Articles | Volume 13, issue 6
https://doi.org/10.5194/gmd-13-2723-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-2723-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards an objective assessment of climate multi-model ensembles – a case study: the Senegalo-Mauritanian upwelling region
Juliette Mignot
CORRESPONDING AUTHOR
IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France
Carlos Mejia
IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France
Charles Sorror
IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France
Adama Sylla
IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France
LPAO-SF, ESP, UCAD, Dakar, Sénégal
Michel Crépon
IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France
Sylvie Thiria
IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France
UVSQ, 78035, Versailles, France
Related authors
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-36, https://doi.org/10.5194/esd-2023-36, 2023
Preprint under review for ESD
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Simon Michel, Didier Swingedouw, Marie Chavent, Pablo Ortega, Juliette Mignot, and Myriam Khodri
Geosci. Model Dev., 13, 841–858, https://doi.org/10.5194/gmd-13-841-2020, https://doi.org/10.5194/gmd-13-841-2020, 2020
Short summary
Short summary
Natural archives such as sediments, ice, tree rings or speleothems provide indirect observations of past climate at local and regional scales. In this paper, we provide a computational device to properly make evaluated reconstructions of climate indices using these paleo-data. It provides optimizing cross-validation algorithms and four regression methods that are applied to the reconstruction of the North Atlantic Oscillation index and compared in this study.
Jérôme Sirven, Juliette Mignot, and Michel Crépon
Ocean Sci., 15, 1667–1690, https://doi.org/10.5194/os-15-1667-2019, https://doi.org/10.5194/os-15-1667-2019, 2019
Short summary
Short summary
In December 2002 and January 2003 satellite observations of chlorophyll showed a wavelike pattern with a wavelength of about 750 km south-west of the Cape Verde Peninsula. Such a pattern suggests the existence of a locally generated Rossby wave which slowly propagated westward. To verify this hypothesis a numerical study based on a simple model has been conducted. The numerical results are completed by an analytical study which evaluates the potential impact of the coastline shape.
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Short summary
The observed decrease of oxygen and warming in the ocean may adversely affect marine ecosystems and their services. We analyse results from an Earth system model for the last millennium and the 21st century. We find changes in temperature and oxygen due to fossil fuel burning and other human activities to exceed natural variations in many ocean regions already today. Natural variability is biased low in earlier studies neglecting forcing from past volcanic eruptions and solar change.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-36, https://doi.org/10.5194/esd-2023-36, 2023
Preprint under review for ESD
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Pierre Sepulchre, Arnaud Caubel, Jean-Baptiste Ladant, Laurent Bopp, Olivier Boucher, Pascale Braconnot, Patrick Brockmann, Anne Cozic, Yannick Donnadieu, Jean-Louis Dufresne, Victor Estella-Perez, Christian Ethé, Frédéric Fluteau, Marie-Alice Foujols, Guillaume Gastineau, Josefine Ghattas, Didier Hauglustaine, Frédéric Hourdin, Masa Kageyama, Myriam Khodri, Olivier Marti, Yann Meurdesoif, Juliette Mignot, Anta-Clarisse Sarr, Jérôme Servonnat, Didier Swingedouw, Sophie Szopa, and Delphine Tardif
Geosci. Model Dev., 13, 3011–3053, https://doi.org/10.5194/gmd-13-3011-2020, https://doi.org/10.5194/gmd-13-3011-2020, 2020
Short summary
Short summary
Our paper describes IPSL-CM5A2, an Earth system model that can be integrated for long (several thousands of years) climate simulations. We describe the technical aspects, assess the model computing performance and evaluate the strengths and weaknesses of the model, by comparing pre-industrial and historical runs to the previous-generation model simulations and to observations. We also present a Cretaceous simulation as a case study to show how the model simulates deep-time paleoclimates.
Khalil Yala, N'Dèye Niang, Julien Brajard, Carlos Mejia, Mory Ouattara, Roy El Hourany, Michel Crépon, and Sylvie Thiria
Ocean Sci., 16, 513–533, https://doi.org/10.5194/os-16-513-2020, https://doi.org/10.5194/os-16-513-2020, 2020
Short summary
Short summary
The paper is a contribution to the study of phytoplankton pigment climatology from satellite ocean-color observations in the Senegalo–Mauritanian upwelling, which is a very productive region where in situ observations are lacking. We processed the satellite data with an efficient new neural network classifier. We were able to provide the climatological cycle of diatoms. This study may have an economic impact on fisheries thanks to better knowledge of phytoplankton dynamics.
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020, https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Short summary
Ocean deoxygenation and warming are observed and projected to intensify under continued greenhouse gas emissions. Whereas temperature is considered the main climate change indicator, we show that in certain regions, thermocline doxygenation may be detectable before warming.
Simon Michel, Didier Swingedouw, Marie Chavent, Pablo Ortega, Juliette Mignot, and Myriam Khodri
Geosci. Model Dev., 13, 841–858, https://doi.org/10.5194/gmd-13-841-2020, https://doi.org/10.5194/gmd-13-841-2020, 2020
Short summary
Short summary
Natural archives such as sediments, ice, tree rings or speleothems provide indirect observations of past climate at local and regional scales. In this paper, we provide a computational device to properly make evaluated reconstructions of climate indices using these paleo-data. It provides optimizing cross-validation algorithms and four regression methods that are applied to the reconstruction of the North Atlantic Oscillation index and compared in this study.
Jérôme Sirven, Juliette Mignot, and Michel Crépon
Ocean Sci., 15, 1667–1690, https://doi.org/10.5194/os-15-1667-2019, https://doi.org/10.5194/os-15-1667-2019, 2019
Short summary
Short summary
In December 2002 and January 2003 satellite observations of chlorophyll showed a wavelike pattern with a wavelength of about 750 km south-west of the Cape Verde Peninsula. Such a pattern suggests the existence of a locally generated Rossby wave which slowly propagated westward. To verify this hypothesis a numerical study based on a simple model has been conducted. The numerical results are completed by an analytical study which evaluates the potential impact of the coastline shape.
Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, and Carlos Mejia
Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019, https://doi.org/10.5194/gmd-12-2091-2019, 2019
Short summary
Short summary
This work is dedicated to a new model that reconstructs the surface ocean partial pressure of carbon dioxide (pCO2) over the global ocean on a monthly 1°×1° grid. The model is based on a feed-forward neural network and represents the nonlinear relationships between pCO2 and the ocean drivers. Reconstructed pCO2 has a satisfying accuracy compared to independent observational data and shows a good agreement in seasonal and interannual variability with three existing mapping methods.
Angélique Hameau, Juliette Mignot, and Fortunat Joos
Biogeosciences, 16, 1755–1780, https://doi.org/10.5194/bg-16-1755-2019, https://doi.org/10.5194/bg-16-1755-2019, 2019
Short summary
Short summary
The observed decrease of oxygen and warming in the ocean may adversely affect marine ecosystems and their services. We analyse results from an Earth system model for the last millennium and the 21st century. We find changes in temperature and oxygen due to fossil fuel burning and other human activities to exceed natural variations in many ocean regions already today. Natural variability is biased low in earlier studies neglecting forcing from past volcanic eruptions and solar change.
Hector Simon Benavides Pinjosovsky, Sylvie Thiria, Catherine Ottlé, Julien Brajard, Fouad Badran, and Pascal Maugis
Geosci. Model Dev., 10, 85–104, https://doi.org/10.5194/gmd-10-85-2017, https://doi.org/10.5194/gmd-10-85-2017, 2017
Short summary
Short summary
The objective of this work is to deliver the adjoint model of SECHIBA obtained with software called YAO, in order to perform 4D-VAR data assimilation. The SECHIBA module of the ORCHIDEE land surface model describes the exchanges of water and energy between the surface and the atmosphere. A distributed version is available when only the land surface temperature is used as an observation, with two examples and documentation.
K. Lohmann, J. Mignot, H. R. Langehaug, J. H. Jungclaus, D. Matei, O. H. Otterå, Y. Q. Gao, T. L. Mjell, U. S. Ninnemann, and H. F. Kleiven
Clim. Past, 11, 203–216, https://doi.org/10.5194/cp-11-203-2015, https://doi.org/10.5194/cp-11-203-2015, 2015
Short summary
Short summary
We use model simulations to investigate mechanisms of similar Iceland--Scotland overflow (outflow from the Nordic seas) and North Atlantic sea surface temperature variability, suggested from palaeo-reconstructions (Mjell et al., 2015). Our results indicate the influence of Nordic Seas surface temperature on the pressure gradient across the Iceland--Scotland ridge, not a large-scale link through the meridional overturning circulation, is responsible for the (simulated) co-variability.
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
Related subject area
Numerical methods
A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column
AutoQS v1: automatic parametrization of QuickSampling based on training images analysis
Sweep Interpolation: A Fourth-Order Accurate Cost Effective Scheme in the Global Environmental Multiscale Model
Implementation and application of ensemble optimal interpolation on an operational chemistry weather model for improving PM2.5 and visibility predictions
A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling
Calibration of Absorbing Boundary Layers for Geoacoustic Wave Modeling in Pseudo-Spectral Time-Domain Methods
GStatSim V1.0: a Python package for geostatistical interpolation and conditional simulation
Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond
An improved subgrid channel model with upwind-form artificial diffusion for river hydrodynamics and floodplain inundation simulation
A model instability issue in the National Centers for Environmental Prediction Global Forecast System version 16 and potential solutions
A comparison of 3-D spherical shell thermal convection results at low to moderate Rayleigh number using ASPECT (version 2.2.0) and CitcomS (version 3.3.1)
Scalable Feature Extraction and Tracking (SCAFET): A general framework for feature extraction from large climate datasets
LISFLOOD-FP 8.1: new GPU-accelerated solvers for faster fluvial/pluvial flood simulations
Fast approximate Barnes interpolation: illustrated by Python-Numba implementation fast-barnes-py v1.0
Perspectives of Physics-Based Machine Learning for Geoscientific Applications Governed by Partial Differential Equations
Strategies for conservative and non-conservative monotone remapping on the sphere
GeoINR 1.0: an implicit neural representation network for three-dimensional geological modelling
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
A mixed finite-element discretisation of the shallow-water equations
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration
CHONK 1.0: landscape evolution framework: cellular automata meets graph theory
Predicting peak daily maximum 8 h ozone and linkages to emissions and meteorology in Southern California using machine learning methods (SoCAB-8HR V1.0)
Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning
ISMIP-HOM benchmark experiments using Underworld
spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Islet: interpolation semi-Lagrangian element-based transport
Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains
Assessing the robustness and scalability of the accelerated pseudo-transient method
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
P3D-BRNS v1.0.0: A Three-dimensional, Multiphase, Multicomponent, Pore-scale Reactive Transport Modelling Package for Simulating Biogeochemical Processes in Subsurface Environments
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 16, 5265–5279, https://doi.org/10.5194/gmd-16-5265-2023, https://doi.org/10.5194/gmd-16-5265-2023, 2023
Short summary
Short summary
Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training image. The use of these methods relies on the possibility of finding optimal training images and parametrization of the simulation algorithms. Here, we propose finding an optimal set of parameters using only the training image as input. The main advantage of our approach is to remove the risk of overfitting an objective function.
Mohammad Mortezazadeh, Jean-Francois Cossette, Ashu Dastoor, Jean de Grandpré, Irena Ivanova, and Abdessamad Qaddouri
EGUsphere, https://doi.org/10.5194/egusphere-2023-1508, https://doi.org/10.5194/egusphere-2023-1508, 2023
Short summary
Short summary
The interpolation process is the most computationally expensive step of the semi-Lagrangian (SL) approach. In this paper we implement a new interpolation scheme into semi-Lagrangian approach which has the same computational cost as a third order polynomial scheme but with the accuracy of a fourth order interpolation scheme. This improvement is achieved by using two 3rd-order backward and forward polynomial interpolation schemes in two consecutive time steps.
Siting Li, Ping Wang, Hong Wang, Yue Peng, Zhaodong Liu, Wenjie Zhang, Hongli Liu, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 16, 4171–4191, https://doi.org/10.5194/gmd-16-4171-2023, https://doi.org/10.5194/gmd-16-4171-2023, 2023
Short summary
Short summary
Optimizing the initial state of atmospheric chemistry model input is one of the most essential methods to improve forecast accuracy. Considering the large computational load of the model, we introduce an ensemble optimal interpolation scheme (EnOI) for operational use and efficient updating of the initial fields of chemical components. The results suggest that EnOI provides a practical and cost-effective technique for improving the accuracy of chemical weather numerical forecasts.
Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski
Geosci. Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023, https://doi.org/10.5194/gmd-16-3907-2023, 2023
Short summary
Short summary
Sea ice covers not only the pole regions but affects the weather and climate globally. For example, its white surface reflects more sunlight than land. The oceans around the poles are therefore kept cool, which affects the circulation in the oceans worldwide. Simulating the behavior and changes in sea ice on a computer is, however, very difficult. We propose a new computer simulation that better models how cracks in the ice change over time and show this by comparing to other simulations.
Carlos Spa, Oilio Rojas, and Josep de la Puente
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-76, https://doi.org/10.5194/gmd-2023-76, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This paper develops a calibration methodology of all absorbing techniques typically used by Fourier pseudo-spectral time-domain (PSTD) methods for geoacoustic wave simulations. The main contributions of the paper are: - An implementation and quantitative comparison of all absorbing techniques available for PSTD methods through a simple and robust numerical experiment. - A validation of these absorbing techniques in several 3-D seismic scenarios with gradual heterogeneity complexities.
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023, https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Short summary
Earth scientists often have to fill in spatial gaps in measurements. This gap-filling or interpolation can be accomplished with geostatistical methods, where the statistical relationships between measurements are used to inform how these gaps should be filled. Despite the broad utility of these methods, there are few freely available geostatistical software applications. We present GStatSim, a Python package for performing different geostatistical interpolation methods.
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023, https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary
Short summary
To aid risk managers who may wish to rapidly assess tsunami risk but may lack high-performance computing infrastructure, we provide an accessible software package able to rapidly model tsunami inundation over real topography by leveraging Google's Tensor Processing Unit, a high-performance hardware. Minimally trained users can take advantage of the rapid modeling abilities provided by this package via a web browser thanks to the ease of use of Google Cloud Platform.
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev., 16, 3291–3311, https://doi.org/10.5194/gmd-16-3291-2023, https://doi.org/10.5194/gmd-16-3291-2023, 2023
Short summary
Short summary
A novel subgrid channel (SGC) model is developed for river–floodplain modelling, allowing utilization of subgrid-scale bathymetric information while performing computations on relatively coarse grids. By including adaptive artificial diffusion, potential numerical instability, which the original SGC solver had, in low-friction regions such as urban areas is addressed. Evaluation of the new SGC model through structured tests confirmed that the accuracy and stability have improved.
Xiaqiong Zhou and Hann-Ming Henry Juang
Geosci. Model Dev., 16, 3263–3274, https://doi.org/10.5194/gmd-16-3263-2023, https://doi.org/10.5194/gmd-16-3263-2023, 2023
Short summary
Short summary
The National Centers for Environmental Prediction Global Forecast System version 16 experienced model instability failures in real-time runs resolved by increasing the minimum thickness depth parameter. Further investigation revealed that the issue was caused by the advection of geopotential heights at the model's layer interfaces. By replacing high-order boundary conditions with zero-gradient boundary conditions for interface-wind reconstruction, the instability was effectively addressed.
Grant T. Euen, Shangxin Liu, Rene Gassmöller, Timo Heister, and Scott D. King
Geosci. Model Dev., 16, 3221–3239, https://doi.org/10.5194/gmd-16-3221-2023, https://doi.org/10.5194/gmd-16-3221-2023, 2023
Short summary
Short summary
Due to the increasing availability of high-performance computing over the past few decades, numerical models have become an important tool for research. Here we test two geodynamic codes that produce such models: ASPECT, a newer code, and CitcomS, an older one. We show that they produce solutions that are extremely close. As methods and codes become more complex over time, showing reproducibility allows us to seamlessly link previously known information to modern methodologies.
Arjun Babu Nellikkattil, Travis Allen O’Brien, Danielle Lemmon, June-Yi Lee, and Jung-Eun Chu
EGUsphere, https://doi.org/10.5194/egusphere-2023-592, https://doi.org/10.5194/egusphere-2023-592, 2023
Short summary
Short summary
The exponential increases in the climate and weather data demand computationally efficient and mathematically sound feature extraction algorithms to identify phenomenons such as atmospheric rivers, cyclones, sea surface temperature fronts, jet streams, etc. In this study, we present an innovative generalized framework for extracting two and three-dimensional features from gridded datasets using the local geometric shape of the input fields.
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev., 16, 2391–2413, https://doi.org/10.5194/gmd-16-2391-2023, https://doi.org/10.5194/gmd-16-2391-2023, 2023
Short summary
Short summary
This paper describes a new release of the LISFLOOD-FP model for fast and efficient flood simulations. It features a new non-uniform grid generator that uses multiwavelet analyses to sensibly coarsens the resolutions where the local topographic variations are smooth. Moreover, the model is parallelised on the graphical processing units (GPUs) to further boost computational efficiency. The performance of the model is assessed for five real-world case studies, noting its potential applications.
Bruno K. Zürcher
Geosci. Model Dev., 16, 1697–1711, https://doi.org/10.5194/gmd-16-1697-2023, https://doi.org/10.5194/gmd-16-1697-2023, 2023
Short summary
Short summary
We present a novel algorithm to efficiently compute Barnes interpolation, which is a method for transforming data values recorded at irregularly spaced points into a corresponding regular grid. In contrast to naive implementations with an algorithmic complexity that depends on the product of the number of sample points and the number of grid points, our approach reduces this dependency to their sum.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendriks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-309, https://doi.org/10.5194/gmd-2022-309, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023, https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Short summary
Climate models involve several different components, such as the atmosphere, ocean, and land models. Information needs to be exchanged, or remapped, between these models, and devising algorithms for performing this exchange is important for ensuring the accuracy of climate simulations. In this paper, we examine the efficacy of several traditional and novel approaches to remapping on the sphere and demonstrate where our approaches offer improvement.
Michael Hillier, Florian Wellmann, Eric de Kemp, Ernst Schetselaar, Boyan Brodaric, and Karine Bédard
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-290, https://doi.org/10.5194/gmd-2022-290, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Neural networks can be used effectively to model three-dimensional geological structures from point data, sampling geological interfaces, units, and orientations of structural features. Existing neural network approaches for this type of modelling are advanced by the efficient incorporation of unconformities, new knowledge inputs, and new techniques to improve data fitting. These advances permit the modelling of large scale geological structures with low fitting error using noisy datasets.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023, https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Short summary
This paper introduces the Met Office's new shallow water model. The shallow water model is a building block towards the Met Office's new atmospheric dynamical core. The shallow water model is tested on a number of standard spherical shallow water test cases, including flow over mountains and unstable jets. Results show that the model produces similar results to other shallow water models in the literature.
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023, https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Short summary
This work applies a novel technical tool, multifidelity Monte Carlo (MFMC) estimation, to three climate-related benchmark experiments involving oceanic, atmospheric, and glacial modeling. By considering useful quantities such as maximum sea height and total (kinetic) energy, we show that MFMC leads to predictions which are more accurate and less costly than those obtained by standard methods. This suggests MFMC as a potential drop-in replacement for estimation in realistic climate models.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023, https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023, https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary
Short summary
We develop a multi-dimensional, parallelized domain decomposition strategy for mass-transfer particle tracking methods in two and three dimensions, investigate different procedures for decomposing the domain, and prescribe an optimal tiling based on physical problem parameters and the number of available CPU cores. For an optimally subdivided diffusion problem, the parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run-up to thousands of cores.
John Mern and Jef Caers
Geosci. Model Dev., 16, 289–313, https://doi.org/10.5194/gmd-16-289-2023, https://doi.org/10.5194/gmd-16-289-2023, 2023
Short summary
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.
Boris Gailleton, Luca Malatesta, Guillaume Cordonnier, and Jean Braun
EGUsphere, https://doi.org/10.5194/egusphere-2022-1394, https://doi.org/10.5194/egusphere-2022-1394, 2023
Short summary
Short summary
This contribution presents a new method to numerically explore the evolution of mountain ranges and surroundings area. The methods helps monitoring with details the timing and travel path of material eroded from the mountain ranges. It suits particularly well studies juxtaposing different domains – lakes or multiple rock types for example – and allow the combination of different process together.
Ziqi Gao, Yifeng Wang, Petros Vasilakos, Cesunica E. Ivey, Khanh Do, and Armistead G. Russell
Geosci. Model Dev., 15, 9015–9029, https://doi.org/10.5194/gmd-15-9015-2022, https://doi.org/10.5194/gmd-15-9015-2022, 2022
Short summary
Short summary
While the national ambient air quality standard of ozone is based on the 3-year average of the fourth highest 8 h maximum (MDA8) ozone concentrations, these predicted extreme values using numerical methods are always biased low. We built four computational models (GAM, MARS, random forest and SVR) to predict the fourth highest MDA8 ozone in Southern California using precursor emissions, meteorology and climatological patterns. All models presented acceptable performance, with GAM being the best.
Zhihao Wang, Jason Goetz, and Alexander Brenning
Geosci. Model Dev., 15, 8765–8784, https://doi.org/10.5194/gmd-15-8765-2022, https://doi.org/10.5194/gmd-15-8765-2022, 2022
Short summary
Short summary
A lack of inventory data can be a limiting factor in developing landslide predictive models, which are crucial for supporting hazard policy and decision-making. We show how case-based reasoning and domain adaptation (transfer-learning techniques) can effectively retrieve similar landslide modeling situations for prediction in new data-scarce areas. Using cases in Italy, Austria, and Ecuador, our findings support the application of transfer learning for areas that require rapid model development.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Keith J. Roberts, Alexandre Olender, Lucas Franceschini, Robert C. Kirby, Rafael S. Gioria, and Bruno S. Carmo
Geosci. Model Dev., 15, 8639–8667, https://doi.org/10.5194/gmd-15-8639-2022, https://doi.org/10.5194/gmd-15-8639-2022, 2022
Short summary
Short summary
Finite-element methods (FEMs) permit the use of more flexible unstructured meshes but are rarely used in full waveform inversions (FWIs), an iterative process that reconstructs velocity models of earth’s subsurface, due to computational and memory storage costs. To reduce those costs, novel software is presented allowing the use of high-order mass-lumped FEMs on triangular meshes, together with a material-property mesh-adaptation performance-enhancing strategy, enabling its use in FWIs.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Colin Grudzien and Marc Bocquet
Geosci. Model Dev., 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022, https://doi.org/10.5194/gmd-15-7641-2022, 2022
Short summary
Short summary
Iterative optimization techniques, the state of the art in data assimilation, have largely focused on extending forecast accuracy to moderate- to long-range forecast systems. However, current methodology may not be cost-effective in reducing forecast errors in online, short-range forecast systems. We propose a novel optimization of these techniques for online, short-range forecast cycles, simultaneously providing an improvement in forecast accuracy and a reduction in the computational cost.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Andrew M. Bradley, Peter A. Bosler, and Oksana Guba
Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, https://doi.org/10.5194/gmd-15-6285-2022, 2022
Short summary
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.
Léo Pujol, Pierre-André Garambois, and Jérôme Monnier
Geosci. Model Dev., 15, 6085–6113, https://doi.org/10.5194/gmd-15-6085-2022, https://doi.org/10.5194/gmd-15-6085-2022, 2022
Short summary
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022, https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
Short summary
We evaluated the skill of a stochastic weather generator (SWG) to forecast precipitation at different time scales and in different areas of western Europe from analogs of Z500 hPa. The SWG has the skill to simulate precipitation for 5 and 10 d. We found that forecast weaknesses can be associated with specific weather patterns. The comparison with ECMWF forecasts confirms the skill of our model. This work is important because it provides information about weather forecasts over specific areas.
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022, https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
Short summary
Detailed computer simulations of clouds are important for understanding Earth's atmosphere and climate. The paper describes how the UWLCM has been adapted to work on supercomputers. A distinctive feature of UWLCM is that air flow is calculated by processors at the same time as cloud droplets are modeled by graphics cards. Thanks to this, use of computing resources is maximized and the time to complete simulations of large domains is not affected by communications between supercomputer nodes.
Amir Golparvar, Matthias Kästner, and Martin Thullner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-86, https://doi.org/10.5194/gmd-2022-86, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Coupled reaction-transport modeling is an established and highly beneficial method for studying natural and synthetic porous material with applications ranging from industrial processes to natural decompositions in terrestrial environments. Up to now, a framework that explicitly considers the porous structure (e.g., from µ-CT images), for modeling the transport of reactive species is missing. We presented a model that overcomes this limitation and represents a novel numerical simulation toolbox.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022, https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Short summary
A scale-dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022, https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev., 15, 3815–3829, https://doi.org/10.5194/gmd-15-3815-2022, https://doi.org/10.5194/gmd-15-3815-2022, 2022
Short summary
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Cited articles
Borodina, A., Fischer, E. M., and Knutti, R.: Potential to constrain
projections of hot temperature extremes, J. Climate, 30, 9949–9964,
https://doi.org/10.1175/JCLI-D-16-0848.1, 2017.
Capet, X., Estrade, P., Machu, E., Ndoye, S., Grelet, J., Lazar, A.,
Marié, L., Dausse, D., Brehmer, P., Capet, X., Estrade, P., Machu, E.,
Ndoye, S., Grelet, J., Lazar, A., Marié, L., Dausse, D., and Brehmer, P.:
On the Dynamics of the Southern Senegal Upwelling Center: Observed
Variability from Synoptic to Superinertial Scales, J. Phys. Oceanogr.,
47, 155–180, https://doi.org/10.1175/JPO-D-15-0247.1, 2017.
Collins, M., Knutti, R., Dufresne, J.-L., Fichefet, T., Friedlingstein, P.,
Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C.,
Weaver, A. J., and Wehner, M.: Long-term Climate Change: Projections,
Commitments and Irreversibility, in Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by:
Stocker, T. F., Qin, G.-K. D., Plattner, M., Tignor, S. K., Allen, J., Boschung, A.,
Nauels, Y., Xia, Y., Bex, P. M., and Midgley, V., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2014.
Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C.,
Jones, C. D., and Luke, C. M.: Sensitivity of tropical carbon to climate
change constrained by carbon dioxide variability, Nature, 494,
341–344, https://doi.org/10.1038/nature11882, 2013.
Cropper, T. E., Hanna, E., and Bigg, G. R.: Spatial and temporal seasonal
trends in coastal upwelling off Northwest Africa, 1981-2012, Deep. Res. Pt. I,
86, 94–111, https://doi.org/10.1016/j.dsr.2014.01.007, 2014.
Deangelis, A. M., Qu, X., Zelinka, M. D., and Hall, A.: An observational
radiative constraint on hydrologic cycle intensification, Nature, 528,
249–253, https://doi.org/10.1038/nature15770, 2015.
Demarcq, H. and Faure, V.: Coastal upwelling and associated retention
indices derived from satellite SST. Application to Octopus vulgaris
recruitment, Oceanol. Acta, 23, 391–408,
https://doi.org/10.1016/S0399-1784(00)01113-0, 2000.
Farikou, O., Sawadogo, S., Niang, A., Diouf, D., Brajard, J., Mejia, C.,
Dandonneau, Y., Gasc, G., Crepon, M., and Thiria, S.: Inferring the seasonal
evolution of phytoplankton groups in the Senegalo-Mauritanian upwelling
region from satellite ocean-color spectral measurements, J. Geophys. Res.-Oceans., 120,
6581–6601, https://doi.org/10.1002/2015JC010738, 2015.
Fasullo, J. T. and Trenberth, K. E.: A less cloudy future: The role of
subtropical subsidence in climate sensitivity, Science, 338,
792–794, https://doi.org/10.1126/science.1227465, 2012.
Faye, S., Lazar, A., Sow, B. A., and Gaye, A. T.: A model study of the
seasonality of sea surface temperature and circulation in the Atlantic
North-eastern Tropical Upwelling System, Front. Phys., 3, 1–20,
https://doi.org/10.3389/fphy.2015.00076, 2015.
Gao, Y., Lu, J. and Leung, L. R.: Uncertainties in projecting future changes
in atmospheric rivers and their impacts on heavy precipitation over Europe,
J. Climate, 29, 6711–6726, https://doi.org/10.1175/JCLI-D-16-0088.1, 2016.
Gordon, N. D., Jonko, A. K., Forster, P. M., and Shell, K. M.: An
observationally based constraint on the water-vapor feedback, J. Geophys.
Res.-Atmos., 118, 12435–12443, https://doi.org/10.1002/2013JD020184, 2013.
Hewitson, B. C. and Crane, R. G.: Self-organizing maps: Applications to
synoptic climatology, Clim. Res., 22, 13–26, https://doi.org/10.3354/cr022013, 2002.
Huber, M. and Knutti, R.: Anthropogenic and natural warming inferred from
changes in Earth's energy balance, Nat. Geosci., 5, 31–36,
https://doi.org/10.1038/ngeo1327, 2012.
Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J.: Coastal
Upwelling Revisited: Ekman, Bakun, and Improved Upwelling Indices for the
U.S. West Coast, J. Geophys. Res.-Oceans., 123, 7332–7350, https://doi.org/10.1029/2018JC014187,
2018.
Jain, A. K. and Dubes, R. C.: Algorithms for clustering data, Prentice Hall,
Inc., Englewood Cliffs, 1988.
Jouini, M., Lévy, M., Crépon, M., and Thiria, S.: Reconstruction of
satellite chlorophyll images under heavy cloud coverage using a neural
classification method, Remote Sens. Environ., 131, 232–246,
https://doi.org/10.1016/j.rse.2012.11.025, 2013.
Jouini, M., Béranger, K., Arsouze, T., Beuvier, J., Thiria, S.,
Crépon, M. and Taupier-Letage, I.: The Sicily Channel surface
circulation revisited using a neural clustering analysis of a
high-resolution simulation, J. Geophys. Res. Ocean., 121(7), 4545–4567,
https://doi.org/10.1002/2015JC011472, 2016.
Knutti, R., Meehl, G. A., Allen, M. R., and Stainforth, D. A.: Constraining
climate sensitivity from the seasonal cycle in surface temperature, J.
Climate, 19, 4224–4233, https://doi.org/10.1175/JCLI3865.1, 2006.
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., Meehl, G. A., Knutti, R.,
Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in
Combining Projections from Multiple Climate Models, J. Climate, 23,
2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010.
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E.
M., and Eyring, V.: A climate model projection weighting scheme accounting
for performance and interdependence, Geophys. Res. Lett., 44, 1909–1918,
https://doi.org/10.1002/2016GL072012, 2017.
Kohonen, T.: Essentials of the self-organizing map, Neural Networks, 37,
52–65, https://doi.org/10.1016/j.neunet.2012.09.018, 2013.
Kounta, L., Capet, X., Jouanno, J., Kolodziejczyk, N., Sow, B., and Gaye, A. T.: A model perspective on the dynamics of the shadow zone of the eastern tropical North Atlantic – Part 1: the poleward slope currents along West Africa, Ocean Sci., 14, 971–997, https://doi.org/10.5194/os-14-971-2018, 2018.
Lambert, S. M. and Boer, G. J.: CMIP1 evaluation and intercomparison of
coupled climate models, Clim. Dynam., 17, 83–106, https://doi.org/10.1007/pl00013736,
2001.
Liu, Y., Weisberg, R. H., and Mooers, C. N. K.: Performance evaluation of the
self-organizing map for feature extraction, J. Geophys. Res.-Oceans., 111,
C05018, https://doi.org/10.1029/2005JC003117, 2006.
Loeb, N. G., Wang, H., Cheng, A., Kato, S., Fasullo, J. T., Xu, K.-M., and
Allan, R. P.: Observational constraints on atmospheric and oceanic
cross-equatorial heat transports: revisiting the precipitation asymmetry
problem in climate models, Clim. Dynam., 46, 3239–3257,
https://doi.org/10.1007/s00382-015-2766-z, 2015.
Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B., Wester, P., and
Immerzeel, W. W.: Selecting representative climate models for climate change
impact studies: an advanced envelope-based selection approach, Int. J.
Climatol., 36, 3988–4005, https://doi.org/10.1002/joc.4608, 2016.
Mejia, C. and Sorror, C.: ClimModEns v1.0, Zenodo, 10.5281/zenodo.3476724, 2019.
Monteleoni, C., Schmidt, G. A., Alexander, F., Niculescu-Mizil, A.,
Steinhaeuser, K., Tippett, M., Banerjee, A., Benno Blumenthal, M., Ganguly,
A. R., Smerdon, J. E., and Tedesco, M.: Climate informatics, in: Computational
Intelligent Data Analysis for Sustainable Development, NASA, 81–126,
2016.
Ndoye, S., Capet, X., Estrade, P., Sow, B. A., Dagorne, D., Lazar, A., Gaye,
A. T., and Brehmer, P.: SST patterns and dynamics of the southern
Senegal-Gambia upwelling center, J. Geophys. Res.-Oceans., 119,
8315–8335, https://doi.org/10.1002/2014JC010242, 2014.
Niang, A., Gross, L., Thiria, S., Badran, F., and Moulin, C.: Automatic
neural classification of ocean colour reflectance spectra at the top of the
atmosphere with introduction of expert knowledge, Remote Sens. Environ.,
86, 257–271, https://doi.org/10.1016/S0034-4257(03)00113-5, 2003.
Niang, A., Badran, F., Moulin, C., Crépon, M., and Thiria, S.: Retrieval
of aerosol type and optical thickness over the Mediterranean from SeaWiFS
images using an automatic neural classification method, Remote Sens.
Environ., 100, 82–94, https://doi.org/10.1016/j.rse.2005.10.005, 2006.
O'Gorman, P. A., Allan, R. P., Byrne, M. P., and Previdi, M.: Energetic
Constraints on Precipitation Under Climate Change, Surv. Geophys., 33,
585–608, https://doi.org/10.1007/s10712-011-9159-6, 2012.
Phillips, T. J. and Gleckler, P. J.: Evaluation of continental precipitation
in 20th century climate simulations: The utility of multimodel statistics,
Water Resour. Res., 42, W03202, https://doi.org/10.1029/2005WR004313, 2006.
Praveen Kumar, B., Vialard, J., Lengaigne, M., Murty, V. S. N., and McPhaden,
M. J.: TropFlux: air-sea fluxes for the global tropical oceans – description
and evaluation, Clim. Dynam., 38, 1521–1543,
https://doi.org/10.1007/s00382-011-1115-0, 2011.
Rayner, N. A.: Global analyses of sea surface temperature, sea ice, and
night marine air temperature since the late nineteenth century, J. Geophys.
Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Reichler, T. and Kim, J.: How well do coupled models simulate today's
climate?, B. Am. Meteorol. Soc., 89, 303–311,
https://doi.org/10.1175/BAMS-89-3-303, 2008.
Reifen, C. and Toumi, R.: Climate projections: Past performance no guarantee
of future skill?, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL038082, 2009.
Reusch, D. B., Alley, R. B., and Hewitson, B. C.: North Atlantic climate
variability from a self-organizing map perspective, J. Geophys. Res.-Atmos.,
112, D02104, https://doi.org/10.1029/2006JD007460, 2007.
Richardson, A. J., Risi En, C., and Shillington, F. A.: Using self-organizing
maps to identify patterns in satellite imagery, Prog. Oceanogr., 59,
223–239, https://doi.org/10.1016/j.pocean.2003.07.006, 2003.
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M.,
Black, B. A., and Bograd, S. J.: Poleward displacement of coastal
upwelling-favorable winds in the ocean's eastern boundary currents through
the 21st century, Geophys. Res. Lett., 42, 6424–6431,
https://doi.org/10.1002/2015GL064694, 2015.
Santer, B. D., Taylor, K. E., Gleckler, P. J., Bonfils, C., Barnett, T. P.,
Pierce, D. W., Wigley, T. M. L., Mears, C., Wentz, F. J., Bruggemann, W.,
Gillett, N. P., Klein, S. A., Solomon, S., Stott, P. A., and Wehner, M. F.:
Incorporating model quality information in climate change detection and
attribution studies, P. Natl. Acad. Sci. USA, 106, 14778–14783,
https://doi.org/10.1073/pnas.0901736106, 2009.
Sawadogo, S., Brajard, J., Niang, A., Lathuiliere, C., Crépon, M., and
Thiria, S.: Analysis of the Senegalo-Mauritanian upwelling by processing
satellite remote sensing observations with topological maps, in: Proceedings
of the International Joint Conference on Neural Networks,
2826–2832, 2009.
Sirven, J., Mignot, J., and Crépon, M.: Generation of Rossby waves off the Cape Verde Peninsula: the role of the coastline, Ocean Sci., 15, 1667–1690, https://doi.org/10.5194/os-15-1667-2019, 2019.
Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J.:
Improvements to NOAA's historical merged land-ocean surface temperature
analysis (1880–2006), J. Climate, 21, 2283–2296,
https://doi.org/10.1175/2007JCLI2100.1, 2008.
Son, S. W., Gerber, E. P., Perlwitz, J., Polvani, L. M., Gillett, N. P.,
Seo, K. H., Eyring, V., Shepherd, T. G., Waugh, D., Akiyoshi, H., Austin,
J., Baumgaertner, A., Bekki, S., Braesicke, P., Brühl, C., Butchart, N.,
Chipperfield, M. P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S., Garny,
H., Garcia, R., Hardiman, S. C., Jöckel, P., Lamarque, J. F., Mancini,
E., Marchand, M., Michou, M., Nakamura, T., Morgenstern, O., Pitari, G.,
Plummer, D. A., Pyle, J., Rozanov, E., Scinocca, J. F., Shibata, K., Smale,
D., Teyssdre, H., Tian, W., and Yamashita, Y.: Impact of stratospheric ozone
on Southern Hemisphere circulation change: A multimodel assessment, J.
Geophys. Res.-Atmos., 115, D00M07, https://doi.org/10.1029/2010JD014271, 2010.
Stegehuis, A. I., Vautard, R., Ciais, P., Teuling, A. J., Jung, M., and Yiou,
P.: Summer temperatures in Europe and land heat fluxes in observation-based
data and regional climate model simulations, Clim. Dynam., 41, 455–477,
https://doi.org/10.1007/s00382-012-1559-x, 2013.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate
Change 2013: The Physical Science Basis, Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press, United Kingdom and New York, NY, USA,
2013.
Sylla, A., Mignot, J., Capet, X., and Gaye, A. T.: Weakening of the
Senegalo–Mauritanian upwelling system under climate change, Clim. Dynam.,
53, 4447–4473, https://doi.org/10.1007/s00382-019-04797-y, 2019.
Tan, I., Storelvmo, T., and Zelinka, M. D.: Observational constraints on
mixed-phase clouds imply higher climate sensitivity, Science,
352, 224–227, https://doi.org/10.1126/science.aad5300, 2016.
Taylor, K. E., Stouffer, R. J., Meehl, G. A., Taylor, K. E., Stouffer, R. J.,
and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am.
Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in
probabilistic climate projections, Philos. T. R. Soc. A, 365,
2053–2075, https://doi.org/10.1098/rsta.2007.2076, 2007.
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification
and spatial homogenization of coastal upwelling under climate change,
Nature, 518, 390–394, https://doi.org/10.1038/nature14235, 2015.
Wenzel, S., Cox, P. M., Eyring, V., and Friedlingstein, P.: Emergent
constraints on climate-carbon cycle feedbacks in the CMIP5 Earth system
models, J. Geophys. Res.-Biogeo., 119, 794–807,
https://doi.org/10.1002/2013JG002591, 2014.
Wenzel, S., Eyring, V., Gerber, E. P., and Karpechko, A. Y.: Constraining
future summer austral jet stream positions in the CMIP5 ensemble by
process-oriented multiple diagnostic regression, J. Climate, 29, 673–687,
https://doi.org/10.1175/JCLI-D-15-0412.1, 2016.
Short summary
The most robust representation of climate is usually obtained by averaging a large number of simulations, thereby cancelling individual model errors. Here, we work towards an objective way of selecting the least biased models over a certain region, based on physical parameters. This statistical method based on a neural classifier and multi-correspondence analysis is illustrated here for the Senegalo-Mauritanian region, but it could potentially be developed for any other region or process.
The most robust representation of climate is usually obtained by averaging a large number of...