Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 3
Geosci. Model Dev., 12, 879–892, 2019
https://doi.org/10.5194/gmd-12-879-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 12, 879–892, 2019
https://doi.org/10.5194/gmd-12-879-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Methods for assessment of models 05 Mar 2019

Methods for assessment of models | 05 Mar 2019

DCMIP2016: the splitting supercell test case

Colin M. Zarzycki et al.

Related authors

Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance
Leonardus van Kampenhout, Alan M. Rhoades, Adam R. Herrington, Colin M. Zarzycki, Jan T. M. Lenaerts, William J. Sacks, and Michiel R. van den Broeke
The Cryosphere, 13, 1547–1564, https://doi.org/10.5194/tc-13-1547-2019,https://doi.org/10.5194/tc-13-1547-2019, 2019
Short summary
DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models
Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner
Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017,https://doi.org/10.5194/gmd-10-4477-2017, 2017
Short summary
TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids
Paul A. Ullrich and Colin M. Zarzycki
Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017,https://doi.org/10.5194/gmd-10-1069-2017, 2017
Short summary
Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations
Colin M. Zarzycki, Kevin A. Reed, Julio T. Bacmeister, Anthony P. Craig, Susan C. Bates, and Nan A. Rosenbloom
Geosci. Model Dev., 9, 779–788, https://doi.org/10.5194/gmd-9-779-2016,https://doi.org/10.5194/gmd-9-779-2016, 2016
Short summary

Related subject area

Numerical Methods
Development of a semi-Lagrangian advection scheme for the NEMO ocean model (3.1)
Christopher Subich, Pierre Pellerin, Gregory Smith, and Frederic Dupont
Geosci. Model Dev., 13, 4379–4398, https://doi.org/10.5194/gmd-13-4379-2020,https://doi.org/10.5194/gmd-13-4379-2020, 2020
Short summary
Efficient multi-scale Gaussian process regression for massive remote sensing data with satGP v0.1.2
Jouni Susiluoto, Alessio Spantini, Heikki Haario, Teemu Härkönen, and Youssef Marzouk
Geosci. Model Dev., 13, 3439–3463, https://doi.org/10.5194/gmd-13-3439-2020,https://doi.org/10.5194/gmd-13-3439-2020, 2020
Short summary
PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations
Olivier Pannekoucke and Ronan Fablet
Geosci. Model Dev., 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,https://doi.org/10.5194/gmd-13-3373-2020, 2020
Short summary
Simple algorithms to compute meridional overturning and barotropic streamfunctions on unstructured meshes
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020,https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Development of a two-way-coupled ocean–wave model: assessment on a global NEMO(v3.6)–WW3(v6.02) coupled configuration
Xavier Couvelard, Florian Lemarié, Guillaume Samson, Jean-Luc Redelsperger, Fabrice Ardhuin, Rachid Benshila, and Gurvan Madec
Geosci. Model Dev., 13, 3067–3090, https://doi.org/10.5194/gmd-13-3067-2020,https://doi.org/10.5194/gmd-13-3067-2020, 2020
Short summary

Cited articles

Browning, K. A.: Airflow and Precipitation Trajectories Within Severe Local Storms Which Travel to the Right of the Winds, J. Atmos. Sci., 21, 634–639, https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2, 1964. a
Doswell, C. A. and Burgess, D. W.: Tornadoes and toraadic storms: A review of conceptual models, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophysical Monograph Series, American Geophysical Union, 161–172, 1993. a
Gallus, W. A. and Bresch, J. F.: Comparison of Impacts of WRF Dynamic Core, Physics Package, and Initial Conditions on Warm Season Rainfall Forecasts, Mon. Weather Rev., 134, 2632–2641, https://doi.org/10.1175/MWR3198.1, 2006. a, b
Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, D. L., Klocke, D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi, K., and Leung, R.: Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress, Mon. Weather Rev., 146, 3505–3544, https://doi.org/10.1175/mwr-d-17-0345.1, 2018. a
Guimond, S. R., Reisner, J. M., Marras, S., and Giraldo, F. X.: The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification, J. Atmos. Sci., 73, 4661–4684, https://doi.org/10.1175/JAS-D-16-0055.1, 2016. a, b
Publications Copernicus
Short summary
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized supercell test case. Supercells are storm-scale weather phenomena that are a key target for next-generation, non-hydrostatic weather prediction models. We show that the dynamical cores of most global numerical models converge between approximately 1 and 0.5 km grid spacing for this test, although differences in final solution exist, particularly due to differing grid discretizations and numerical diffusion.
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized...
Citation