Articles | Volume 13, issue 1
https://doi.org/10.5194/gmd-13-121-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-121-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A model of Black Sea circulation with strait exchange (2008–2018)
Institute of Marine Sciences and Technology, Dokuz Eylül University, İzmir, Turkey
Emin Özsoy
Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
Eurasia Earth Science Institute, İstanbul Technical University, İstanbul, Turkey
Robinson Hordoir
Institute of Marine Research, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
No articles found.
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
Short summary
The health of the Baltic and North seas is threatened due to high anthropogenic pressure; thus, different methods to assess the status of these regions are urgently needed. Here, we validated a novel model simulating the ocean dynamics and biogeochemistry of the Baltic and North seas that can be used to create future climate and nutrient scenarios, contribute to European initiatives on de-eutrophication, and provide water quality advice and support on nutrient load reductions for both seas.
Imke Sievers, Andrea M. U. Gierisch, Till A. S. Rasmussen, Robinson Hordoir, and Lars Stenseng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-84, https://doi.org/10.5194/tc-2022-84, 2022
Preprint withdrawn
Short summary
Short summary
To predict Arctic sea ice models are used. Many ice models exists. They all are skill full, but give different results. Often this differences result from forcing as for example air temperature. Other differences result from the way the physical equations are solved in the model. In this study two commonly used models are compared under equal forcing, to find out how much the models differ under similar external forcing. The results are compared to observations and to eachother.
Cited articles
Arkhipkin, V. and Berezhnoi, V. Y.: Steric oscillations of the Black Sea level,
Oceanology of the Russian Academy of Sciences, 35, 735–741, 1995. a
Aydoğdu, A., Hoar, T. J., Vukicevic, T., Anderson, J. L., Pinardi, N., Karspeck, A., Hendricks, J., Collins, N., Macchia, F., and Özsoy, E.: OSSE for a sustainable marine observing network in the Sea of Marmara, Nonlin. Processes Geophys., 25, 537–551, https://doi.org/10.5194/npg-25-537-2018, 2018a. a
Aydoğdu, A., Pinardi, N., Özsoy, E., Danabasoglu, G., Gürses, Ö., and Karspeck, A.: Circulation of the Turkish Straits System under interannual atmospheric forcing, Ocean Sci., 14, 999–1019, https://doi.org/10.5194/os-14-999-2018,
2018b. a
Beşiktepe, Ş., Özsoy, E., and Ünlüata, Ü.: Filling
of the Marmara Sea by the Dardanelles lower layer inflow, Deep-Sea Res.
Pt. I, 40, 1815–1838, 1993. a
Beşiktepe, Ş. T., Sur, H. İ., Özsoy, E., Latif, M. A.,
Oǧuz, T., and Ünlüata, Ü.: The circulation and hydrography of
the Marmara Sea, Prog. Oceanogr., 34, 285–334, 1994. a
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean
simulated by a general circulation model with two different mixed-layer
physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. a
Bondar, C.: Considerations on water balance of the Black Sea. Report on the
chemistry of seawater, in: Proceedings of the XXXIII International Conference
on Chemical and Physical Oceanography of the Black Sea, 2–4, 1986. a
Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287–1297, https://doi.org/10.5194/bg-13-1287-2016, 2016. a
Delfanti, R., Özsoy, E., Kaberi, H., Schirone, A., Salvi, S., Conte, F.,
Tsabaris, C., and Papucci, C.: Evolution and fluxes of 137Cs in the black
sea/turkish straits system/north aegean sea, J. Marine Syst., 135,
117–123, 2014. a
Dorrell, R. M., Peakall, J., Sumner, E., Parsons, D., Darby, S., Wynn, R.,
Özsoy, E., and Tezcan, D.: Flow dynamics and mixing processes in
hydraulic jump arrays: Implications for channel-lobe transition zones, Mar.
Geol., 381, 181–193, 2016. a
Dorrell, R. M., Peakall, J., Darby, S. E., Parsons, D. R., Johnson, J., Sumner,
E. J., Wynn, R. B., Özsoy, E., and Tezcan, D.: Self-sharpening induces
jet-like structure in seafloor gravity currents, Nat. Commun., 10,
1381, https://doi.org/10.1038/s41467-019-09254-2, 2019. a
Falina, A., Sarafanov, A., Özsoy, E., and Turunçoğlu, U. U.:
Observed basin-wide propagation of Mediterranean water in the Black Sea,
J. Geophys. Res.-Oceans, 122, 3141–3151, 2017. a
Farmer, D. M. and Armi, L.: Maximal two-layer exchange over a sill and through
the combination of a sill and contraction with barotropic flow, J.
Fluid Mech., 164, 53–76, 1986. a
Farmer, D. M. and Armi, L.: The flow of Atlantic water through the Strait of
Gibraltar, Prog. Oceanogr., 21, 1–103, 1988. a
Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., and Mossa, M.: Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas, Nat. Hazards Earth Syst. Sci., 17, 45–59, https://doi.org/10.5194/nhess-17-45-2017, 2017. a
Ferrarin, C., Bellafiore, D., Sannino, G., Bajo, M., and Umgiesser, G.: Tidal
dynamics in the inter-connected Mediterranean, Marmara, Black and Azov seas,
Prog. Oceanogr., 161, 102–115, 2018. a
Gregg, M. C. and Özsoy, E.: Flow, water mass changes, and hydraulics in the
Bosphorus, J. Geophys. Res.-Oceans, 107, https://doi.org/10.1029/2000JC000485, 2002. a, b
Grinevetsky, S. R., Zonn, I. S., Zhiltsov, S. S., Kosarev, A. N., and
Kostianoy, A. G.: The Black Sea Encyclopedia, Springer, Berlin Heidelberg,
2002. a
Ilıcak, M., Özgökmen, T. M., Özsoy, E., and Fischer, P. F.:
Non-hydrostatic modeling of exchange flows across complex geometries, Ocean
Model., 29, 159–175, 2009. a
Jarosz, E., Teague, W. J., Book, J. W., and Beşiktepe, Ş.: On flow
variability in the Bosphorus Strait, J. Geophys. Res.-Oceans,
116, C08038, https://doi.org/10.1029/2010JC006861, 2011a. a, b
Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G.,
García-Lafuente, J., Sammartino, S., Özsoy, E., Polcher, J.,
Notarstefano, G., Poulain, P.-M., Adloff, F., Salat, J., C., N., Schroeder,
K., Chiggiato, J., Sannino, G., and Macías, D.: The Mediterranean Sea heat
and mass budgets: Estimates, uncertainties and perspectives, Prog.
Oceanogr., 156, 174–208, 2017. a
Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J., and Özsoy,
E.: The diffusive regime of double-diffusive convection, Prog.
Oceanogr., 56, 461–481, 2003. a
Kosarev, A. N.: The Black Sea Environment, vol. 5, Springer, 2007. a
Latif, M. A., Özsoy, E., Oğuz, T., and Ünlüata, Ü.:
Observations of the Mediterranean inflow into the Black Sea, Deep-Sea
Res. Pt. I, 38, S711–S723, 1991. a
Madec, G.: NEMO ocean engine, Note du Pole de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No 27, Tech. rep., ISSN-1288-1619, 2008. a
Miladinova, S., Stips, A., Garcia-Gorriz, E., and Moy, D. M.: Formation and
changes of the Black Sea cold intermediate layer, Prog. Oceanogr.,
167, 11–23, 2018. a
Murray, J. W., Top, Z., and Özsoy, E.: Hydrographic properties and
ventilation of the Black Sea, Deep-Sea Res. Pt. I, 38, S663–S689, 1991. a
NEMO: The OPA9 Ocean Engine: Note du Pole de Modelisation Institut Pierre-Simon Laplace, No. 27, ISSN 1288-1619, available at: https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf (last access: 11 January 2020), 2016 a
Oğuz, T. and Malanotte-Rizzoli, P.: Seasonal variability of wind and
thermohaline-driven circulation in the Black Sea: Modeling studies, J. Geophys. Res.-Oceans, 101, 16551–16569, 1996. a
Oğuz, T., Tuğrul, S., Kıdeys, A. E., Ediger, V., and Kubilay,
N.: Physical and biogeochemical characteristics of the Black Sea, The Sea,
14, 1331–1369, 2005. a
Özsoy, E. and Altıok, H.: A review of water fluxes across the Turkish
Straits System, The Sea of Marmara – Marine Biodiversity, Fisheries,
Conservation and Governance, Turkish Marine Research Foundation (TÜDAV)
Publication 42, 42–61, 2016b. a
Özsoy, E., Top, Z., White, G., and Murray, J. W.: Double diffusive
intrusions, mixing and deep sea convection processes in the Black Sea, in:
Black Sea Oceanography, 17–42, Springer, 1991. a
Özsoy, E., Ünlüata, Ü., and Top, Z.: The Mediterranean water
evolution, material transport by double diffusive intrusions, and interior
mixing in the Black Sea, Prog. Oceanogr., 31, 275–320, 1993. a
Özsoy, E., Rank, D., and Salihoğlu, İ.: Pycnocline and deep
mixing in the Black Sea: stable isotope and transient tracer measurements,
Estuarine, Coast. Shelf Sci., 54, 621–629, 2002. a
Özsoy, E., Çagatay, M., Balkıs, N., Balkıs, N., and
Öztürk, B.: The Sea of Marmara, Marine Biodiversity, Fisheries,
Conservation and Governance, Turkish Marine Research Foundation (TUDAV), Publication No: 42, Istanbul, Turkey, 2016. a
Peneva, E., Stanev, E., Belokopytov, V., and Le Traon, P.-Y.: Water transport
in the Bosphorus Straits estimated from hydro-meteorological and altimeter
data: seasonal to decadal variability, J. Marine Syst., 31, 21–33,
2001. a
Rank, D., Özsoy, E., and Salihoǧlu, İ.: Oxygen-18, deuterium and
tritium in the Black Sea and the Sea of Marmara, J. Environ.
Radioactiv., 43, 231–245, 1999. a
Sannino, G., Sözer, A., and Özsoy, E.: Recent advancements on modelling
the exchange flow dynamics through the Turkish Straits System, Black
Sea/Mediterranean Environment, p. 110, 2014. a
Sarkisyan, A. S. and Sündermann, J. E.: Modelling Climate Variability of
Selected Shelf Seas, Springer, 2009. a
Schroeder, K., Garcìa-Lafuente, J., Josey, S. A., Artale, V., Nardelli, B. B., Carrillo, A., Gačić, M., Gasparini, G. P., Herrmann, M., Lionello, P., Ludwig, W., Millot, C., Özsoy, E., Pisacane, G., Sánchez-Garrido, J. C., Sannino, G., Santoleri, R., Somot, S., Struglia, M., Stanev, E., Taupier-Letage, I., Tsimplis, M. N., Vargas-Yáñez, M., Zervakis, V., and Zodiatis, G.: Circulation of the Mediterranean Sea and its variability, The climate
of the Mediterranean region, edited by: Lionello, P., Elsevier, 187–256, https://doi.org/10.1016/B978-0-12-416042-2.00003-3,
2012. a
Simonov, A. and Altman, E.: Hydrometeorology and hydrochemistry of seas of
USSR. IV, Black Sea, pt. 1, Hydrometeorological conditions, 1991. a
Song, Y. and Haidvogel, D.: A semi-implicit ocean circulation model using a
generalized topography-following coordinate system, J. Comput.
Phys., 115, 228–244, 1994. a
Sorokin, I.: The Black Sea: Ecology and Oceanography, Biology of inland waters,
Backhuys Pub., 2002. a
Sözer, A. and Özsoy, E.: Modeling of the Bosphorus exchange flow
dynamics, Ocean Dynam., 67, 321–343, 2017a. a
Sözer, A. and Özsoy, E.: Water Exchange through Canal İstanbul and
Bosphorus Strait, Mediterr. Mar. Sci., 18, 77–86,
2017b. a
Stanev, E., Grashorn, S., and Zhang, Y.: Cascading ocean basins: numerical
simulations of the circulation and interbasin exchange in the
Azov-Black-Marmara-Mediterranean Seas system, Ocean Dynam., 67, https://doi.org/10.1007/s10236-017-1071-2, 2017. a, b
Stanev, E. V.: On the mechanisms of the Black Sea circulation, Earth-Sci.
Rev., 28, 285–319, 1990. a
Stanev, E. V.: Understanding Black Sea dynamics: Overview of recent numerical
modeling, Oceanography, 18, 56–75, 2005. a
Stanev, E. V., Bowman, M. J., Peneva, E. L., and Staneva, J. V.: Control of
Black Sea intermediate water mass formation by dynamics and topography:
Comparison of numerical simulations, surveys and satellite data, J.
Mar. Res., 61, 59–99, 2003. a
Stanev, E. V., Peneva, E., and Chtirkova, B.: Climate change and regional ocean
water mass disappearance: case of the Black Sea, J. Geophys.
Res.-Oceans, 124, 4803–4819,
https://doi.org/10.1029/2019JC015076, 2019. a
Sur, H. İ., Özsoy, E., and Ünlüata, Ü.: Boundary current
instabilities, upwelling, shelf mixing and eutrophication processes in the
Black Sea, Prog. Oceanogr., 33, 249–302, 1994. a
Tsimplis, M., Josey, S., Rixen, M., and Stanev, E.: On the forcing of sea level
in the Black Sea, J. Geophys. Res.-Oceans, 109, C08015,
https://doi.org/10.1029/2003JC002185, 2004.
a
Vespremeanu, E. and Golumbeanu, M.: The Black Sea: Physical, Environmental and
Historical Perspectives, Springer, 2017. a
Short summary
The Bosphorus exchange is of critical importance for hydrodynamics and hydroclimatology of the Black Sea. In this study, we report on the development of a medium-resolution circulation model of the Black Sea, making use of surface atmospheric forcing with high space and time resolution, climatic river fluxes and strait exchange, enabled by adding elementary details of strait and coastal topography and seasonal hydrology specified in an artificial box on the Marmara Sea side.
The Bosphorus exchange is of critical importance for hydrodynamics and hydroclimatology of the...