

(
γ∓2n

− γ∓2n2
)]

/[
8
((
γ − γ−1

)2
n2
−
(
γ−n− γ n

)2)
(n+ 1)

]
C± =

gr ′
−n

ν

[((
α−2
− −α

−2
+

)
n+α−2n

+ −α−2n
− ∓ (n− 1)

)
(n+ 1)−

(
α−2n
+ α−2

− −α
−2
+ α

−2n
−

)
n∓

(
γ±2n

− γ±2n2
)]

/[
8
((
γ − γ−1

)2
n2
−
(
γ−n− γ n

)2)
(n+ 1)

]
D± =

gr ′
n

ν

[((
α−2
− −α

−2
+

)
n−α2n

+ +α
2n
− ∓ (n+ 1)

)
(n− 1)

+

(
α2n
+ α
−2
− −α

−2
+ α

2n
−

)
n∓

(
γ∓2n

− γ±2n2
)]

/[
8
((
γ − γ−1

)2
n2
−
(
γ−n− γ n

)2)
(n− 1)

]
,

where, in addition, we use γ = R−/R+.

2.3 Spherical

In this section, we derive the equivalent of the four cylindri-
cal cases in a 3-D spherical domain, R− ≤ r ≤ R+. A more
detailed derivation of the equations can be found in Ribe
(2009). In 3-D, a solenoidal velocity field u can be decom-
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Figure 1. Density perturbation (δρ) field for smooth cylindrical cases across a range of n and k. As the wavenumber n increases, the
wavelength of the perturbation decreases. As k increases, the perturbation becomes more concentrated towards the domain’s outer boundary.

posed as

u=∇ × (r ×∇P)+ r ×∇T (27)

using poloidal and toroidal scalar fields P and T (Backus,
1986), where r = r r̂ . In spherical coordinates,

ur =
1
r
32P, uθ =−

1
r

∂2 (rP)
∂r∂θ

−
1

sin(θ)
∂T
∂ϕ
,

uϕ =−
1

r sin(θ)
∂2 (rP)
∂r∂ϕ

+
∂T
∂θ
, (28)

where ϕ is the longitude and θ is the co-latitude, and

32P =
1

sin(θ)
∂

∂θ

(
sin(θ)

∂P
∂θ

)
+

1
sin(θ)2

∂2P
∂ϕ2 ,

so that ∇2
=

1
r2

(
∂

∂r
r2 ∂

∂r
+32

)
. (29)

We further derive the components of stress normal to a spher-
ical surface:

τrr = 2ν
∂ur

∂r
= 2ν

∂

∂r

(
1
r
32P

)
, (30)

τrθ = νr
∂

∂r

(uθ
r

)
+
ν

r

∂ur

∂θ
=

ν
∂

∂θ

(
1
r23

2P −
∂2P
∂r2 +

2
r2P

)
−

νr
∂

∂r

(
1

r sin(θ)
∂T
∂ϕ

)
, (31)

τrϕ = νr
∂

∂r

(uϕ
r

)
+

ν

r sin(θ)
∂ur

∂ϕ
=

ν

sin(θ)
∂

∂ϕ

(
1
r23

2P −
∂2P
∂r2 +

2
r2P

)
+ νr

∂

∂r

(
1
r

∂T
∂θ

)
. (32)

Using these, we can work out spherical components of the
momentum equation (Eq. 1) to be

−
ν

r
32
∇

2P +
∂p

∂r
=−gρ′, (33)

ν

r

∂2 (r∇2P
)

∂r∂θ
+

ν

sin(θ)
∂∇2T
∂ϕ
+

1
r

∂p

∂θ
= 0, (34)

ν

r sin(θ)
∂2 (r∇2P

)
∂r∂ϕ

+ ν
∂∇2T
∂θ
+

1
r sin(θ)

∂p

∂ϕ
= 0. (35)

As can be seen from these equations, the toroidal part of the
solution is independent of the density distribution. A non-
zero toroidal component is only introduced through a par-
ticular choice of boundary conditions. For the test cases in
this paper, we only consider free-slip and zero-slip boundary
conditions with radial forcing so we may assume T = 0. The
assumption of the velocity field being solenoidal, which un-
derlies the Mie representation Eq. (27), follows directly from
the incompressibility condition and the no-normal-flow con-
dition on the boundary.
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Taking the curl of the momentum equation,

− θ̂
ν

sin(θ)
∂∇4P
∂ϕ
+ ϕ̂ν

∂∇4P
∂θ
=−θ̂

1
r sin(θ)

∂gρ′

∂ϕ

+ ϕ̂
1
r

∂gρ′

∂θ
. (36)

In a spherical domain, this implies that ν∇4P−gρ′/r varies
in the radial direction only. Without loss of generality, we
may therefore seek solutions P that satisfy

∇
4P =

gρ′

νr
, (37)

since for any other solution P+P ′ of Eq. (36) we know that
∇

4P ′ is purely radial, and therefore P ′ can be written as a
sum of biharmonic solutions and a purely radial function.
The biharmonic solutions are included in Eq. (37) and the
purely radial function is discarded by Eq. (27).

Solutions to the biharmonic equation ∇4P = 0 in 3-D are
given by

P(r,θ,ϕ)=
∑
l≥0

l∑
m=−l

(
Almr

l
+Blmr

−l−1

+Clmr
l+2
+Dlmr

−l+1
)
Ylm(θ,ϕ), (38)

where Alm, Blm, Clm, and Dlm are constant coefficients, and
Ylm indicates Laplace’s spherical harmonic functions of de-
gree l and order m, which have the property that

32Ylm =−l(l+ 1)Ylm. (39)

As in 2-D, an equation for the pressure is obtained by tak-
ing the divergence of the momentum equation, giving

∇
2p =−

g

r2
∂

∂r

(
r2ρ′

)
. (40)

Homogeneous solutions for pressure are written as

p(r,θ,ϕ)=
∑
l≥0

l∑
m=−l

(
Glmr

l
+Hlmr

−l−1
)
Ylm(θ,ϕ), (41)

where the substitution of Eqs. (38) and (41) in Eq. (33) gives

Glm =− 2ν(l+ 1)(2l+ 3)Clm,

Hlm =− 2νl(2l− 1)Dlm. (42)

2.3.1 Smooth density profile – spherical

We consider a density perturbation of the following form:

ρ′ =
rk

Rk+
Ylm(θ,ϕ). (43)

An inhomogeneous solution of Eq. (37) is given by

P = Erk+3Ylm,

E =
[
gR−k+

]/
[ν ((k+ 1)(k+ 2)− l(l+ 1))

((k+ 3)(k+ 4)− l(l+ 1))] , (44)

with a more generic solution written as

P =
(
Ar l +Br−l−1

+Cr l+2
+Dr−l+1

+Erk+3
)
Ylm,

(45)

where we have dropped the lm subscripts of coefficients A,
B, C, and D. The pressure solution for Eq. (40) is

p =
(
Gr l +Hr−l−1

+Frk+1
)
Ylm,

F =−
g(k+ 2)R−k+

(k+ 1)(k+ 2)− l(l+ 1)
, (46)

and G and H are given by Eq. (42).
As before, the four coefficients (A, B, C, and D) are fixed

by the boundary conditions:

no normal flow:

ur =
1
r
32P = 0H⇒ P = 0, at r = R±, (47)

where we use 32P =−l(l+ 1)P . The two no-normal-flow
conditions at r = R− and r = R+ are combined with two fur-
ther conditions:

free slip: τrθ = τrϕ = 0H⇒
1
r
32P −

∂2P
∂r2

+
2
r2P = 0H⇒

∂2P
∂r2 = 0, at r = R±, or (48)

zero slip: uθ = uϕ = 0H⇒
∂(rP)
∂r
=

0H⇒
∂P
∂r
= 0, at r = R±. (49)

For free-slip conditions at both r = R− and r = R+, the
solution coefficients are given by

A=
gR−l+3
+

(
αk+3
−α−l+1)

2ν
(
αl −α−l+1

)
(k+ l+ 2)(k− l+ 3)(2l+ 1)

B =
gRl+4
+ −α

k+4
+αl+3

2ν
(
α−l −αl+3

)
(k+ l+ 4)(k− l+ 1)(2l+ 1)

C =
gR−l+1
+ αk+4

−α−l

2ν
(
α−l −αl+3

)
(k+ l+ 4)(k− l+ 1)(2l+ 1)

D =
gRl+2
+ −α

k+3
+αl

2ν
(
αl −α−l+1

)
(k+ l+ 2)(k− l+ 3)(2l+ 1)

.
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Figure 2. Illustrations of the density perturbation (δρ) field for smooth spherical cases across a range of l, m, and k.

Zero-slip conditions at both boundaries lead to the following
solution coefficients:

A=
gR−l+3
+

ν

[(
αk+2
+αl−1

)
(k+ l+ 2)(2l+ 3)

−

(
αk +αl+1

)
(k+ l+ 4)(2l+ 1)

−2
(
αk+2l+3

+α−l−2
)
(k− l+ 1)

]/
0

B =
gRl+4
+

ν

[(
αk+2l+1

+αl+1
)
(k− l+ 3)(2l+ 1)

−

(
αk+2l+3

+αl−1
)
(k− l+ 1)(2l− 1)

−2
(
αk+2
+α3l

)
(k+ l+ 2)

]/
0

C =
gR−l+1
+

ν

[
−

(
αk+2
+αl−3

)
(k+ l+ 2)(2l+ 1)

+

(
αk +αl−1

)
(k+ l+ 4)(2l− 1)

+2
(
αk+2l+1

+α−l−2
)
(k− l+ 3)

]/
0

D =
gRl+2
+

ν

[
−

(
αk+2l+1

+αl−1
)
(k− l+ 3)(2l+ 3)

+

(
αk+2l+3

+αl−3
)
(k− l+ 1)(2l+ 1)

+2
(
αk +α3l

)
(k+ l+ 4)

]/
0

0 =
((
αl+1
+αl−3

)
(2l+ 1)2− 2αl−1 (2l+ 3)(2l− 1)− 4α3l

−4α−l−2
)
(k+ l+ 4)(k+ l+ 2)(k− l+ 3)(k− l+ 1) .

2.3.2 Green’s function solution – spherical

As in two dimensions, we find solutions for the case where

ρ′ = δ(r − r ′)Ylm(θ,ϕ), (50)

by combining two homogeneous solutions:

P(r,θ,ϕ)=
P−(r,θ,ϕ)=

(
A−r

l
+B−r

−l−1
+C−r

l+2

+D−r
−l+1)Ylm(θ,ϕ) for R− ≤ r < r ′,

P+(r,θ,ϕ)=
(
A+r

l
+B+r

−l−1
+C+r

l+2

+D+r
−l+1)Ylm(θ,ϕ) for r ′ < r ≤ R+.

(51)

The eight coefficients are found by imposing the same four
constraints derived from the boundary conditions at r = R−
and r = R+ as in the previous section and by imposing a fur-
ther four conditions: continuity of all components of u, no
shear force between the two halves of the domain, and a nor-
mal force that is proportional to the density anomaly:

continuity of ur :
P−(r ′,θ,ϕ)= P+(r ′,θ,ϕ), (52)

continuity of uθ and uϕ :
∂(rP−)
∂r
|r=r ′ =

∂(rP+)
∂r
|r=r ′ H⇒

∂P−
∂r

(r ′,θ,ϕ)

=
∂P+
∂r

(r ′,θ,ϕ), (53)

zero-shear condition:
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∂2P−
∂r2 (r ′,θ,ϕ)=

∂2P+
∂r2 (r ′,θ,ϕ), (54)

normal-shear condition:

∂3P+
∂r3 (r ′,θ,ϕ)−

∂3P−
∂r3 (r ′,θ,ϕ)=

gYlm(θ,ϕ)

νr ′
, (55)

where Eq. (55) is derived from Eq. (37) in the same way as
Eq. (26), and Eqs. (53)–(55) assume Eq. (52).

The free-slip solution coefficients are given by

A± =
gr ′
−l+2

ν

±

(
α2l−1
∓ − 1

)
2
(
α2l−1
± −α2l−1

∓

)
(2l− 1)(2l+ 1)

B± =
gr ′

l+3

ν

±

(
α−2l−3
∓ − 1

)
2
(
α−2l−3
± −α−2l−3

∓

)
(2l+ 1)(2l+ 3)

C± =
gr ′
−l

ν

±

(
−α2l+3
∓ + 1

)
2
(
α2l+3
± −α2l+3

∓

)
(2l+ 1)(2l+ 3)

D± =
gr ′

l+1

ν

±

(
−α−2l+1
∓ + 1

)
2
(
α−2l+1
± −α−2l+1

∓

)
(2l− 1)(2l+ 1)

.

The zero-slip solution coefficients are given by

A± =
gr ′
−l+2

ν

[
α2
+−α

2
−+

2
2l+ 1

(
α−2l−1
+ −α−2l−1

−

)
±

2l+ 3
2l+ 1

+
2

2l− 1

(
α2
+α
−2l−1
− −α−2l−1

+ α2
−

)
±

4γ±(2l+1)

(2l− 1)(2l+ 1)
∓
γ∓2 (2l+ 1)

2l− 1

]/
[
− 8γ−2l−1

− 8γ 2l+1
+ 2

(
γ 2
+ γ−2

)
(2l+ 1)2

− 4(2l− 1)(2l+ 3)
]

B± =
gr ′

l+3

ν

[
α2
+−α

2
−−

2
2l+ 1

(
α2l+1
+ −α2l+1

−

)
±

2l− 1
2l+ 1

−
2

2l+ 3

(
α2
+α

2l+1
− −α2l+1

+ α2
−

)
±

4γ∓(2l+1)

(2l+ 1)(2l+ 3)
∓
γ∓2 (2l+ 1)

2l+ 3

]/
[
− 8γ−2l−1

− 8γ 2l+1
+ 2

(
γ 2
+ γ−2

)
(2l+ 1)2

− 4(2l− 1)(2l+ 3)
]

C± =
gr ′
−l

ν

[
α−2
− −α

−2
+ +

2
2l+ 1

(
α−2l−1
+ −α−2l−1

−

)
∓

2l− 1
2l+ 1

+
2

2l+ 3

(
α−2
+ α

−2l−1
− −α−2l−1

+ α−2
−

)
∓

4γ±(2l+1)

(2l+ 1)(2l+ 3)
±
γ±2 (2l+ 1)

2l+ 3

]/
[
− 8γ−2l−1

− 8γ 2l+1
+ 2

(
γ 2
+ γ−2

)
(2l+ 1)2

− 4(2l− 1)(2l+ 3)
]

D± =
gr ′

l+1

ν

[
α−2
− −α

−2
+ −

2
2l+ 1

(
α2l+1
+ −α2l+1

−

)
∓

2l+ 3
2l+ 1

−
2

2l− 1

(
α−2
+ α

2l+1
− −α2l+1

+ α−2
−

)
∓

4γ∓(2l+1)

(2l− 1)(2l+ 1)
±
γ±2 (2l+ 1)

2l− 1

]/
[
− 8γ−2l−1

− 8γ 2l+1
+ 2

(
γ 2
+ γ−2

)
(2l+ 1)2

− 4(2l− 1)(2l+ 3)
]
.

3 Fluidity

The test cases in the previous section have been examined us-
ing Fluidity, a finite element, control-volume computational
modelling framework (Davies et al., 2011; Kramer et al.,
2012).

3.1 Discretisation

The numerical solutions for velocity and pressure, u and p,
are written as a linear combination of basis functions Nj and
Ml :

u=
∑
j

ujNj , p =
∑
l

plMl . (56)

We use either the P2–P1 (Taylor–Hood) or P2bubble–P1DG
element pairs. In both cases, the velocity and pressure ba-
sis functions Nj and Ml are piecewise quadratic and lin-
ear, respectively, on a triangular (2-D) or tetrahedral (3-D)
mesh of the domain �. Because the curved boundaries of
the cylindrical- and spherical-shell domains can only be ap-
proximated by the mesh, the numerical domain is denoted
by �h. When using the P2–P1 element pair, the basis func-
tions are continuous between cells. For the P2bubble–P1DG
element pair, the piecewise-linear pressure is treated as dis-
continuous between cells and the continuous quadratic ve-
locity basis functions are enriched by an extra cubic “bubble”
function with a corresponding cell-centred degree of freedom
(Ern and Guermond, 2004; Boffi et al., 2013).

The Stokes equations are written in the weak form, using
the same Nj and Ml basis as test functions. After integrating
by parts, Eqs. (1) and (3) then become (omitting boundary
terms)∫
�h

ν (∇Ni) ·
∑
j

[
∇NT

j uj +u
T
j ∇Nj

]
+Ni

∑
l

pl∇Ml =−

∫
�h

Nigρ
′r̂ for all Ni, (57)

∫
�h

(∇Mk) ·
∑
j

ujNj = 0 for all Mk. (58)
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Note that we apply strong Dirichlet boundary conditions,
so that the boundary integrals can indeed be neglected. In
the free-slip case, a local rotation is applied to the velocity
vectors, so that the degrees of freedom correspond to veloc-
ity components in either the normal or tangential directions.
This allows us to enforce a zero-normal component, while
leaving the tangential components free. For additional de-
tails about Fluidity and its implementation, see Davies et al.
(2011).

3.2 Isoparametric representation of the domain

For an accurate representation of the quadratic approxima-
tion of velocity, we need to also approximate the curved
cylindrical/spherical domain quadratically. This means that
rather than each cell in the mesh being described by a linear
map Xlin : ξ 7−→Xlin(ξ) from local coordinates ξ in a refer-
ence element to physical coordinates X, we use a quadratic
map Xquad(ξ), which maps to a curved triangle/tetrahedron
that better represents the domain. This map can be obtained
from a linear mesh with coordinate mappings, Xlin, through
quadratic interpolation:

Xquad(ξ)
quad. interp.
≈

rlin(ξ)

‖Xlin(ξ)‖
Xlin(ξ), (59)

at the standard Lagrange nodes of the quadratic function
space. Here, rlin(ξ) is the linear interpolation of the radius,
i.e. rlin = ‖Xlin‖ at the vertices of the linear mesh. This
particular choice ensures that for an equal-radius boundary,
with the boundary vertices of the linear mesh exactly on the
boundary, the quadratic Lagrange nodes also lie exactly on
this boundary.

3.3 Forcing term

The density perturbation ρ′ on the RHS of Eq. (57) is a pre-
scribed analytical expression in each of the test cases. For
Green’s function solutions in 2-D and 3-D, using Eqs. (20)
and (50), respectively, we get

−

∫
�h

Nigρ
′r̂ =−

∫
�h

Ni(r,θ)g cos(nθ)δ(r − r ′)r̂ =

−

∫
0′

Ni(r,θ)g cos(nθ)n, (60)

−

∫
�h

Ni(r,θ)gρ
′r̂ =−

∫
�h

Ni(r,θ,ϕ)gYlm(θ,ϕ)δ(r − r
′)r̂

=−

∫
0′

Ni(r,θ,ϕ)gYlm(θ,ϕ)n, (61)

where 0′ is an internal boundary at r = r ′ oriented such that
its normal n= r̂ points outwards.

3.4 Solving the linear system and dealing with null
spaces

Equations (57) and (58) form a saddle point linear system
which is solved by applying a Schur decomposition tech-
nique where the outer iteration, which solves for the pressure
degrees of freedom, is solved with a flexible Krylov subspace
method, FGMRES. The inner solve associated with the veloc-
ity degrees of freedom, is solved with the conjugate gradient
method preconditioned with an algebraic multigrid method
(GAMG available through PETSc; Balay et al., 1997).

In all cases, the pressure solution is only defined up to an
arbitrary constant. The analytical pressure solution has the
property that its mean is zero. For comparative purposes, we
therefore subtract the volume-averaged pressure from the ob-
tained numerical pressure solution:

p→ p−

∫
�h
p∫

�h
1
. (62)

Similarly, for free-slip cases, in 2-D, we may add an arbi-
trary rotation of the form (−y,x)= r θ̂ to the velocity solu-
tion. We therefore apply the following projection to the nu-
merical solution:

u→ u−

∫
�h
r θ̂ ·u∫
�h
r2 r θ̂ , (63)

which ensures that the angular momentum
∫
r θ̂ ·u is zero, as

it is for the analytical solutions. In the same way, in three
dimensions, we subtract the three rotational (rigid body)
modes.

It should be noted that the same velocity and pressure
modes lead to zero modes (eigenvectors) for the linear sys-
tem based on Eqs. (57) and (58), rendering the resulting ma-
trix singular. In preconditioned Krylov methods, we typically
need to subtract the zero modes from the approximate solu-
tion at every iteration. With iterative approximation xi and
zero eigenvector λ, we get

xi
→ xi

−〈λ,xi
〉λ. (64)

This l2 projection, based on the l2 inner product 〈·, ·〉, is anal-
ogous but not equivalent to the projections in Eqs. (62) and
(63) (which areL2 projections). Therefore, despite the l2 pro-
jections fixing the null modes during the iterative solve, the
L2 projections should be applied as an additional step after
the iterative solvers have completed to ensure convergence to
the analytical solution.

4 Convergence Results

In this section, we show the convergence of the numeri-
cal solutions obtained with Fluidity, using the P2–P1 ele-
ment pair, towards the analytical solutions. For 2-D cylin-
drical cases, the series of meshes start at refinement level
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Figure 3. Convergence for 2-D cylindrical cases with free-slip and zero-slip boundary conditions at a series of different wavenumbers, n,
as indicated in the legend. Note that cases with a smooth forcing are run at k = 2 and k = 8, as indicated. Convergence rate is indicated by
dashed lines, with the order of convergence provided in the legend.

1, where the mesh consists of 128 divisions in the horizon-
tal, and 16 layers, giving 128× 16× 2= 4096 triangles. At
each subsequent level, the mesh is refined, doubling the res-
olution in both directions. For the spherical cases, the mesh
at refinement level 1 is obtained from an icosahedron re-
fined three times, starting with 1280 triangles in the hori-
zontal, which is extruded radially to 16 layers, giving a 3-

D mesh consisting of 61 440 tetrahedra. Again, resolution
is doubled in all directions for subsequent refinement lev-
els. In all cases, non-dimensionalised coordinates were used
with R− = 1.22 and R+ = 2.22, and the delta-function cases
used r ′ = (R−+R+)/2. This choice of r ′ ensures the density
anomaly coincides with a grid layer at all mesh resolutions
considered herein.
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Figure 4. Convergence of velocity and pressure for 3-D spherical cases with free-slip and zero-slip boundary conditions, at a range of degrees
l and orders m. Note that all cases with a smooth forcing are run at k = l+ 1.

In all figures, errors are given as relative errors, comparing
the numerical solution, u and p, with the analytical solutions,
u∗ and p∗ (interpolated into the P2 and P1 function spaces,

respectively) in the L2 norm:

‖u−u∗‖2

‖u∗‖2
=

√∫
�h
|u−u∗|2√∫
�h
|u∗|2

,

‖p−p∗‖2

‖p∗‖2
=

√∫
�h
(p−p∗)2√∫
�h
(p∗)2

. (65)
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Figure 5. Convergence of velocity (a, b) and pressure (c, d), respectively, for smooth (k = 2) 2-D cylindrical cases with free-slip and zero-slip
boundary conditions. Note that these cases do not incorporate an isoparametric approximation of the domain; hence, the reduced convergence
is relative to comparable cases in Fig. 3.

Convergence plots for the 2-D cylindrical cases are pre-
sented in Fig. 3. With a smooth density profile, we see op-
timal convergence for the P2–P1 element pair at third and
second order for velocity and pressure, respectively, with
both free-slip and zero-slip boundary conditions. Cases with
lower wavenumber n show smaller relative error than those at
higher n, as expected. The same observation holds for lower
and higher polynomial order, k = 2 and k = 8, for the radial
density profile. For the free-slip and zero-slip delta-function
cases, however, convergence drops to 1.5 and 0.5 for velocity
and pressure, respectively. Furthermore, cases with lower n
do not consistently show smaller relative error than those at
higher n.

We see similar results for the spherical results illustrated
in Fig. 4: third and second order for velocity and pressure for
the cases with a smooth density profile, with smaller relative
errors for lower wave numbers l and m. Note that here, the
smooth vertical profile for density uses k = l+1 in all cases.
Again, for cases with a delta-function density anomaly, we
observe a reduced order of convergence of 1.5 and 0.5 for
velocity and pressure, respectively.

To examine the importance of an isoparametric approxi-
mation of the domain by a quadratic mesh, we ran the same
cases with a linear mesh. The results are shown in Fig. 5,
which demonstrates that the order of convergence of velocity
in the smooth cylindrical cases is indeed limited to second
order. The convergence of pressure remains at second order.

5 Discussion

5.1 Existing analytical benchmarks in shell domains

As indicated in the introduction, spherical delta-function
cases, like those presented herein, have previously been used
to validate global mantle convection codes (e.g. Zhong et al.,
2008; Burstedde et al., 2013; Davies et al., 2013; Liu and
King, 2019). These will be discussed in more detail in the
following section.

The derivation for all 3-D cases in this paper relies on
the Mie representation that decomposes the velocity solution
into poloidal and toroidal components, through which, un-
der the assumption of purely poloidal flow, the Stokes equa-
tions can be reduced to a biharmonic equation (10). Any so-
lution to the inhomogeneous solution can then be combined
with four linearly independent homogeneous solutions to this
equation, the coefficients of which can be derived through the
imposition of boundary conditions. For the smooth case with
a generic monomial forcing term, the same decomposition
(i.e. Eqs. 45 and 44) was used in Tosi and Martinec (2007) to
derive the analytical solution for Stokes flow in two eccentri-
cally nested spheres.

In Horbach et al. (2020), similar techniques were em-
ployed to derive benchmarks in spherical-shell domains that
satisfy zero-slip and free-slip conditions and, in addition, a
mixed zero-slip/free-slip case. Here, the derivation starts by
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simply selecting four, in principle arbitrary, linearly indepen-
dent solutions for the radially dependent part of the poloidal
scalar function. Again the imposition of boundary conditions
fixes the coefficients of this linear combination. The corre-
sponding right-hand side forcing term is then obtained by
substitution.

The number of published benchmarks for 2-D cylindrical-
shell domains is more limited (e.g. Buffa et al., 2011; Bli-
nova et al., 2016; Hoang et al., 2017). The derivation of the
equivalent cases in 2-D cylindrical-shell domains is some-
what simpler, but also ultimately relies on combining four in-
dependent homogeneous solutions and one inhomogeneous
solution to a biharmonic equation.

In Blinova et al. (2016), analytical solutions in both cylin-
drical and spherical domains are presented for the Stokes
equations with a radially dependent viscosity. Because these
are solutions in cylindrical or spherical coordinates without
reference to any specific domain, they do not satisfy no-
normal-flow conditions on the boundary of a shell domain.
They can be used in such domains as a numerical benchmark
by specifying all velocity components of the analytical so-
lution as a Dirichlet condition for the model. Analytical so-
lutions for radially dependent viscosity were also presented
in Thieulot (2017). Their solutions (in 3-D only) do satisfy
no-normal-flow conditions in a spherical-shell domain, but
the tangential components are non-zero at the boundary and
thus still require inhomogeneous Dirichlet conditions. Spa-
tially varying viscosity is of course an import aspect of man-
tle convection models for which these are effective bench-
marks. The isoviscous solutions presented here, and those in
Horbach et al. (2020), however, allow for the testing of zero-
slip and free-slip conditions, where in particular free-slip
conditions may pose various numerical challenges such as
rotational modes and, depending on the discretisation used,
the (non-)alignment of velocity components with normal and
tangential directions at the boundary.

5.2 Reduced order of convergence with discontinuous
pressures

At first sight, the reduced order of convergence for the delta-
function cases seems at odds with those expected for the P2–
P1 element pair. However, the mathematical proofs for the
ideal order of convergence to solutions of the Stokes equa-
tions rely on certain regularity assumptions of the right-hand
side forcing term and, related to that, on the regularity of the
velocity and pressure solutions. The regularity of the delta
function can be classified as being a member of the Sobolev
space H−1(�) the dual of the Sobolev space H 1(�), where
for the sake of simplicity we assume �=�h in this section.
This means that the delta function can be thought of as a con-
tinuous function:

δr ′ : v 7−→

∫
�

δ(r − r ′)v(r,φ)rdrdφ =
∫
�

v(r ′)r ′dφ, (66)

which maps functions v ∈H 1(�), the space of square in-
tegrable functions with square integrable weak derivatives,
to R. Girault and Raviart (2012) demonstrate that even with
the very loose regularity condition that the right-hand side
f is in Hm(�) with m≥−1, the Stokes equations in the
weak form have a unique solution (given sufficient inte-
gral constraints) with velocity in Hm+2(�) and pressure in
Hm+1(�). The analytical solutions derived here for the delta
case with m=−1 indeed have a discontinuous pressure in
H 0(�)= L2(�) and a velocity with discontinuous normal
derivative in H 1(�).

For velocity–pressure finite element pairs that satisfy the
standard inf-sup, or Ladyzhenskaya–Babuška–Brezzi (LBB)
condition

sup
v∈V

∫
�
v · ∇q

‖v‖1
≥ β‖q‖2 for all q ∈W, (67)

where V and W are the discrete vector and scalar function
spaces, respectively, and β is a constant, it can be shown that
the method converges and in fact

|u∗−u|1+‖p
∗
−p‖2 ≤ C1

{
inf
v∈V
|u∗− v|1+ inf

q∈W
‖p∗− q‖2

}
,

where C1 is a constant independent of h, u∗ and p∗ are the
exact solutions, u and p the numerical solutions in the dis-
crete function spaces V and W based on a mesh with mesh
distance h, and | · |1 is the semi-norm

|u|1 =

√√√√√ dim∑
i=1

∫
�

‖∂iu‖2. (68)

In other words, the convergence of u and p to u∗ and p∗ is
bounded by the best possible approximation of u∗ and p∗ in
the discrete spaces V and W . For bounded functions with a
discontinuity along a smooth interface, such as our analytical
pressure solution p∗, the best approximation by continuous,
piecewise-linear polynomials, i.e. W = P1, is bounded by

inf
q∈W
‖p∗− q‖2 ≤ C2h

1
2 ‖p∗‖2 (69)

(this bound can be derived from the order of convergence
results in Bernardi, 1989). This therefore limits the conver-
gence of the method.

A solution to this problem is found by allowing for discon-
tinuities in the discrete pressure space. We demonstrate this
here by consideringW = P1DG the space of piecewise-linear
but discontinuous functions. To satisfy the inf-sup condition,
this requires enriching the quadratic function space P2 for ve-
locity with a cubic bubble (Ern and Guermond, 2004; Boffi
et al., 2013). Convergence results for this element pair are
shown in Fig. 6. For the 2-D cylindrical delta-function cases,
we observe the expected orders of convergence: third order
for velocity and second order for pressure.
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Figure 6. Convergence of velocity (a, b) and pressure (c, d), respectively, for delta-function 2-D cylindrical cases with free-slip and zero-slip
boundary conditions with the P2bubble–P1DG element pair.

Figure 7. Convergence of velocity and radial stresses at top (a, c) top and (b, d) bottom surfaces (r = R±), respectively, for delta-function
3-D spherical cases with free-slip boundary conditions.
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Finally, we compare our results with those presented in
Zhong et al. (2008), Davies et al. (2013), Burstedde et al.
(2013), and Liu and King (2019), who ran the same spherical
cases with a delta-function forcing and found second-order
convergence for velocity and second-order convergence for
pressure related diagnostics. It should be noted, however, that
these studies only examined surface diagnostics, such as the
velocity divergence and the normal stress. When we examine
comparable diagnostics, specifically, the relative error in ve-
locity at the boundary and the boundary normal stress (illus-
trated in Fig. 7), we find velocity convergence at third order
and normal stress at second order. It therefore appears that
the reduced order of accuracy in the interior of the domain
does not affect the surface response which still converges at
the same order as for the smooth case.

The results of Zhong et al. (2008) (using CitcomS) and
Davies et al. (2013) (using TERRA) were based on a Q1–P0
discretisation with a continuous piecewise-trilinear velocity
and piecewise-constant, discontinuous pressure. Although
our analysis above limits the convergence of ‖p−p∗‖2 for a
P0 pressure p to first order, second-order super-convergence
can be obtained in some cases by evaluating the analytical
solution only in the cell centre. In other words, by compar-
ing to a filtered piecewise-constant analytical approximation
p̄∗, second-order convergence can sometimes be observed in
‖p− p̄∗‖2. For continuous pressure approximations, such as
the P2–P1 results in this paper, the Q1–Q1 discretisation of
the Rhea model in Burstedde et al. (2013), and the Q2–Q1
discretisation of ASPECT in Liu and King (2019), reduced
convergence in the interior of the domain is to be expected.

6 Conclusions

We have presented a series of 2-D cylindrical and 3-D spher-
ical analytical solutions for the purpose of verifying man-
tle dynamics codes. These solutions are based upon either
a delta-function density perturbation or a smooth forcing
term, and we provide solutions for both free-slip and zero-
slip boundary conditions. The combinations of dimension,
forcing, and boundary conditions provide a series of eight
analytical solutions that can be used as a basis for validating
existing and future numerical codes, in cylindrical and spher-
ical geometries. To facilitate this, we provide solutions in the
form of a Python package (Assess: Analytical Solutions for
the Stokes Equations in Spherical Shells; Kramer, 2020).

We verify the convergence of the P2–P1 (Taylor–Hood) fi-
nite element discretisation using Fluidity (Davies et al., 2011;
Kramer et al., 2012). The continuous approximation of pres-
sure can lead to a reduced order of convergence in the pres-
ence of discontinuities, which can be overcome using a dis-
continuous numerical approximation of pressure. It is impor-
tant to note that this reduced order of convergence was only
observed by comparing the numerical solution with the entire
analytical solution in the interior of the domain. A compar-
ison based on surface response only failed to highlight this
issue.
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Appendix A: Equations in polar coordinates

In this appendix, we work out the incompressible Stokes
equations in polar coordinates in terms of a streamfunction
ψ , where the components of velocity are given by

ur =−
1
r

∂ψ

∂ϕ
, uϕ =

∂ψ

∂
r. (A1)

We make use of the following expressions for the derivatives
of the unit vectors r̂ and ϕ̂ with respect to r and ϕ:

r̂ · ∇ r̂ =
∂ r̂

∂r
= 0, ϕ̂ · ∇ r̂ =

1
r

∂ r̂

∂ϕ
=

1
r
ϕ̂, (A2)

r̂ · ∇ϕ̂ =
∂ϕ̂

∂r
= 0, ϕ̂ · ∇ϕ̂ =

1
r

∂ϕ̂

∂ϕ
=−

1
r
r̂. (A3)

Using these, we can work out the different components of
stress:

τrr = 2νr̂ · [∇u] · r̂ = 2νr̂ · ∇
(
r̂ ·u

)
− 2ν

(
r̂ · ∇ r̂

)
·u= 2ν

∂ur

∂r
− 0=−2ν

∂

∂r

(
1
r

∂ψ

∂ϕ

)
, (A4)

τϕϕ = 2νϕ̂ · [∇u] · ϕ̂ = 2νϕ̂ · ∇
(
ϕ̂ ·u

)
− 2ν

(
ϕ̂ · ∇ϕ̂

)
u=

2ν
r

∂uϕ

∂ϕ
+

2ν
r
r̂ ·u

=
2ν
r

∂2ψ

∂r∂ϕ
−

2ν
r2
∂ψ

∂ϕ
= 2ν

∂

∂r

(
1
r

∂ψ

∂ϕ

)
, (A5)

τrϕ = νr̂ · [∇u] · ϕ̂+ νϕ̂ · [∇u] · r̂ = νr̂ · ∇
(
u · ϕ̂

)
− ν

(
r̂ · ∇ϕ̂

)
·u+ νϕ̂ · ∇

(
u · r̂

)
− ν

(
ϕ̂ · ∇ r̂

)
·u

= ν
∂

∂r

(
∂ψ

∂r

)
− 0+

ν

r

∂ur

∂ϕ
−
ν

r
ϕ̂ ·u

= ν

(
∂2ψ

∂r2 −
1
r

∂

∂ϕ

(
1
r

∂ψ

∂ϕ

)
−

1
r

∂ψ

∂r

)
. (A6)

Note that, as expected, τrr + τϕϕ = 0. In the same way, we
derive the following expression for the vorticity, or curl of
the velocity:

curl u= r̂ · [∇u] · ϕ̂− ϕ̂ · [∇u] · r̂ =

∂2ψ

∂r2 +
1
r

∂

∂ϕ

(
1
r

∂ψ

∂ϕ

)
+

1
r

∂ψ

∂r
=∇

2ψ. (A7)

The viscosity term in the Stokes equations can be written as

∇ · τ =∇ ·
(
r̂τrr r̂ + r̂τrϕϕ̂+ ϕ̂τϕr r̂ + ϕ̂τϕϕϕ̂

)
(A8)

=
(
∇ · r̂

)(
τrr r̂ + τrϕϕ̂

)
+ r̂ · ∇

(
τrr r̂ + τrϕϕ̂

)
+
(
∇ · ϕ̂

)(
τϕr r̂ + τϕϕϕ̂

)
+ ϕ̂ · ∇

(
τϕr r̂ + τϕϕϕ̂

)
. (A9)

In addition to Eq. (A3), we use the following identities:

∇ · r̂ =
1
r
, ∇ · ϕ̂ = 0, (A10)

and the fact that τϕϕ =−τrr . After reordering to group the
radial and transverse components, this leads to

∇ · τ =

[
2
r
τrr +

∂τrr

∂r
+

1
r

∂

∂ϕ
τϕr

]
r̂

+

[
2
r
τrϕ +

∂τrϕ

∂r
−

1
r

∂τrr

∂ϕ

]
ϕ̂ (A11)

=

[
−

2ν
r

∂

∂ϕ

∂2ψ

∂r2 +
1
r

∂

∂ϕ
τϕr

]
r̂ +

[
ν
∂3ψ

∂r3 +
ν

r

∂2ψ

∂r2 −
ν

r2
∂ψ

∂r

+
ν

r2
∂3ψ

∂ϕ2∂r
−

2ν
r3
∂2ψ

∂ϕ2

]
ϕ̂ (A12)

=−
ν

r

[
∂

∂ϕ
∇

2ψ

]
r̂ + ν

[
∂

∂r
∇

2ψ

]
ϕ̂. (A13)

In combination with the pressure gradient term in polar co-
ordinates

∇p =
∂p

∂r
r̂ +

1
r

∂p

∂ϕ
ϕ̂, (A14)

we obtain the radial and transverse components of the Stokes
momentum equation in Eqs. (7) and (8).
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Code availability. The Python package Assess, which implements
the analytical solutions and evaluates them at arbitrary locations
in the domain, is available from http://github.com/stephankramer/
assess (last access: 12 June 2020) (see https://assess.readthedocs.io
(last access: 12 June 2020). An archived version is available from
https://doi.org/10.5281/zenodo.3891545 (Kramer, 2020). To ensure
correctness, in the paper as well as in the Python package, the coeffi-
cients for the various solutions are extracted from the LaTeX source
automatically using SymPy (Meurer et al., 2017), verified to ad-
here to the equations using SageMath (The Sage Developers, 2019),
and substituted in the Python package. Assess has also been used to
compute the errors in the Fluidity results in this paper. The Fluidity
model, including source code and documentation, is available from
https://fluidityproject.github.io/ (last access: 17 August 2020). All
cases in this paper have been run with tag version 4.1.17, which is
archived at https://doi.org/10.5281/zenodo.3988620 (Kramer et al.,
2020).
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Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S.,
Cimrman, R., and Scopatz, A.: SymPy: symbolic computing

https://doi.org/10.5194/gmd-14-1899-2021 Geosci. Model Dev., 14, 1899–1919, 2021

https://doi.org/10.1029/2011GC003551
https://doi.org/10.5194/gmd-6-1095-2013
https://doi.org/10.5194/gmd-6-1095-2013
https://doi.org/10.1002/2015GC006125
https://doi.org/10.1038/s41561-019-0441-4
https://doi.org/10.1029/91JB02571
https://doi.org/10.1002/2014GC005257
https://doi.org/10.1038/364589a0
https://doi.org/10.1029/JB091iB06p06375
https://doi.org/10.1093/gji/ggx195
https://doi.org/10.1016/j.pepi.2008.07.037
https://doi.org/10.1016/j.epsl.2011.12.009
https://doi.org/10.1016/j.epsl.2015.11.016
https://doi.org/10.1016/j.epsl.2018.11.008
https://doi.org/10.1029/2018GC007559
https://doi.org/10.5281/zenodo.3891545
https://doi.org/10.1016/j.pepi.2012.01.001
https://doi.org/10.5281/zenodo.3988620
https://doi.org/10.1111/j.1365-246X.2012.05609.x
https://doi.org/10.1111/j.1365-246X.2012.05609.x
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1017/S0022112074000784
https://doi.org/10.1038/nature04066


1918 S. C. Kramer et al.: Analytical solutions for mantle flow

in Python, PeerJ, 3, e103, https://doi.org/10.7717/peerj-cs.103,
2017.

Mitrovica, J. X., Beaumont, C., and Jarvis, G. T.: Tilting of conti-
nental interiors by the dynamical effects of subduction, Tecton-
ics, 8, 1079–1094, https://doi.org/10.1029/TC008i005p01079,
1989.

Moresi, L. N. and Solomatov, V. S.: Numerical investigations of 2D
convection with extremely large viscosity variations, Phys. Fluid,
7, 2154–2162, https://doi.org/10.1063/1.868465, 1995.

Morgan, W. J.: Deep mantle convection plumes and plate motions,
Am. Assoc. Petr. Geol. B., 56, 203–213, 1972.

Nakagawa, T. and Tackley, P. J.: The interaction between the post-
perovskite phase change and a thermo-chemical boundary layer
near the core-mantle boundary, Earth Planet. Sc. Lett., 238, 204–
216, 2005.

Oldham, D. N. and Davies, J. H.: Numerical investigation of lay-
ered convection in a three-dimensional shell with application
to planetary mantles, Geochem. Geophy. Geosy., 5, Q12C04,
https://doi.org/10.1029/2003GC000603, 2004.

Olson, P., Deguen, R., Hinnov, L. A., and Zhong, S. J.: Controls
on geomagnetic reversals and core evolution by mantle convec-
tion in the Phanerozoic, Phys. Earth Planet. Int., 214, 87–103,
https://doi.org/10.1016/j.pepi.2012.10.003, 2013.

Popov, I. Yu., Lobanov, I. S., Popov, S. I., Popov, A. I., and Gerya,
T. V.: Practical analytical solutions for benchmarking of 2-D and
3-D geodynamic Stokes problems with variable viscosity, Solid
Earth, 5, 461–476, https://doi.org/10.5194/se-5-461-2014, 2014.

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini,
F., Mcrae, A. T. T., Bercea, G.-T., Markall, G. R., and Kelly,
P. H. J.: Firedrake: Automating the Finite Element Method
by Composing Abstractions, ACT T. Math. Softw., 43, 1–24,
https://doi.org/10.1145/2998441, 2016.

Ribe, N. M.: Analytical Approaches to Mantle Dynamics, in: Man-
tle Dynamics, edited by: Bercovici, D. and Schubert, G., vol. 7
of Treatise on Geophysics, Elsevier, New York, 167–226,2009.

Roache, P. J.: Code Verification by the Method of Man-
ufactured Solutions, J. Fluid. Eng.-T. ASME, 124, 4–10,
https://doi.org/10.1115/1.1436090, 2002.

Solheim, L. P. and Peltier, W. R.: Avalanche effects in phase transi-
tion modulated convection – a model of Earth’s mantle, J. Geo-
phys. Res., 99, 6997–7018, 1994.

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L.,
and Ghattas, O.: The dynamics of plate tectonics and man-
tle flow: from local to global scales, Science, 329, 1033–1038,
https://doi.org/10.1126/science.1191223, 2010.

Stotz, I. L., Iaffaldano, G., and Davies, D. R.: Pressure-Driven
Poiseuille Flow: A Major Component of the Torque-Balance
Governing Pacific Plate Motion, Geophys. Res. Lett., 45, 117–
125, https://doi.org/10.1002/2017GL075697, 2018.

Tackley, P. J.: Modelling compressible mantle convection with
large viscosity contrasts in a three-dimensional spherical shell
using the Yin-Yang grid, Phys. Earth Planet. Int., 171, 7–18,
https://doi.org/10.1016/j.pepi.2008.08.005, 2008.

Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.:
Effects of an endothermic phase transition at 670 km depth in a
spherical model of convection in the Earth’s mantle, Nature, 361,
699–704, https://doi.org/10.1038/361699a0, 1993.

Tan, E., Leng, W., Zhong, S., and Gurins, M.: On the lo-
cation of plumes and mobility of thermo–chemical struc-

tures with high bulk modulus in the 3-D compress-
ible mantle, Geochem. Geophy. Geosy., 12, Q07005,
https://doi.org/10.1029/2011GC003665, 2011.

The Sage Developers: SageMath, the Sage Mathematics Software
System (Version 8.6), available at: https://www.sagemath.org
(last access: 1 June 2020), 2019.

Thieulot, C.: Analytical solution for viscous incompressible
Stokes flow in a spherical shell, Solid Earth, 8, 1181–1191,
https://doi.org/10.5194/se-8-1181-2017, 2017.

Tosi, N. and Martinec, Z.: Semi-analytical solution for viscous
Stokes flow in two eccentrically nested spheres, Geophys. J. Int.,
170, 1015–1030, 2007.

Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierová, P., Samuel,
H., Davies, D. R., Wilson, C. R., Kramer, S. C., Thieulot, C.,
Glerum, A., Fraters, M., Spakman, W., Rozel, A., and Tackley,
P. J.: A community benchmark for viscoplastic thermal convec-
tion in a 2-D square box, Geochem. Geophy. Geosy., 16, 2175–
2196, https://doi.org/10.1002/2015GC005807, 2015.

Travis, B. J., Anderson, C., Baumgardner, J. R., Gable, C. W.,
Hager, B. H., O’Connell, R. J., Olson, P., Raefsky, A., and Schu-
bert, G.: A benchmark comparison of numerical methods for
infinite Prandtl number thermal convection in two–dimensional
Cartesian geometry, Geophys. Astrophys. Fluid Dyn., 55, 137–
160, 1990.

van Keken, P. E.: Cylindrical scaling for dynamical cooling models
of the Earth, Phys. Earth. Planet. Int., 124, 119–130, 2001.

van Keken, P. E. and Ballentine, C. J.: Whole–mantle versus layered
mantle convection and the role of a high–viscosity lower mantle
in terrestrial volatile evolution, Earth Planet. Sc. Lett., 156, 19–
32, 1998.

van Keken, P. E. and Ballentine, C. J.: Dynamical models of
mantle volatile evolution and the role of phase transitions and
temperature–dependent rheology, J. Geophys. Res., 104, 7137–
7151, 1999.

van Keken, P. E. and Yuen, D. A.: Dynamical influences of high
viscosity in the lower mantle induced by the steep melting curve
of perovskite: effects of curvature and time–dependence, J. Geo-
phys. Res., 100, 15233–15248, 1995.

van Keken, P. E., King, S. D., Schmeling, H., Christensen, U. R.,
Neumeister, D. and Doin, M. P.: A comparison of methods for
the modeling of thermo–chemical convection, J. Geophys. Res.,
102, 22477–22495, 1997.

van Keken, P. E., Kiefer, B., and Peacock, S.: High reso-
lution models of subduction zones: Implications for min-
eral dehydration reactions and the transport of water into
the deep mantle, Geochem. Geophy. Geosy., 3, 1056,
https://doi.org/10.1029/2001GC000256, 2002.

van Keken, P. E., Currie, C., King, S. D., Behn, M. D., Cagnion-
cle, A., He, J., Katz, R. F., Lin, S., Parmentier, E. M., Spiegel-
man, M., and Wang, K.: A community benchmark for sub-
duction zone modeling, Phys. Earth Planet. Int., 171, 187–197,
https://doi.org/10.1016/j.pepi.2008.04.015, 2008.

Wilson, C. R., Spiegelman, M., and van Keken, P. E.: TerraFERMA:
The Transparent Finite Element Rapid Model Assembler for
multiphysics problems in Earth sciences, Geochem. Geophy.
Geosy., 18, 769–810, https://doi.org/10.1002/2016GC006702,
2017.

Wolstencroft, M., Davies, J. H., and Davies, D. R.: Nusselt-
Rayleigh number scaling for spherical shell Earth mantle sim-

Geosci. Model Dev., 14, 1899–1919, 2021 https://doi.org/10.5194/gmd-14-1899-2021

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1029/TC008i005p01079
https://doi.org/10.1063/1.868465
https://doi.org/10.1029/2003GC000603
https://doi.org/10.1016/j.pepi.2012.10.003
https://doi.org/10.5194/se-5-461-2014
https://doi.org/10.1145/2998441
https://doi.org/10.1115/1.1436090
https://doi.org/10.1126/science.1191223
https://doi.org/10.1002/2017GL075697
https://doi.org/10.1016/j.pepi.2008.08.005
https://doi.org/10.1038/361699a0
https://doi.org/10.1029/2011GC003665
https://www.sagemath.org
https://doi.org/10.5194/se-8-1181-2017
https://doi.org/10.1002/2015GC005807
https://doi.org/10.1029/2001GC000256
https://doi.org/10.1016/j.pepi.2008.04.015
https://doi.org/10.1002/2016GC006702


S. C. Kramer et al.: Analytical solutions for mantle flow 1919

ulation up to a Rayleigh number of 109, Phys. Earth Planet. Int.,
176, 132–141, https://doi.org/10.1016/j.pepi.2009.05.002, 2009.

Zhong, S., Gurnis, M., and Hulbert, G.: Accurate determina-
tion of surface normal stress in viscous flow from a consis-
tent boundary flux method, Phys. Earth Planet. Int., 78, 1–8,
https://doi.org/10.1016/0031-9201(93)90078-N, 1993.

Zhong, S., Zuber, M. T., Moresi, L., and Gurnis, M.: Role of
temperature-dependent viscosity and surface plates in spheri-
cal shell models of mantle convection, J. Geophys. Res., 105,
11063–11082, https://doi.org/10.1029/2000JB900003, 2000.

Zhong, S., McNamara, A., Tan, E., Moresi, L., and Gurnis, M.:
A benchmark study on mantle convection in a 3-D spherical
shell using CitcomS, Geochem. Geophy. Geosy., 9, Q10017,
https://doi.org/10.1029/2008GC002048, 2008.

https://doi.org/10.5194/gmd-14-1899-2021 Geosci. Model Dev., 14, 1899–1919, 2021

https://doi.org/10.1016/j.pepi.2009.05.002
https://doi.org/10.1016/0031-9201(93)90078-N
https://doi.org/10.1029/2000JB900003
https://doi.org/10.1029/2008GC002048

	Abstract
	Introduction
	Analytical Solutions
	Equations
	Cylindrical
	Smooth density profile – cylindrical
	Green's function solution – cylindrical

	Spherical
	Smooth density profile – spherical
	Green's function solution – spherical


	Fluidity
	Discretisation
	Isoparametric representation of the domain
	Forcing term
	Solving the linear system and dealing with null spaces

	Convergence Results
	Discussion
	Existing analytical benchmarks in shell domains
	Reduced order of convergence with discontinuous pressures

	Conclusions
	Appendix A: Equations in polar coordinates
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

