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Abstract. Climate simulations require very complex numer-
ical models. Unfortunately, they typically present biases due
to parameterizations, choices of numerical schemes, and the
complexity of many physical processes. Beyond improving
the models themselves, a way to improve the performance
of the modeled climate is to consider multi-model combi-
nations. In the present study, we propose a method to se-
lect the models that yield a multi-model ensemble combina-
tion that efficiently reproduces target features of the observa-
tions. We used a neural classifier (self-organizing maps), as-
sociated with a multi-correspondence analysis to identify the
models that best represent some target climate property. We
can thereby determine an efficient multi-model ensemble.
We illustrated the methodology with results focusing on the
mean sea surface temperature seasonal cycle in the Senegalo-
Mauritanian region. We compared 47 CMIP5 model config-
urations to available observations. The method allows us to
identify a subset of CMIP5 models able to form an efficient
multi-model ensemble. The future decrease in the Senegalo-
Mauritanian upwelling proposed in recent studies is then re-
visited using this multi-model selection.

1 Introduction

In this study, we present a methodology aimed at selecting a
coherent sub-ensemble of the models involved in the Climate
Model Intercomparison Project Phase 5 (CMIP5) that best
represents specific observed characteristics. While the future
evolution of the global climate is subject to great changes
and great uncertainty (Collins et al., 2014), the most com-

mon way to predict the evolution of the climate is to run cli-
mate models that include fully coupled atmosphere–ocean–
cryosphere–biosphere modules. Due to their low resolution
and the fact that they use different parameterizations of the
physics, use numerical schemes and sometimes include or
neglect different processes, these models have some marked
biases in specific regions. They also have different responses
to an imposed increase in atmospheric greenhouse gases,
which partly explain their mean climate biases. This variety
of models allows us to assess the uncertainty of present cli-
mate representation when compared to observations and, by
studying their dispersion, to roughly estimate the uncertainty
of the response to future climate change.

For several generations of climate models, it has been
shown that for a large variety of variables the multi-model
average generally agrees better with observations of present-
day climate than any single model (Lambert and Boer, 2001;
Phillips and Gleckler, 2006; Reichler and Kim, 2008; San-
ter et al., 2009; Tebaldi and Knutti, 2007). Several studies
also suggest that the most reliable climate projection is given
by a multi-model averaging (Knutti et al., 2010), rather than,
for example, averaging different projections performed with
a single model run with different initial conditions. This re-
sult relies on the assumption that if choices of parameteriza-
tions or specific numerical schemes are made independently
for each model, then the errors might at least partly compen-
sate, resulting in a multi-model average that is more skillful
than its constitutive terms (Tebaldi and Knutti, 2007). The
significant gain in accuracy can be explained by the fact that
the errors specific to each model compensate each other in
the averaging procedure used to build the multi-model mean.
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However, the number of general circulation models (GCMs)
available for climate change projections is increasing rapidly.
For example, the CMIP5 archive (Taylor et al., 2012), which
was used for the fifth IPCC Assessment Report (Stocker et
al., 2013), contains outputs from 61 different GCMs, and 70
contributions are expected for CMIP6. It thus becomes pos-
sible – and probably necessary – to select and/or weight the
models constituting such an average. Recent work has sug-
gested that weighting the multi-model averaging procedure
could help to reduce the spread and thus uncertainty of fu-
ture projections. Such an approach has been applied exten-
sively to the issue of climate sensitivity (Fasullo and Tren-
berth, 2012; Gordon et al., 2013; Huber and Knutti, 2012;
Tan et al., 2016). Valuable improvement of model selection
has also been found in studies of the carbon cycle (Cox et al.,
2013; Wenzel et al., 2014), the hydrological cycle (Deange-
lis et al., 2015; O’Gorman et al., 2012), the Antarctic atmo-
spheric circulation (Son et al., 2010; Wenzel et al., 2016), ex-
tratropical atmospheric rivers (Gao et al., 2016), atmospheric
and ocean heat transports (Loeb et al., 2015), European tem-
perature variability (Stegehuis et al., 2013) and temperature
extremes (Borodina et al., 2017).

The present paper works towards the elaboration of an
objective method to select models according to their per-
formance for a specific phenomenon. Here, we use the
Senegalo-Mauritanian upwelling area as a case study to con-
struct an efficient climate multi-model combination together
with its related confidence interval in order to anticipate the
effect of climate warming by the end of the century in this re-
gion. The Senegalo-Mauritanian upwelling has been the fo-
cus of increasing attention over recent years. The very pro-
ductive waters associated with the upwelling have a strong
economic impact on fisheries in Senegal and Mauritania and
a crucial societal importance for local populations. It is there-
fore important to predict the evolution of the dynamics and
the physics of the upwelling in the forthcoming decades,
due to the effect of climate warming and its consequences
for biological productivity, which may impact the fisheries.
The Senegalo-Mauritanian upwelling lies at the southern end
of the Canarian upwelling system, which has a relatively
weak seasonality and is maximum in summer. By contrast,
the Senegalo-Mauritanian upwelling presents a well-marked
seasonal variability. Its intensity is stronger in boreal win-
ter, and it disappears in summer with the northward progres-
sion of the intertropical convergence zone (ITCZ). Due to
the enrichment of the sea surface layers with nutrients up-
welled from deep layers, it drives an important phytoplank-
ton bloom that is observed on ocean color satellite images
(Demarcq and Faure, 2000; Farikou et al., 2015). The maxi-
mum intensity of this bloom occurs in March–April (Farikou
et al., 2015; Faye et al., 2015; Ndoye et al., 2014). Its im-
portant seasonal cycle is also associated with mesoscale pat-
terns whose variability has been recently studied by several
oceanographic campaigns (Capet et al., 2017; Faye et al.,
2015; Ndoye et al., 2014) and theoretical work (Sirven et

al., 2019). Sylla et al. (2019) have recently shown that the
intensity of the sea surface temperature (SST) seasonal cy-
cle along the coasts of Senegal and Mauritania was a good
marker of the upwelling in this specific region in climate
models. They have used this index together with other more
dynamical indices to predict that the upwelling will decrease
by about 10 % of its present-day amplitude by the end of
the 21st century. Nevertheless, their study also highlighted
a large uncertainty due to model biases in this region. The
method we have developed selects a subset of the CMIP5
ensemble based on the capability of the climate models to
reproduce the SST seasonal cycle observed during the histor-
ical period in key sub-regions. These sub-regions are identi-
fied by a neural classifier. The method leads us to rank the
different models and to determine an efficient multi-model
combination for the analysis of the Senegalo-Mauritanian
upwelling and projections of its behavior in global warming
conditions.

The paper is structured as follows: Sect. 2 presents the
different climate models and the climatological observations
used in the study, together with the region of interest. The
classification method is described in Sect. 3 and applied to
the extended region. Section 4 presents a qualitative anal-
ysis able to group the different climate models into clus-
ters presenting similar performances. Section 5 investigates
the results of the method applied over a smaller area, more
focused over the upwelling region. Section 6 uses the two
multi-model clusters defined in Sects. 4 and 5, respectively,
to tentatively predict the representation of the Senegalo-
Mauritanian upwelling changes under global warming. Con-
clusions are given in Sect. 7.

2 Climate models and region of interest

2.1 Data

This study is based on the CMIP5 (Coupled Model Inter-
comparison Project Phase 5) database. We use the output of
47 simulations listed in Table 1. The models are evaluated
over the historical period defined as [1975–2005] by com-
paring their output to observations. The mean seasonal cy-
cle of SST anomalies over this period is constructed for each
model grid point as the difference between the monthly mean
temperature and the mean annual temperature. When several
members of historical simulations are available for a spe-
cific model configuration, they are averaged together. How-
ever, this has practically no impact on the estimated mean
seasonal cycle (not shown). The mean climatological cycle
of the CMIP5 models under study is evaluated against the
Extended Reconstructed Sea Surface Temperature data set
(ERSST-v3b, Smith et al., 2008), averaged over the same
time period. This data set was produced by NOAA at 2◦ spa-
tial resolution. It is derived from the International Compre-
hensive Ocean–Atmosphere Dataset with missing data filled
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Table 1. List of the CMIP5 models used for the comparison. The
reader is referred to the CMIP5 documentation for more information
on each of them. Here, each configuration is furthermore given a
number, for easier identification in subsequent figures.

nb Model acronym nb Model acronym

1 bcc-csm1-1 25 HadGEM2-ES
2 bcc-csm1-1-m 26 MPI-ESM-LR
3 BNU-ESM 27 MPI-ESM-MR
4 CanCM4 28 MPI-ESM-P
5 CanESM2 29 MRI-CGCM3
6 CMCC-CESM 30 MRI-ESM1
7 CMCC-CM 31 GISS-E2-H
8 CMCC-CMS 32 GISS-E2-H-CC
9 CNRM-CM5 33 GISS-E2-R
10 CNRM-CM5-2 34 GISS-E2-R-CC
11 ACCESS1-0 35 CCSM4
12 ACCESS1-3 36 NorESM1-M
13 CSIRO-Mk3-6-0 37 NorESM1-ME
14 inmcm4 38 HadGEM2-AO
15 IPSL-CM5A-LR 39 GFDL-CM2p1
16 IPSL-CM5A-MR 40 GFDL-CM3
17 IPSL-CM5B-LR 41 GFDL-ESM2G
18 FGOALS-g2 42 GFDL-ESM2M
19 FGOALS-s2 43 CESM1-BGC
20 MIROC-ESM 44 CESM1-CAM5
21 MIROC-ESM-CHEM 45 CESM1-CAM5-1-FV2
22 MIROC5 46 CESM1-FASTCHEM
23 HadCM3 47 CESM1-WACCM
24 HadGEM2-CC

in by statistical methods. This data set is used as the target to
be reproduced and is denoted “observation field” hereafter.
In order to deal with data at the same resolution, all model
outputs as well as the observation fields were regridded on a
1◦ resolution regular grid prior to analysis. A previous study
(Sylla et al., 2019) has compared the performance of this data
set as compared to the gridded SST data set from the Met
Office Hadley Centre HadISST (Rayner, 2003). The main re-
sults regarding the future of the upwelling were shown to be
independent of the validation data set, primarily because the
models’ biases and the inter-model differences were much
larger than the differences between the validation data sets.
The methodological and oceanographic results presented in
this study are thus expected to depend only very weakly on
the target data set.

In Sect. 6, the model selections are used to characterize
the response of the upwelling to climate change. This re-
sponse is characterized in terms of SST anomalies as well as
wind intensity. For wind intensity, the simulated wind stress
is compared to the TropFlux reanalysis. This data set com-
bines the ERA-Interim reanalysis for turbulent and longwave
fluxes and ISCCP (International Satellite Cloud Climatol-
ogy Project) surface radiation data for shortwave fluxes. This
wind stress product is described and evaluated in Praveen
Kumar et al. (2011).

2.2 The Senegalo-Mauritanian upwelling region

In this study, we evaluate the ability of the different climate
models to represent the Senegalo-Mauritanian upwelling.
Following Sylla et al. (2019), we consider the intensity of the
seasonal cycle of the SST anomaly to be a marker of the up-
welling variability and localization. This variable is shown in
Fig. 1 for the eastern tropical Atlantic. This figure confirms
that the Senegalo-Mauritanian coast stands out with a very
strong seasonal SST cycle as compared to similar latitudes
in the open ocean. This results from the cold SST gener-
ated by the strong winds occurring in winter. The Senegalo-
Mauritanian upwelling is confined in a small region on the
order of 100 km off the western coast of Africa. It is part of a
complex and fine-scale regional circulation system recently
revisited by Kounta et al. (2018). Since the grid mesh of most
of the climate models is on the order of 1◦ (∼ 100 km), this
regional circulation is poorly resolved, which favors a rel-
atively large-scale analysis of the upwelling representation
in climate models. The Senegalo-Mauritanian upwelling is
also embedded in a large-scale oceanic circulation pattern,
encompassing the North Equatorial Counter Current flow-
ing eastward in the southern part of the region and the re-
turn branch of the subtropical gyre in the northwestern part.
Therefore, we firstly study the representation of the SST sea-
sonal cycle intensity in the different climate models over a
relatively large region that includes part of the Canary Cur-
rent in the north and the Guinea Dome in the south. The so-
called “extended region” is defined by a rectangular box ex-
tending from 9 to 45◦W and from 5 to 30◦ N (Fig. 1). In a
second step, we will proceed to the same analysis and classi-
fication of the models within a much more focused (hereafter
zoomed) region, namely [16–28◦W and 10–23◦ N] (Fig. 1).
All the results below will be first shown for the extended re-
gion. Comparison with the focused region will be done in
Sect. 4.

3 Comparing observations and models: a
methodological approach

The methodology we have developed is based on the ability
of the climate models to adequately reproduce the climatol-
ogy of the seasonal cycle of the SST anomalies as observed
during the last 3 decades in key sub-regions of the studied
domain. These key sub-regions are determined from the sim-
ilarity of their physical and statistical characteristics through
an unsupervised classification, which clusters pixels with
similar observed seasonal SST climatology. We chose to deal
with a neural classifier, the so-called self-organizing map
(SOM hereafter) developed by Kohonen (2013), followed by
a hierarchical ascendant clustering (HAC, Jain and Dubes,
1998). This method leads to a dynamically interpretable clas-
sification. The SOM determines a vector quantization of the
data set, which compresses the initial data set into a rela-
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Figure 1. Amplitude of the SST seasonal anomalies in the western
tropical North Atlantic. SST data are from the ERSSTv3b data set
averaged between 1975 and 2005. The two black boxes show the
extended and zoomed regions, respectively, on which the statistical
classifications were performed (see text for details).

tively small number of reference vectors. Doing so allows us
to take the nonlinearities of the data set into account and to
filter the noise, which can make the classification spurious.
This reduced number of dataset vectors enables an HAC to
determine the highly nonlinear borders between the different
SOM clusters. This procedure has been used with success in
several studies (Farikou et al., 2015; Jouini et al., 2016; Ni-
ang et al., 2003, 2006; Sawadogo et al., 2009). Note that the
use of an HAC directly on the initial data set would not be
efficient in the present study because the number of degrees
of freedom (here the grid points of the initial domain) is too
large for this method to work efficiently. In the present sec-
tion, we describe the methodology we developed to score the
different climate models with respect to the observations. In
Sect. 4, we will tentatively group the different climate mod-
els into blocks with the same behavior by using a multiple
correspondence analysis (MCA).

3.1 The unsupervised classification method

The first step of the methodology was to decompose the
selected region into different classes (the key sub-regions
mentioned above) by using a neural network classifier, the
so-called SOM (Kohonen, 2013). This algorithm constitutes
a powerful nonlinear unsupervised classification method. It
has been commonly used to solve environmental problems
(Hewitson and Crane, 2002; Jouini et al., 2013, 2016; Liu et
al., 2006; Reusch et al., 2007; Richardson et al., 2003). The
SOM aims at clustering vectors (here the 12 SST seasonal
anomalies) of a multidimensional database (D) (here the grid
points of the studied domain) into classes represented by a
fixed network of neurons (the SOM). The SOM is defined
as an undirected graph, usually a two-dimensional rectan-

gular grid. This graphical structure is used to define a dis-
crete distance (denoted by δ) between the neurons of the map
and thereby identify the shortest path between two neurons.
Moreover, the SOM enables the partition of D in which each
cluster is associated with a neuron of the map and is rep-
resented by a prototype that is a synthetic multidimensional
vector (the referent vector w). Each vector z of D is assigned
to the neuron whose referent w is the closest, in the sense of
the Euclidean norm (EN), and is called the projection of the
vector z onto the map. A fundamental property of a SOM is
the topological ordering provided at the end of the clustering
phase: two neurons that are close on the map represent data
that are close in the data space. In other words, the neurons
are gathered in such a way that if two vectors of D are pro-
jected onto two “relatively” close neurons (with respect to δ)
on the map, they are similar and share the same properties.
The estimation of the referent vectors w of a SOM and the
topological order is achieved through a minimization process
using a learning dataset base, here from the observations. The
cost function to be minimized is of the form

J TSOM (χ,W)=
∑
zi∈D

∑
c∈SOM

KT (δ (c,χ (zi)))|zi −wc|
2,

where c ∈ SOM indices the neurons of the SOM, χ is the
allocation function that assigns each element zi of D to its
referent vector wχ(zi ) and δ(cχ (zi)) is the discrete distance
on the SOM between a neuron c and the neuron allocated
to observation zi . KT a kernel function parameterized by T
(where T stands for “temperature” in the scientific literature
dedicated to SOM) that weights the discrete distance on the
map and decreases during the minimization process. At the
end of the learning process, the classification can be visual-
ized onto the SOM and interpreted in terms of geophysics.

3.2 Classification of the observations

In the present problem we chose to classify the annual cy-
cles of the SST seasonal anomalies observed in the Senegalo-
Mauritanian upwelling. The study was made on the “ex-
tended region” constituted of 25× 36= 900 pixels, but this
enlarged region covers a part of the African continent, and
157 pixels are in fact over land. That means that we have
truly 743 ocean pixels to deal with. We consider a time pe-
riod of 30 years [1975 to 2005] extracted from the ERSST-
V3b database. For a given grid point and a given year and
month, the monthly anomaly is the SST of the pixel for which
we have subtracted the mean of the considered year. The
climatological mean of the anomaly is then computed for
each grid point by averaging each climatological month over
the 30 years. Thus, the learning data set D is a set of 743
12-component vectors z, each component being the mean
monthly anomaly computed as above. We denote as “SST
seasonal cycle” the vector z in the following.

We used a SOM to summarize the different SST seasonal
cycles present in the “extended region”. We found that 120
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prototypes (or neurons) can accurately represent the 743 vec-
tors of D. This reduction (or vector quantization) is made by
using a rectangular SOM of 30× 4 neurons.

We then reduced the number of neurons in order to fa-
cilitate their interpretation in terms of geophysical processes.
For this, we applied a HAC using the Ward dissimilarity (Jain
and Dubes, 1988). We grouped the 120 neurons of the SOM
into a hierarchy that can contain between 1 and 120 clusters.
Then the different classifications proposed by the HAC were
applied to the geographical region: each SST seasonal cy-
cle of each grid point of the region is assigned to a neuron
and consequently to a cluster (assignment process), thereby
defining the so-called region clusters. The problem is then to
choose a number of clusters that adequately synthesizes the
geophysical phenomena over the region. This was done by
looking at the different possible classifications and choosing
one representing the major characteristics of the upwelling
region. In Fig. 2a, we observe that when we partition the
SOM into seven clusters, the associated seven region clusters
are constituted of contiguous pixels in the geographic map
and that two clusters (6, 7) are within the upwelling region
and present a well-marked seasonal cycle. For each region
cluster, we estimated the monthly mean of the SST seasonal
cycle and the associated spread captured by the neurons con-
stituting this region cluster.

The typical SST climatological cycles for each region
cluster are presented in Fig. 2b together with their related
error bars. We note that the region clusters are well identi-
fied, their typical climatological annual cycles of SST be-
ing well separated. Furthermore, the seven region clusters
are spatially coherent and have a definite geophysical sig-
nificance.

For the extended region under study, 7 therefore appears
to be an adequate cluster number, since this number balances
a clear partition of the clusters on the HAC decision tree
with a clear physical significance to each region cluster. The
Senegalo-Mauritanian coastal upwelling is associated with
clusters 7 and 6. Cluster 2 corresponds to deep tropical wa-
ters associated with the equatorial countercurrent. Cluster 1
corresponds to surface waters of the Gulf of Guinea. Cluster
3 corresponds to the offshore tropical Atlantic, and cluster 5
has extratropical characteristics. Cluster 4 is a transition be-
tween 3 and 5. As expected, the equatorial regions (clusters
1 and 2) have a very weak seasonal cycle, which increases
towards the extratropics (clusters 3 to 5). The upwelling re-
gions (clusters 6 and 7) are characterized by an exceptionally
strong seasonal variability.

3.3 Classification of the climate models on the extended
upwelling region

The aim is now to find the model(s) that best fit the “obser-
vation field”. A heuristic manner is to compare the pattern
of the different region clusters of the CMIP5 models with
respect to those of the “observation field” through a sight-

evaluating process. This kind of approach has been proposed
in Sylla et al. (2019), and we indeed immediately see that
some models better fit the “observation field” than others.
Nonetheless, this method remains very subjective.

In the following, we present a more objective approach.
We use the previous classification to objectively estimate
how each CMIP5 model fits the “observation field” and its
seven region clusters. For this, we projected the SST annual
cycle of each CMIP5 model grid point of the extended region
onto the SOM learned with the observations (Sect. 3.2) using
the assignment procedure described in this section. Each grid
point thus corresponds to a cluster of the SOM and is repre-
sented on the geographical map by its corresponding color.
Doing so, we can represent each CMIP5 model by the geo-
graphical pattern of the seven clusters partitioning the SST
seasonal cycle of its grid points. The geographical maps rep-
resenting the 47 models and their associated clusters are plot-
ted in Fig. 3. This graphical visualization is easier to compare
than the original characteristics (amplitude and phase) of the
annual cycle at each grid point of a model since each grid
point can only take one discrete value among seven. This rep-
resentation immediately allows identification of the model
biases and the models that best reproduce the cluster regions
identified in the observations. A huge amount of information
could in principle be extracted from these maps, both from
individual modeling groups, to understand the representation
of this region by the models and the origins of possible bi-
ases, and from experts of the area, to understand the difficul-
ties of the climate models in representing the SST seasonal
cycle in this region.

For a more quantitative assessment, we counted the num-
ber of grid points of a region cluster for a given CMIP5 model
matching the same region cluster of the “observation field”.
We then computed the ratio between that matching number
and the number of pixels of the region cluster of the consid-
ered model. That number is noted in the color bar for each re-
gion cluster in Fig. 3. We denote Rm,i the ratio for the region
cluster i and the model m, where i = 1, . . .,7 is the number
of the region cluster and m= 1, . . .,47 is the number of the
model (see Table 1). We note that Rm,i ≤ 1. Doing so, each
model m is represented by a seven-dimensional vector Rm,
each component being the ratio of a region cluster. We esti-
mated the total skill of a model by averaging the seven ratios.
Note that this procedure gives the same weight to each re-
gion cluster whatever its number of grid points and its prox-
imity to the upwelling region. In the following, the skill is
presented as a percentage: the higher the skill, the better the
fit. In Fig. 3, the 47 CMIP5 models are ranked by their total
skill, which is indicated above each panel beside the model
name. The model skills are very diverse, ranging from 79 %
to 28 %. This figure also shows that the models presenting the
best total skill are also those representing thoroughly the up-
welling region. Some models represent the large-scale struc-
ture in the eastern tropical Atlantic (Region-clusters 3, 4, and
5) very well, but not the upwelling (33-GISS-E2-R and 34-
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Figure 2. (a) Region clusters associated with the SOM clusters obtained after a HAC on a 30× 4-neuron SOM learned on ERSSTv3b
observations in the extended zone (see text for details). (b) Ensemble-mean monthly climatological SST anomalies for the grid points of the
seven region clusters. The error bars show the standard deviation of this ensemble mean.

Figure 3. Projection of the 47 climate models of the CMIP5 database onto the SOM learned with ERSSTv3b climatology in the extended
zone (see Fig. 1). On top of each panel, we figure the number referencing the model, its name (Table 1), and its skill given as a mean
percentage (see text). The models are ordered according to their skill in decreasing order. The seven region clusters (or SOM clusters) are
defined by applying an HAC to the SOM output learned with the observation field. They are represented by different colors. The numbers in
the color bar on the right of each panel represent the skill for each region cluster. The observation field is shown in the bottom right panel
and the numbers in front of the color bar reference the region cluster.

GISS-E2-R-CC, for example). Others represent pretty well
the upwelling region clusters (Region-clusters 6 and 7), but
not the large-scale structures of the SST seasonality (13-
CSIRO-Mk-3-6-0 and 6-CMCC-CESM, for example). None
of these models is ranked among the best models, with a
score greater than 60 %. As indicated above, this represen-
tation gives a very synthetic view of the structure of the sea-

sonality of the SST cycle in each of the models, potentially
a very useful guide for climate modelers to identify rapidly
major biases.
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4 Qualitative analysis of the climate models

In order to further progress in the selection of the models,
the 47 climate models and the observation field were then
analyzed by using an MCA. MCA is a multivariate statistical
technique that is conceptually similar to principal component
analysis (PCA) but applies to categorical rather than contin-
uous data. Similarly to PCA, it provides a way of displaying
a set of data in a two-dimensional graphical form.

In the following, we apply a MCA to the (47,7) matrix
R= [Rm,i] whose elements represent the skills of the clus-
ters of the models shown in front of the color bars in Fig. 3:
the rows m represent the 47 different models, the columns i
the seven region clusters. The MCA, like the PCA, projects
the initial matrix onto a new basis in such a way that the
new axes are the matrix eigenvectors (PC), the inertia of each
axis being the corresponding eigenvalues. According to the
theory, the MCA matrix analysis of R gives i− 1= 6 inde-
pendent PCs. Each model is thus now associated with a six-
dimensional vector on which it has a specific weight. The
MCA uses for this analysis the χ2 distance. In Fig. 4, we
present the projection of the models and the “region clus-
ters” in the plane formed by the two first axes (x = PC1 and
y = PC2) of the MCA. These two axes represent 70 % of the
total inertia. Each model is represented by a small circle and
each region cluster by a purple square. We also projected the
observation field (green diamond) onto that plane. To have a
more precise view of the topology, it would be necessary to
consider the projection onto the five other PCs, which repre-
sent 30 % of the inertia.

In the (PC1, PC2) plane, the shorter the distance between
two models, the more similar the distribution of their region-
cluster skills. Proximity between a model and a region cluster
leads us to affirm that this region cluster is well represented
by that model. Clearly, some models adequately represent the
southern part of the extended region (Region-clusters 1, 2 or
3), where the SST seasonal cycle is weak, and are very distant
from the upwelling regions (Region-cluster 6 and Region-
cluster 7) whose large SST cycle is poorly reproduced. In this
group of models, one recognizes the model 16-IPSL-CM5A-
MR, at the extreme bottom of Fig. 4, close to Region-clusters
4 and 5, consistently with Fig. 3. At the other end of this
group of models, model 23-HadCM3 for example is located
very close to Region-cluster 1. Figure 3 indeed shows that
most of its grid points over the region of interest have a sea-
sonal cycle resembling the one found in the offshore tropical
ocean. Another group of models is located in the center of
this plan, thus at an optimal distance of each of the observed
region clusters, and not far from the overall position of the
observations (diamond). We recognize in this group of mod-
els those that have a high skill in Fig. 3. The positioning of
the observations (green diamond in Fig. 4) with respect to
the models indeed allows selection of those that best repre-
sent the observation field. The representation given in Fig. 4

allows understanding of the drawback of the different models
with respect to the seven modes of SST cycles.

As indicated in the introduction, the main objective of the
methodology is to select an ensemble of models that repre-
sents at best the upwelling behavior with respect to the ob-
servations and to use this ensemble to predict the impact of
climate change on the Senegalo-Mauritanian upwelling with
some confidence. The problem is now to determine a sub-
set of models which has a better skill than Model-All, in
other words minimize the distance to the observations. As
the number of models is small enough, we chose to cluster
them by an HAC according to their projections onto the six
axes provided by the MCA and select the optimal jump in
the hierarchical tree (Jain and Dubes, 1988). We recall that
the HAC (hierarchical ascending clustering) is a bottom–up
algorithm for dataset clustering. The key operation in hierar-
chical bottom–up clustering is to repeatedly combine the two
nearest (according to a certain distance) clusters into a larger
cluster. The HAC starts from individuals and combines them
according to their similarity (with respect to the chosen dis-
tance) to obtain new clusters. The process is repeated up to
get one cluster only (the full data set). This algorithm is visu-
alized through a tree-like diagram, the so-called connection
tree or dendrogram: the branches of the connection tree rep-
resent the connections between the clusters (Fig. 5). From
Fig. 5, we obtain four homogeneous groups which are well
separated (group 1, 2, 3, and 4). They are plotted with differ-
ent colors in Fig. 4. We denote as Model-group 1, Model-
group 2, Model-group 3, and Model-group 4 these multi-
model ensembles hereafter. Note that Fig. 4 shows the pro-
jection of the individual models onto the first two axes of the
MCA. The fact that only two axes are shown here can intro-
duce some bias into the visualization, and this figure must be
considered with some caution.

Through MCA+HAC, we thus grouped the models into
clusters, using the χ2 distance, according to their proxim-
ity to the observations and their internal similarity. For each
group, we computed a multi-model average whose outputs
are the mean of the outputs of its different members, and we
analyzed it according to the same procedure (projection of
the SST seasonal cycle and assignment to a region cluster)
used for each individual model. In addition, we introduced
the full multi-model average (Model-All in the following),
which is the multi-model ensemble, which averages the 47
CMIP5 model outputs. Model-All was also projected in the
MCA plane, and it is represented by a red star in Fig. 4.
Comparison of the four model groups with Model-All and
the observations are presented in Fig. 6. This figure visually
highlights the dominance of Model-group 4 for the recon-
struction of the SST seasonal cycles of the different region
clusters for the extended region. This is particularly clear for
Region-clusters 6 and 7, which are those located in the up-
welling region (Fig. 2). Model-group 3 seems to group mod-
els characterized by an equatorward shift of the main struc-
tures, since Region-cluster 1 of tropical waters is not repro-
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Figure 4. Projection of the CMIP5 models (colored circles) and the observation field (green diamond) defined by their cluster skill vectors
onto the first two axes of the MCA. The seven region clusters of the observation field are represented by purple squares. The colors of the
circles denote the four groups of models obtained after an HAC was performed on the seven MCA components of the models. The projection
of the full multi-model mean (47 models) is represented by a red star. We note that some bias can be introduced into this projection since the
projection onto the other axes can be of importance.

duced and Region-clusters 4 and 5 of extratropical waters are
overestimated. Figure 4 indeed shows that this model group
is very close to Region-clusters 4 and 5, which correspond to
the extratropical and transition geographical regions. Model-
group 2 misrepresents the region of the Canary upwelling.
Model-group 1 overestimates the SST seasonal cycle in all
the tropical open Atlantic. These two last model groups over-
estimate Region-cluster 1, again consistently with their posi-
tion in Fig. 4. A detailed physical interpretation of the model
groups is nevertheless beyond the scope of this paper. Clearly
Model-All represents the SST seasonal cycle of the offshore
ocean, but it proposes a very poor representation of the up-
welling region.

Two models (models 7 and 25) have a better skill than
Model-group 4 and Model-All. These two models are very
close to the observations on the first two axes of the MCA
(Fig. 4). It is easily seen that Model-group 4 and the pro-
jection of Model-All onto this plane are farther than that of
model 7 and model 25 from the observation projection. This
explains the lower performance of these two multi-models
as compared to models 7 and 25. In the present case, the
method permits one to determine the best models (model 7

and model 25) and to outline the best multi-model (Model-
group 4) whose skill is better than any model with a proba-
bility of 95 % (number of models whose skill is smaller than
the skill of Model-group 4 with respect to the total number
of models). Projection of the models onto the other planes
of the MCA should confirm this interpretation. One could
then question the use of Model-group 4 rather than model 7
or model 25 individually. Furthermore, we argue that multi-
model averages are in general more robust for climate stud-
ies than the use of a single model that can have good per-
formance for a very specific set of constraints but not for
neighboring ones. The following section will partly justify
this point.

5 Analysis of the climate models over a zoomed
upwelling region

The classification presented above relies largely on the abil-
ity of the models to represent the offshore seasonal cycle of
the SST. In the following, we propose to test the classification
over a much more reduced area in order to focus the analy-
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Figure 5. HAC dendrogram. The horizontal line displays the 47 CMIP5 models, each model being associated with its seven-component skill
vector. As the dendrogram represents a hierarchy of clusters, the numbers on the y axis give the distance between two clusters. We note an
optimal “jump” on this graph: the level 1.5 on the vertical axis (materialized by a horizontal black line) is associated with four well-separated
clusters corresponding to four model groups that are very different.

Figure 6. (a–d) Projection of the multi-model ensembles (model group) onto the SOM learned with ERSSTv3b climatology in the extended
zone. Multi-model ensemble performances are obtained by averaging the skill of the models forming each group. The performances are given
on top of each panel. The region clusters determined by processing the observations in the extended area and their associated colors are given
in panel (f). The color bars at the right of each multi-ensemble panel represent the skill (in %) associated with each region cluster. Panel
(e) shows the projection for the full multi-model ensemble. Panel (f) reproduces the region clusters based on the observations also shown in
Fig. 2.

sis on the upwelling area. This “zoomed upwelling region”
is shown in Fig. 1.

As for the extended region, we partitioned the observa-
tions of the zoomed upwelling region with a SOM (ZSOM
in the following) followed by a HAC. We then applied a

new MCA to regroup the climate models. We did a simi-
lar analysis to that performed in Sect. 4. We obtained four
new well-separated region clusters denoted ZRegion clus-
ters. Figure 7 shows the four ZRegion clusters obtained
from ERSSTv3b observations together with their associ-
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ated mean SST seasonal cycle. Again, the ZRegion clus-
ters are spatially coherent. The upwelling area is now de-
composed into three ZRegion clusters (ZRegion-clusters 2,
3, and 4). This new decomposition thus refines the study
performed for the extended region: ZRegion-cluster 1 repre-
sents the offshore ocean; its grid points typically have a SST
seasonal cycle amplitude of 4 ◦C, very similar to Region-
cluster 4 in the classification performed over the extended
region (Fig. 2). ZRegion-cluster 4 identifies the core of the
Senegalo-Mauritanian region, with grid points characterized
by the greatest amplitude of the SST seasonal cycle of the
domain, typically 6.5 ◦C. It is interesting to note that an ad-
ditional upwelling ZRegion cluster (ZRegion-cluster 3) ap-
pears south of ZRegion-cluster 4. Indeed, several studies
have shown that the Cape Verde peninsula, located around
15◦ N, separates the upwelling region into two distinct areas
with a different behavior north and south of this peninsula
(Sirven et al., 2019; Sylla et al., 2019). The location of the
separation between ZRegion-clusters 3 and 4 is determined
with some uncertainty due to the coarse resolution (1◦) of the
ocean models. ZRegion-cluster 3 is marked by a time shift
of the seasonal cycle: the warmest season seems to occur
approximately 1 month earlier than in the other regions, as
clearly seen in Fig. 7a (yellow curve in June). Due to a clas-
sification using a much larger region, such a characteristic
does not appear in the extended area study. The physical in-
terpretation of the SST seasonal cycle of this ZRegion cluster
is beyond the scope of the present study, but one can suspect
a role of the ITCZ seasonal migration covering these grid
points earlier than further north. Finally, ZRegion-cluster 2 is
a transition between the large-scale ocean and the upwelling
region.

As for the extended region, we applied a MCA to the
(47× 4) matrix R= [Rm,i] whose elements represent the
skills of the four clusters (i) of the 47 models. This MCA
was followed by a HAC leading the definition of five ZModel
groups. The members of each group are given in the Ap-
pendix. Figure 8 shows the ZRegion cluster obtained in
the zoomed area by projecting these five ZModel groups
and Model-All onto the ZSOM and their associated perfor-
mances. ZModel-group 1 is the worst performing one: only
25 % of the grid cells fall into the same class as for the ob-
servations. The structure of this model group shows that it is
characterized by a homogeneous amplitude of the seasonal
cycle over the whole domain, suggesting a largely reduced
upwelling: only one grid point at the coast has an enhanced
SST seasonal cycle as compared to the large-scale tropical
ocean. ZModel-group 2 is the best performing one: 66 %
of the grid points are assigned to the correct class and the
general picture indeed represents a four-class picture fairly
consistent with the observed structure (Fig. 7). Important bi-
ases yet remain. In particular, ZRegion-clusters 2 and 4 char-
acterizing the upwelling extend too far offshore. The three
other ZModel groups are intermediate. A relatively reduced
upwelling area, with an underestimated SST seasonal cycle,

characterizes ZModel-groups 3 and 4. ZModel-group 5 cor-
responds to a shift of the upwelling region towards the north.
Model-All also shows a strongly reduced seasonal cycle,
with a large number of pixels in the intermediate ZRegion-
cluster 3 and very few in ZRegion-cluster 4. ZRegion cluster
3, representing the southern part of the Senegalo-Mauritanian
upwelling, does not appear in the pattern of Model-All.

It is notable that all the models forming ZModel-group 2
are included in Model-group 4. For a more precise assess-
ment, we can also project the entire Model-group 4, iden-
tified as the best multi-model ensemble over the extended
region, onto the ZSOM (Fig. 9b). We notice that the per-
formance of Model-group 4 remains high on this projec-
tion, indicating some robustness of this multi-model ensem-
ble. Moreover, this ensemble now outperforms the single best
model identified over the extended region (Fig. 9a). This re-
sult gives further confidence in the use of multi-model av-
erages, illustrating that one single model can be very skill-
ful over a specific region or for a specific analysis, but
multi-model averages are more robust across various anal-
yses and/or regions.

6 Impact of climate change on the
Senegalo-Mauritanian upwelling

6.1 Representation of the upwelling in the CMIP5
climate model clusters

In this section, we compare the representation of the
Senegalo-Mauritanian upwelling system given by the two
best model groups identified above (model group 4 and
ZModel group 2). For this evaluation, we use two of the
five indices used by Sylla et al. (2019) to evaluate the full
database, namely the intensity of the SST seasonal cycle and
the offshore Ekman transport at the coast. The former is spe-
cific to the seasonal variability of the Senegalo-Mauritanian
upwelling system, and it has been used for the classification.
The latter is more general and, although it has recently been
shown to partly represent the volume of the upwelled waters
(Jacox et al., 2018), it is extensively used in the scientific
literature to characterize upwelling regions (Cropper et al.,
2014; Rykaczewski et al., 2015; Wang et al., 2015). Note also
that, following Sylla et al. (2019), evaluation is performed on
the period [1985–2005]. This period slightly differs from the
classification period, but the SST seasonal cycle is not sig-
nificantly different (not shown).

Figure 10 compares the amplitude of the SST seasonal
cycle as represented in the observations, Model-All, Model-
group 4 and ZModel-group 2 identified above. Consistently
with Figs. 6 and 8, Model-All dramatically underestimates
the upwelling signature in terms of the SST seasonal cycle as
compared to the observations. Model-group 4 and ZModel-
group 2 yield improved results: the area of an enhanced SST
seasonal cycle is larger in both latitude and longitude, with
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Figure 7. (a) ZRegion clusters associated with the ZSOM clusters obtained after a HAC on a 10× 12-neuron SOM learned on ERSSTv3b
observations in the zoomed zone (see text for details). (b) Ensemble-mean monthly climatological SST anomalies for the grid points of the
four ZRegion clusters. The error bars show the standard deviation of this ensemble mean.

Figure 8. (a–e) Projection of the multi-model ensembles (ZModel groups) onto the ZSOM. The performances are given on top of each panel.
The ZRegion clusters determined by processing the observations in the zoomed region and their associated colors are given in panel (g). The
color bars at the right of each multi-ensemble panel represent the skill (in %) associated with each ZRegion cluster. Panel (f) shows the same
for the full multi-model ensemble. Panel (g) reproduces the region clusters based on the observations also shown in Fig. 6.

stronger SST amplitude values. This confirms the efficiency
of the selection operated above. Nevertheless, ZModel-group
2 yields a realistic SST amplitude pattern along the coast, but
it extends too far offshore. Furthermore, in ZModel-group 2,
the subtropical area (in green in Fig. 10) extends too far to-
wards the south, in particular in the western part of the basin.
The tropical area, characterized by limited amplitude of the
seasonal cycle of SST (deep blue in Fig. 10), is shifted to the
south as compared to the observations. In other words, the
large-scale thermal – and thus probably dynamical – struc-
ture of the region is poorly represented in ZModel-group 2.
Finally, Model-group 4 is the least biased one.

The intensity of the wind stress parallel to the coast, induc-
ing offshore Ekman transport and consequently an Ekman
pumping at the coast, is generally considered to be the main
driver of the upwelling. We therefore also tested the represen-
tation of this driver in the different model groups. The idea
is to evaluate the impact of the model selection performed
above on the representation of an independent variable by the
model groups. Figure 11 shows the latitude–time evolution
of the meridional oceanic wind stress, considering that the
coast in the studied region is oriented approximately merid-
ionally, so that the offshore Ekman transport is mainly zonal.
Note that in Fig. 11, southward winds have positive values,
so that they correspond to a westward Ekman transport fa-
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Figure 9. Same as Fig. 7 but for the individual model CMCC-CM (model 7) (a) and model group 4 (b).

Figure 10. Amplitude of the SST seasonal cycle in (a) ERSSTv3b observations (b) Model-All, (c) Model-group 4 (best model group for the
extended area, illustrated by the black rectangular box) and (d) ZModel-group 2 (best model group for the reduced area, illustrated by the
small black rectangular box). The SST seasonal cycle is computed over the period 1985–2005.

vorable to upwelling. Panel a shows that the observed merid-
ional wind stress is, all year long, favorable to the upwelling
north of 20◦ N. At these latitudes, the meridional wind stress
is stronger in summer. Conversely, between 12 and 20◦ N, in
the latitude band of the Senegalo-Mauritanian upwelling, the
wind blows southward with a very weak intensity in sum-
mer, and it even changes direction in the southern part of
this latitude band. It is favorable to the upwelling in winter–
spring, which explains why the Senegalo-Mauritanian up-
welling occurs during this season with a maximum of inten-
sity in March–April (Capet et al., 2017; Farikou et al., 2015).

The main bias of Model-All (Fig. 11b) is due to the fact that
the wind stress never reverses between 12 and 20◦ N. It weak-
ens in the southern part of the Senegalo-Mauritanian latitude
band, i.e., south of the Cape Verde peninsula (15◦ N), but
does not become negative. North of the Cape Verde penin-
sula, it also blows from the north in summer, so that the
Senegalo-Mauritanian upwelling lacks seasonality. This bias
is corrected in Model-group 4 and ZModel-group 2 (Fig. 11c
and d) that are, in this aspect, more realistic than Model-All.
Model-group 4 shows a slight extension of the time and lati-
tude range where the oceanic wind stress reverses sign. This
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constitutes an improvement. The southward wind is never-
theless too strong in winter on the [12–20◦ N] latitude band
as well as further south from December to March. These
two remaining biases are further reduced in ZModel-group
2. This latter model yields the most realistic seasonal cycle
of meridional oceanic wind stress on the latitude band under
study. This is consistent with a very localized model selec-
tion, as the wind index is itself localized along the coast.

To conclude, Model-group 4 and ZModel-group 2 per-
form in general better than Model-All in reproducing the
major, characteristic features of the Senegalo-Mauritanian
upwelling. This result confirms the relevance of the multi-
model selection we have presented above. Applying the
methodology over a relatively large region allows better con-
straint of the spatial extent and pattern of the SST signature
of the upwelling than the reduced area. The latter however
yields a better representation of the wind seasonality along
the coast.

6.2 Response of the Senegalo-Mauritanian upwelling to
global warming

In this section, we examine the response of the upwelling
system given by the different multi-model groups we selected
to global warming. For this, we compared the two indices
analyzed above in present-day and future conditions. The
present-day conditions are taken as above as the climatolog-
ical average of historical simulations over the period [1985–
2005]. The future period is taken as the climatological av-
erage of the RCP8.5 scenario over the period [2080–2100].
Figure 12 shows the difference of the SST seasonal cycle
amplitude between these two periods. The general behavior
is that the SST cycle amplitude will reduce in the upwelling
region. Sylla et al. (2019) showed that this is primarily due
to a warming of the winter temperature, thus suggesting that
the upwelling signature at the surface will reduce. On the
other hand, this figure shows that the upwelling signature
will increase along the Canary Current, which flows along
the coast of Morocco, as well as in the subtropical part of our
domain. This behavior is observed in the three multi-model
ensembles. However, the two selected model groups suggest
a weaker decrease in the SST seasonal cycle in the upwelling
region than the one given by Model-All. ZModel-group 2
shows an even weaker decrease mainly confined in the south-
ern part of the upwelling region. This result echoes findings
of Sylla et al. (2019) based on another indicator of the up-
welling imprint on the SST: they showed that the difference
between the SST at the coast and offshore is expected to de-
crease more in the southern part of the Senegalo-Mauritanian
upwelling system (SMUS) than in the north. We hypothesize
that the study conducted on the reduced area permits sep-
aration of the Senegalo-Mauritanian upwelling system into
two clusters, a northern one (ZRegion 4) and a southern one
(ZRegion-3) (Fig. 8), which enables us to distinguish this
specific response.

The meridional wind stress also generally weakens under
climate change in the [12–20◦ N] latitude band (Fig. 13), sug-
gesting a general reduction of the upwelling intensity. From
December to March, this is particularly true in the south-
ernmost region of the Senegalo-Mauritanian band, consis-
tent with the results of Sylla et al. (2019). The wind pat-
tern inferred from the two model groups (Fig. 13b and c)
present a higher seasonal variability than those of Model-
All (Fig. 13a). The winter reduction of the southward wind
stress is slightly more confined to the southern region in
ZModel-group 2, especially at the end of the upwelling
season (March–April), when the upwelling intensity is the
strongest. This may be consistent with the reduced seasonal
cycle in the southernmost part of the upwelling identified
above.

7 Discussion and conclusion

This paper proposed a novel methodology for selecting ef-
ficient climate models in a specific area with respect to ob-
servations and according to well-defined statistical criteria.
The present study has specifically focused on the ability of
climate models to reproduce the ocean SST annual cycle ob-
served in specific sub-regions of the studied domain during
the period 1975–2005 as reported in the ERSST_v3b data set.
These sub-regions were defined by a neural classifier (SOM)
as clusters with similar seasonal SST cycle anomalies with
respect to some statistical characteristics and were therefore
named region clusters. They correspond to ocean areas with
well-marked oceanographic specificities.

We then checked the ability of the different climate mod-
els to reproduce the region clusters defined on the observa-
tion data set with a SOM. The better a climate model fits the
clusters computed with the SST observation, the higher the
skill of the model. To evaluate this, we defined geographical
regions in the different CMIP5 climate models by project-
ing the SST annual cycle anomalies of each model grid point
onto the SOM. Each grid point is associated with a cluster
on the SOM and consequently with a region cluster on the
geographical map. We built a similarity criterion by counting
the number of grid points in a region cluster of a given model
matching the same region cluster defined by processing the
observation field. We then computed the ratio between that
matching number and the number of pixels of the region clus-
ter of the model under study. We estimated the total skill of
a model by averaging the seven ratios associated with the
seven region clusters. Note that this procedure presents the
advantage of giving the same weight to each region clus-
ter whatever its number of grid points and its proximity to
the upwelling region. This procedure respects the clustering
done by the SOM since the different clusters have an equal
weight in the skill computation. In its present definition, the
total skill is a number between 0 and 1: the higher the skill,
the better the fit. Other measures of the total skill of a model
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Figure 11. Latitude–time plot of depth-integrated Ekman transport computed over the grid point located along the coast (magenta stars
in Fig. 9a). The time axis shows climatological months over the period 1985–2005. Positive (negative) values correspond to upwelling
(downwelling) conditions. Panel (a) stands for the TropFlux data set (see Praveen Kumar et al., 2011) (b) Model-All, (c) Model-group 4 and
(d) ZModel-group 2. In each panel, the black contour shows the contour zero. The horizontal dashed lines are positioned at 12 and 20◦ N
and give a rough delimitation of the Senegalo-Mauritanian upwelling region.

Figure 12. Evolution of the amplitude of the SST seasonal cycle at the end of the 21st century. The figure shows the difference between the
seasonal cycle amplitude averaged over the period (2080–2100) following the RCP8.5 scenario and the amplitude averaged over the period
(1985–2005) in the historical simulations. A positive value (red) means that the seasonal cycle is more marked over the period 2080–2100.

group could nevertheless be defined depending on the objec-
tive of the study. One may compare the skill of individual
models over a specific region cluster of interest or analyze
the pattern of skill in one specific model and its sensitivity to
possible various parameterization schemes. The extraction of
information embedded in the vector skill whose seven com-
ponents are the skills associated with the seven sub-regions
and the resulting efficient multi-model combination imply
the use of advanced statistical tools such as the MCA. More-
over, the vector skill also contains information behavior of
models in terms of large offshore ocean circulation as well

as in the upwelling region. It could thus be used to diagnose
the deficiencies of some climate models with respect to the
modeling of physical processes. Another contribution of the
MCA is the visualization of the 47 models and the obser-
vations on the plane constituted by the first two MCA axes,
which represents 70 % of the information embedded in the
data. The similarities of the climate models with respect to
the observations and the region clusters can be clearly visu-
alized. The “mean” skill associated with each climate model
and proposed in this study is easy to use but is far less infor-
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Figure 13. Latitude–time diagram of the seasonal shift of the meridional component of the wind stress with respect to the present day. For
each month and at each latitude, we show the meridional wind stress shift with respect to the present day averaged over the period 2080–
2100. Positive values (red) mean that the wind stress shift is southward and is thus favorable to upwelling. Panel (a) stands for Model-All,
(b) Model-group 4 and (c) ZModel-group 2.

mative than the vector skill whose seven components are the
skills associated with the seven sub-regions.

Such a multi-model ensemble selection allows sampling of
a set of models in order to obtain a more realistic climatology
over the region of interest. The response of the upwelling to
climate change given by the different multi-model ensembles
is quite robust in the sense that they give similar qualitative
answers. However, a too-selective ensemble of models may
lead to noisy patterns. A compromise thus has to be found: a
large number of models leads to smoothed biases and unreal-
istic patterns but also damps the characteristics of the selec-
tion. On the other hand, selecting the most realistic models
may yield spurious biases in the ensemble mean.

As discussed in the introduction, different criteria have
been used for extracting some efficient models from the
CMIP5 models used for climatic studies. The most common
parameter is the average annual surface mean temperature of
the grid points of the region under study. However, Knutti
et al. (2006) used the seasonal cycle in surface temperature,
represented by the seasonal amplitude calculated as summer
June–August (JJA) minus winter December–February (DJF)
temperatures. This criterion is more informative than the an-
nual mean temperature since the amplitude of the seasonal
variability is an important criterion characterizing the va-
lidity of a climate model. In the present work, we used a
more informative criterion which is formed from the monthly
temperature cycle anomaly represented by a 12-component
vector, each component representing the average monthly
temperature of the year we consider. This new criterion al-
lows account to be taken of the amplitude and phase of sea-
sonal variability, while the Knutti et al. (2006) criterion only
takes into account the amplitude of the seasonal variability.
Note however that it implies a good geophysical knowledge
of the region under interest, in order to determine the rele-

vant region clusters after the SOM. It is also very specific
to the Senegal-Mauritania upwelling region. Furthermore,
Sylla et al. (2019) extensively discussed the possible differ-
ences among several indices, aiming at characterizing the up-
welling and the need to use some of them to have a complete
understanding of this coastal phenomenon. This conclusion
is probably general to any physical process of the climate
system. In the present study, the model selection is based on
only one signature of the SMUS. Several possibilities can
be envisaged to improve the resolution of this problem, such
as merging several indices like SST, temperature at several
depths, wind vector or ocean currents. This approach could
also allow a selection of models based on the representa-
tion of several distinct regional behaviors. In spite of several
subjective choices, including the studied domain and the sta-
tistical metrics, we argue that this method is a step towards
an objective selection of models, based on a quantitative as-
sessment rather than a qualitative analysis of maps of perfor-
mance.

The methodology is general and can be adapted to any cli-
mate or oceanographic phenomenon. Different applications
of the multi-model selection strategy proposed in the present
study can also be envisaged. Firstly, from a purely modeling
point of view, the projection of the models onto the SOM (or
ZSOM) and the results of the HAC yield a very enlightening
description of a given model behavior in terms of region clus-
ters of the area under study. Such a procedure could advan-
tageously be used by individual modeling groups to identify,
analyze and therefore hopefully reduce their model biases in
a targeted region. Secondly, from a physical point of view, an
identified model group can be used to analyze the targeted re-
gion (here the SMUS) in terms of processes, with the advan-
tages of a subset of models which have been selected from
quantitative criteria. Such an application has been briefly il-
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lustrated by showing how the selected model group repre-
sents an important additional characteristic of the SMUS not
used for the selection, namely Ekman pumping. A promising
reduction of biases of the full multi-model mean ensemble
has been identified, opening possibilities for process studies
based on this sub-ensemble of the CMIP5 database. A third
application of the selection lies in the prediction of the fu-
ture climate. Here, we have shown that selected multi-model
ensembles may provide a more precise description of the fu-
ture behavior of the SMUS. It may nevertheless be important
to note that these conclusions are based on the assumption
that the CMIP5 models, which have been selected accord-
ing to their present-day characteristics, are the most reliable
in terms of future projections, which can be questioned and
refined (Lutz et al., 2016; Reifen and Toumi, 2009).

As discussed in the introduction, the concept of “model
democracy”, suggesting that all models should be equally
considered in multi-model ensembles, is now strongly ques-
tioned (Knutti et al., 2017). The present study proposes a
promising way to improve the quality of multi-model ensem-
bles in terms of model selection. Deep advances in the field
of multi-model analysis and selection can be expected from
the emerging topic of climate informatics (Monteleoni et al.,
2016), as has been shown through the present study. Machine
learning can indeed provide efficient tools to make the best
out of the extraordinary but imperfect tools that are the cli-
mate models and multi-model intercomparison efforts.

Geosci. Model Dev., 13, 2723–2742, 2020 https://doi.org/10.5194/gmd-13-2723-2020



J. Mignot et al.: Towards an objective assessment of climate multi-model ensembles 2739

Appendix A

Table A1. Composition of the different model groups identified in the main text. In bold, we show the CMIP5 models which belong to
Model-group 4 and ZModel-group 2. We note that all the models belonging to Zmodel-group 2 also belong to Model-group 4.

Model-group 1 Model-group 2 Model-group 3 Model-group 4

ACCESS1-0
ACCESS1-3
CESM1-CAM5
CESM1-CAM5-1-FV2
CESM1-WACCM
HadCM3
MIROC-ESM
MIROC-ESM-CHEM
MIROC5
NorESM1-M
NorESM1-ME

bcc-csm1-1
bcc-csm1-1-m
BNU-ESM
CCSM4
CESM1-BGC
CESM1-FASTCHEM
GFDL-CM2p1
GFDL-ESM2G
GFDL-ESM2M
MPI-ESM-LR
MPI-ESM-MR
MPI-ESM-P

FGOALS-g2
GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC
inmcm4
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR
MRI-CGCM3
MRI-ESM1

CanCM4
CanESM2
CMCC-CESM
CMCC-CM
CMCC-CMS
CNRM-CM5
CNRM-CM5-2
CSIRO-Mk3-6-0
FGOALS-s2
GFDL-CM3
HadGEM2-AO
HadGEM2-CC
HadGEM2-ES

ZModel-group 1 ZModel-group 2 ZModel-group 3 ZModel-group 4

ACCESS1-0
bcc-csm1-1-m
CCSM4
CESM1-BGC
CESM1-CAM5
CESM1-CAM5-1-FV2
CESM1-FASTCHEM
CESM1-WACCM
GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC
HadCM3
inmcm4
IPSL-CM5B-LR
MIROC5
MPI-ESM-LR
MPI-ESM-MR
MPI-ESM-P

CMCC-CMS
CNRM-CM5
CNRM-CM5-2
FGOALS-s2
GFDL-CM3

BNU-ESM
CanCM4
CanESM2
CMCC-CM
FGOALS-g2
IPSL-CM5A-LR
IPSL-CM5A-MR
MRI-CGCM3
NorESM1-M
NorESM1-ME

ACCESS1-3
bcc-csm1-1
CSIRO-Mk3-6-0
HadGEM2-AO
HadGEM2-CC
HadGEM2-ES
MIROC-ESM
MIROC-ESM-CHEM
MRI-ESM1

ZModel-group 5

CMCC-CESM
GFDL-CM2p1
GFDL-ESM2G
GFDL-ESM2M
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is freely available on the ESGF database, for example following
this url: https://esgf-node.ipsl.upmc.fr/search/cmip5-ipsl/ (Taylor et
al., 2012). The SST data were provided by the NOAA/OAR/ESRL
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noaa.gov/ (Smith the al., 2008) and the wind data here: https:
//podaac.jpl.nasa.gov (Praveen Kumar et al., 2011). The code de-
veloped for the core computations of this study can be found under
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