Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4577-2017
https://doi.org/10.5194/gmd-10-4577-2017
Model description paper
 | Highlight paper
 | 
18 Dec 2017
Model description paper | Highlight paper |  | 18 Dec 2017

The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart

Related authors

HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020,https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution
Katherine R. Barnhart, Rachel C. Glade, Charles M. Shobe, and Gregory E. Tucker
Geosci. Model Dev., 12, 1267–1297, https://doi.org/10.5194/gmd-12-1267-2019,https://doi.org/10.5194/gmd-12-1267-2019, 2019
Short summary

Related subject area

Solid Earth
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023,https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023,https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023,https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
High-precision 1′×1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2132,https://doi.org/10.5194/egusphere-2023-2132, 2023
Short summary
Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023,https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary

Cited articles

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geosci. Model Dev., 10, 1645–1663, https://doi.org/10.5194/gmd-10-1645-2017, 2017.
Amos, C. B., and Burbank, D. W.: Channel width response to differential uplift, J. Geophys. Res., 112, F02010, https://doi.org/10.1029/2006JF000672, 2007.
Armitage, J. J., Duller, R. A., Whittaker, A. C., and Allen, P. A.: Transformation of tectonic and climatic signals from source to sedimentary archive, Nat. Geosci., 4, 231–235, https://doi.org/10.1038/NGEO1087, 2011.
Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., and Roberts, G. P.: Modeling fluvial incision and transient landscape evolution: influence of dynamic channel adjustment, J. Geophys. Res., 113, F03013, https://doi.org/10.1029/2007JF000893, 2008.
Beaumont, C., Fullsack, P., and Hamilton, J.: Erosional control of active compressional orogens, in: Thrust Tectonics, edited by: McClay, K. R., Chapman Hall, New York, 1–18, https://doi.org/10.1007/978-94-011-3066-0_1, 1992.
Download
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.