Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-879-2019
https://doi.org/10.5194/gmd-12-879-2019
Methods for assessment of models
 | 
05 Mar 2019
Methods for assessment of models |  | 05 Mar 2019

DCMIP2016: the splitting supercell test case

Colin M. Zarzycki, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Paul A. Ullrich, David M. Hall, Mark A. Taylor, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Xi Chen, Lucas Harris, Marco Giorgetta, Daniel Reinert, Christian Kühnlein, Robert Walko, Vivian Lee, Abdessamad Qaddouri, Monique Tanguay, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Sang-Hun Park, Joseph B. Klemp, and William C. Skamarock

Related authors

DCMIP2016: the tropical cyclone test case
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024,https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Algorithmically Detected Rain-on-Snow Flood Events in Different Climate Datasets: A Case Study of the Susquehanna River Basin
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
EGUsphere, https://doi.org/10.5194/egusphere-2023-3094,https://doi.org/10.5194/egusphere-2023-3094, 2024
Short summary
Using EUREC4A/ATOMIC field campaign data to improve trade wind regimes in the Community Atmosphere Model
Skyler Graap and Colin M. Zarzycki
Geosci. Model Dev., 17, 1627–1650, https://doi.org/10.5194/gmd-17-1627-2024,https://doi.org/10.5194/gmd-17-1627-2024, 2024
Short summary
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023,https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets
Paul A. Ullrich, Colin M. Zarzycki, Elizabeth E. McClenny, Marielle C. Pinheiro, Alyssa M. Stansfield, and Kevin A. Reed
Geosci. Model Dev., 14, 5023–5048, https://doi.org/10.5194/gmd-14-5023-2021,https://doi.org/10.5194/gmd-14-5023-2021, 2021
Short summary

Related subject area

Numerical methods
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary
Assessing effects of climate and technology uncertainties in large natural resource allocation problems
Jevgenijs Steinbuks, Yongyang Cai, Jonas Jaegermeyr, and Thomas W. Hertel
Geosci. Model Dev., 17, 4791–4819, https://doi.org/10.5194/gmd-17-4791-2024,https://doi.org/10.5194/gmd-17-4791-2024, 2024
Short summary
VISIR-2: ship weather routing in Python
Gianandrea Mannarini, Mario Leonardo Salinas, Lorenzo Carelli, Nicola Petacco, and Josip Orović
Geosci. Model Dev., 17, 4355–4382, https://doi.org/10.5194/gmd-17-4355-2024,https://doi.org/10.5194/gmd-17-4355-2024, 2024
Short summary

Cited articles

Browning, K. A.: Airflow and Precipitation Trajectories Within Severe Local Storms Which Travel to the Right of the Winds, J. Atmos. Sci., 21, 634–639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2, 1964. a
Doswell, C. A. and Burgess, D. W.: Tornadoes and toraadic storms: A review of conceptual models, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophysical Monograph Series, American Geophysical Union, 161–172, 1993. a
Gallus, W. A. and Bresch, J. F.: Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts, Mon. Weather Rev., 134, 2632–2641, https://doi.org/10.1175/MWR3198.1, 2006. a, b
Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, D. L., Klocke, D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi, K., and Leung, R.: Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress, Mon. Weather Rev., 146, 3505–3544, https://doi.org/10.1175/mwr-d-17-0345.1, 2018. a
Guimond, S. R., Reisner, J. M., Marras, S., and Giraldo, F. X.: The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification, J. Atmos. Sci., 73, 4661–4684, https://doi.org/10.1175/JAS-D-16-0055.1, 2016. a, b
Short summary
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized supercell test case. Supercells are storm-scale weather phenomena that are a key target for next-generation, non-hydrostatic weather prediction models. We show that the dynamical cores of most global numerical models converge between approximately 1 and 0.5 km grid spacing for this test, although differences in final solution exist, particularly due to differing grid discretizations and numerical diffusion.