Articles | Volume 10, issue 1 
            
                
                    
            
            
            https://doi.org/10.5194/gmd-10-239-2017
                    © Author(s) 2017. This work is distributed under 
the Creative Commons Attribution 3.0 License.
                the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-239-2017
                    © Author(s) 2017. This work is distributed under 
the Creative Commons Attribution 3.0 License.
                the Creative Commons Attribution 3.0 License.
A high-fidelity multiresolution digital elevation model for Earth systems
Xinqiao Duan
                                            Geographical Information Science Faculty, SRES School, Wuhan
University, Wuhan 430079, China
                                        
                                    
                                            Hubei Geomatics Information Centre, Wuhan 430074, China
                                        
                                    Lin Li
CORRESPONDING AUTHOR
                                            
                                    
                                            Geographical Information Science Faculty, SRES School, Wuhan
University, Wuhan 430079, China
                                        
                                    
                                            Geospatial Information Science Collaborative Innovation Centre of
Wuhan University, Wuhan 430079, China
                                        
                                    
                                            The Key Laboratory for Geographical Information System, Ministry of
Education, Wuhan 430079, China
                                        
                                    Haihong Zhu
                                            Geographical Information Science Faculty, SRES School, Wuhan
University, Wuhan 430079, China
                                        
                                    
                                            The Key Laboratory for Geographical Information System, Ministry of
Education, Wuhan 430079, China
                                        
                                    Shen Ying
                                            Geographical Information Science Faculty, SRES School, Wuhan
University, Wuhan 430079, China
                                        
                                    
                                            The Key Laboratory for Geographical Information System, Ministry of
Education, Wuhan 430079, China
                                        
                                    Related authors
No articles found.
N. Zhu, B. Yang, W. Gong, S. Ying, W. Dai, and Z. Dong
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1831–1838, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1831-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1831-2023, 2023
                            Yebin Chen, Ding Ma, Shen Ying, Renzhong Guo, Zhigang Zhao, and Zhilin Li
                                    Proc. Int. Cartogr. Assoc., 4, 20, https://doi.org/10.5194/ica-proc-4-20-2021, https://doi.org/10.5194/ica-proc-4-20-2021, 2021
                            X. Zuo, F. Yang, Y. Liang, Z. Gang, F. Su, H. Zhu, and L. Li
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 351–359, https://doi.org/10.5194/isprs-annals-V-1-2020-351-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-351-2020, 2020
                            F. Su, Y. Liang, Z. Gang, X. Zuo, F. Yang, H. Zhu, and L. Li
                                    ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 289–296, https://doi.org/10.5194/isprs-annals-V-2-2020-289-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-289-2020, 2020
                            Wei Hu, Lin Li, Chao Wu, Hang Zhang, and Haihong Zhu
                                    Abstr. Int. Cartogr. Assoc., 1, 124, https://doi.org/10.5194/ica-abs-1-124-2019, https://doi.org/10.5194/ica-abs-1-124-2019, 2019
                            Lina Huang, Yanfang Liu, and Shen Ying
                                    Abstr. Int. Cartogr. Assoc., 1, 127, https://doi.org/10.5194/ica-abs-1-127-2019, https://doi.org/10.5194/ica-abs-1-127-2019, 2019
                            Shen Ying, Chengpeng Li, Weiyang Li, Naibin Chen, and Zhigang Zhao
                                    Abstr. Int. Cartogr. Assoc., 1, 422, https://doi.org/10.5194/ica-abs-1-422-2019, https://doi.org/10.5194/ica-abs-1-422-2019, 2019
                            D. Li, L. Li, M. Zhou, and X. Zuo
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 351–358, https://doi.org/10.5194/isprs-archives-XLII-4-351-2018, https://doi.org/10.5194/isprs-archives-XLII-4-351-2018, 2018
                            Related subject area
            Earth and space science informatics
            
                    
                        
                            
                            
                                     
                                Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Focal-TSMP: deep learning for vegetation health prediction and agricultural drought assessment from a regional climate simulation
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Tomofast-x 2.0: an open-source parallel code for inversion of potential field data with topography using wavelet compression
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Functional analysis of variance (ANOVA) for carbon flux estimates from remote sensing data
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                The 4D reconstruction of dynamic geological evolution processes for renowned geological features
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Machine learning for numerical weather and climate modelling: a review
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Overcoming barriers to enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system Version 1
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                The Common Community Physics Package (CCPP) Framework v6
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Causal deep learning models for studying the Earth system
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Fast infrared radiative transfer calculations using graphics processing units: JURASSIC-GPU v2.0
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                CSDMS: a community platform for numerical modeling of Earth surface processes
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Copula-based synthetic data augmentation for machine-learning emulators
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0)
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                S-SOM v1.0: a structural self-organizing map algorithm for weather typing
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Current status on the need for improved accessibility to climate models code
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                Global hydro-climatic biomes identified via multitask learning
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                                     
                                High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
                                
                                        
                                            
                                    
                            
                            
                        
                    
                    
                        
                            
                            
                            
                                     
                                A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)
                                
                                        
                                            
                                    
                            
                            
                            
                        
                    
                    
                        
                            
                            
                            
                                     
                                Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming
                                
                                        
                                            
                                    
                            
                            
                            
                        
                    
                    
                        
                            
                            
                            
                                     
                                CPMIP: measurements of real computational performance of Earth system models in CMIP6
                                
                                        
                                            
                                    
                            
                            
                            
                        
                    
                    
                        
                            
                            
                            
                                     
                                Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling
                                
                                        
                                            
                                    
                            
                            
                            
                        
                    
                    
            
        
        Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
                                    Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024, https://doi.org/10.5194/gmd-17-6007-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Spatial proxies, such as coordinates and distances, are often used as predictors in random forest models for predictive mapping. In a simulation and two case studies, we investigated the conditions under which their use is appropriate. We found that spatial proxies are not always beneficial and should not be used as a default approach without careful consideration. We also provide insights into the reasons behind their suitability, how to detect them, and potential alternatives.
                                            
                                            
                                        Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
                                    Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024, https://doi.org/10.5194/gmd-17-5939-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                With ERA5 hourly data, we show spatiotemporal characteristics of pressure and zenith wet delay (ZWD) and propose an empirical global pressure and ZWD grid model with a broader operating space which can provide accurate pressure, ZWD, zenith hydrostatic delay, and zenith tropospheric delay estimates for any selected time and location over globe. IGPZWD will be of great significance for the tropospheric augmentation in real-time GNSS positioning and atmospheric water vapor remote sensing.
                                            
                                            
                                        Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
                                    Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024, https://doi.org/10.5194/gmd-17-5897-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.
                                            
                                            
                                        Lars Hoffmann, Kaveh Haghighi Mood, Andreas Herten, Markus Hrywniak, Jiri Kraus, Jan Clemens, and Mingzhao Liu
                                    Geosci. Model Dev., 17, 4077–4094, https://doi.org/10.5194/gmd-17-4077-2024, https://doi.org/10.5194/gmd-17-4077-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Lagrangian particle dispersion models are key for studying atmospheric transport but can be computationally intensive. To speed up simulations, the MPTRAC model was ported to graphics processing units (GPUs). Performance optimization of data structures and memory alignment resulted in runtime improvements of up to 75 % on NVIDIA A100 GPUs for ERA5-based simulations with 100 million particles. These optimizations make the MPTRAC model well suited for future high-performance computing systems.
                                            
                                            
                                        Mohamad Hakam Shams Eddin and Juergen Gall
                                    Geosci. Model Dev., 17, 2987–3023, https://doi.org/10.5194/gmd-17-2987-2024, https://doi.org/10.5194/gmd-17-2987-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                In this study, we use deep learning and a climate simulation to predict the vegetation health as it would be observed from satellites. We found that the developed model can help to identify regions with a high risk of agricultural drought. The main applications of this study are to estimate vegetation products for periods where no satellite data are available and to forecast the future vegetation response to climate change based on climate scenarios.
                                            
                                            
                                        Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
                                    Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
                                            
                                            
                                        Jonathan Hobbs, Matthias Katzfuss, Hai Nguyen, Vineet Yadav, and Junjie Liu
                                    Geosci. Model Dev., 17, 1133–1151, https://doi.org/10.5194/gmd-17-1133-2024, https://doi.org/10.5194/gmd-17-1133-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                The cycling of carbon among the land, oceans, and atmosphere is a closely monitored process in the global climate system. These exchanges between the atmosphere and the surface can be quantified using a combination of atmospheric carbon dioxide observations and computer models. This study presents a statistical method for investigating the similarities and differences in the estimated surface–atmosphere carbon exchange when different computer model assumptions are invoked. 
                                            
                                            
                                        Jiateng Guo, Zhibin Liu, Xulei Wang, Lixin Wu, Shanjun Liu, and Yunqiang Li
                                    Geosci. Model Dev., 17, 847–864, https://doi.org/10.5194/gmd-17-847-2024, https://doi.org/10.5194/gmd-17-847-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This study proposes a 3D and temporally dynamic (4D) geological modeling method. Several simulation and actual cases show that the 4D spatial and temporal evolution of regional geological formations can be modeled easily using this method with smooth boundaries. The 4D modeling system can dynamically present the regional geological evolution process under the timeline, which will be helpful to the research and teaching on the formation of typical and complex geological features.
                                            
                                            
                                        Catherine O. de Burgh-Day and Tennessee Leeuwenburg
                                    Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023, https://doi.org/10.5194/gmd-16-6433-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional methods. In this review, we have summarized the use of ML in weather and climate modelling over time; provided an overview of key ML concepts, methodologies, and terms; and suggested promising avenues for further research.
                                            
                                            
                                        Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
                                    Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023, https://doi.org/10.5194/gmd-16-5979-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR–NEON system enables convergence of climate and ecological sciences.
                                            
                                            
                                        Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
                                    Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
                                            
                                            
                                        Xiaoyi Shao, Siyuan Ma, and Chong Xu
                                    Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023, https://doi.org/10.5194/gmd-16-5113-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Scientific understandings of the distribution of coseismic landslides, followed by  emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which  provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.
                                            
                                            
                                        Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
                                    Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
                                            
                                            
                                        Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
                                    Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023, https://doi.org/10.5194/gmd-16-2235-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.
                                            
                                            
                                        Tobias Tesch, Stefan Kollet, and Jochen Garcke
                                    Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
                                            
                                            
                                        Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki
                                    Geosci. Model Dev., 16, 1925–1936, https://doi.org/10.5194/gmd-16-1925-2023, https://doi.org/10.5194/gmd-16-1925-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.
                                            
                                            
                                        Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
                                    Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
                                            
                                            
                                        Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
                                    Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022, https://doi.org/10.5194/gmd-15-7933-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
                                            
                                            
                                        Martina Stockhause and Michael Lautenschlager
                                    Geosci. Model Dev., 15, 6047–6058, https://doi.org/10.5194/gmd-15-6047-2022, https://doi.org/10.5194/gmd-15-6047-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC) celebrates its 25th anniversary in 2022. DDC Partner DKRZ has supported the IPCC Assessments and preserved the quality-assured, citable climate model data underpinning the Assessment Reports over these years over the long term. With the introduction of the IPCC FAIR Guidelines into the current AR6, the value of DDC services has been recognized. However, DDC sustainability remains unresolved.
                                            
                                            
                                        Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
                                    Geosci. Model Dev., 15, 5857–5881, https://doi.org/10.5194/gmd-15-5857-2022, https://doi.org/10.5194/gmd-15-5857-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.
                                            
                                            
                                        Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
                                    Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
                                            
                                            
                                        Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
                                    Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022, https://doi.org/10.5194/gmd-15-2221-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.
                                            
                                            
                                        Paul F. Baumeister and Lars Hoffmann
                                    Geosci. Model Dev., 15, 1855–1874, https://doi.org/10.5194/gmd-15-1855-2022, https://doi.org/10.5194/gmd-15-1855-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.
                                            
                                            
                                        Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
                                    Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
                                            
                                            
                                        Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
                                    Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
                                            
                                            
                                        Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
                                    Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, https://doi.org/10.5194/gmd-14-7659-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
                                            
                                            
                                        Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
                                    Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
                                            
                                            
                                        Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
                                    Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
                                            
                                            
                                        David Meyer, Thomas Nagler, and Robin J. Hogan
                                    Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021, https://doi.org/10.5194/gmd-14-5205-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
                                            
                                            
                                        Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
                                    Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
                                            
                                            
                                        Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
                                    Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
                                            
                                            
                                        Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
                                    Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
                                            
                                            
                                        Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
                                    Geosci. Model Dev., 14, 1493–1510, https://doi.org/10.5194/gmd-14-1493-2021, https://doi.org/10.5194/gmd-14-1493-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
                                            
                                            
                                        Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
                                    Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
                                            
                                            
                                        Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
                                    Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create 
                                            
                                        ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
                                    Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020, https://doi.org/10.5194/gmd-13-6149-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.
                                            
                                            
                                        Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
                                    Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020, https://doi.org/10.5194/gmd-13-5567-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                Every generation of MIP exercises introduces new layers of complexity and an exponential growth in the amount of data requested. CMIP6 required us to develop a new tool chain and forced us to change our methodologies. The new methods discussed in this paper provided us with an 18 times faster speedup over our existing methods. This allowed us to meet our deadlines and we were able to publish more than half a million data sets on the Earth System Grid Federation (ESGF) for the CMIP6 project.
                                            
                                            
                                        Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
                                    Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
                                            
                                            
                                        Jorge Vicent, Jochem Verrelst, Neus Sabater, Luis Alonso, Juan Pablo Rivera-Caicedo, Luca Martino, Jordi Muñoz-Marí, and José Moreno
                                    Geosci. Model Dev., 13, 1945–1957, https://doi.org/10.5194/gmd-13-1945-2020, https://doi.org/10.5194/gmd-13-1945-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                The modeling of light propagation through the atmosphere is key to process satellite images and to understand atmospheric processes. However, existing atmospheric models can be complex to use in practical applications. Here we aim at providing a new software tool to facilitate using advanced models and to generate large databases of simulated data. As a test case, we use this tool to analyze differences between several atmospheric models, showing the capabilities of this open-source tool.
                                            
                                            
                                        Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
                                    Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019, https://doi.org/10.5194/gmd-12-4261-2019, 2019
                                    Short summary
                                    Short summary
                                            
                                                Parameterizations are frequently used in models representing physical phenomena and are often the computationally expensive portions of the code. Using model output from simulations performed using a weather model, we train deep neural networks to provide an accurate alternative to a physics-based parameterization. We demonstrate that a domain-aware deep neural network can successfully simulate the entire diurnal cycle of the boundary layer physics and the results are transferable.
                                            
                                            
                                        Gianandrea Mannarini and Lorenzo Carelli
                                    Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, https://doi.org/10.5194/gmd-12-3449-2019, 2019
                                    Short summary
                                    Short summary
                                            
                                                The VISIR ship-routing model is updated in order to deal with ocean currents. 
The optimal tracks we computed through VISIR in the Atlantic ocean show great seasonal and regional variability, following a variable influence of surface gravity waves and currents. We assess how these tracks contribute to voyage energy-efficiency gains through a standard indicator (EEOI) of the International Maritime Organization. Also, the new model features are validated against an exact analytical benchmark.
                                            
                                            
                                        Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
                                    Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
                                    Short summary
                                    Short summary
                                            
                                                We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
                                            
                                            
                                        Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
                                    Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
                                    Short summary
                                    Short summary
                                            
                                                Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global 
                                            
                                        hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
                                    Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018, https://doi.org/10.5194/gmd-11-2875-2018, 2018
                                    Short summary
                                    Short summary
                                            
                                                Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.
                                            
                                            
                                        Daojun Zhang, Na Ren, and Xianhui Hou
                                    Geosci. Model Dev., 11, 2525–2539, https://doi.org/10.5194/gmd-11-2525-2018, https://doi.org/10.5194/gmd-11-2525-2018, 2018
                                    Short summary
                                    Short summary
                                            
                                                Geographically weighted regression is a widely used method to deal with spatial heterogeneity, which is common in geostatistics. However, most existing software does not support logistic regression and cannot deal with missing data, which exist extensively in mineral prospectivity mapping. This work generalized logistic regression to spatial statistics based on a spatially weighted technique. The new model also supports an anisotropic local window, which is another innovative point.
                                            
                                            
                                        Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
                                    Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
                                    Short summary
                                    Short summary
                                            
                                                For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
                                            
                                            
                                        David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
                                    Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
                                    Short summary
                                    Short summary
                                            
                                                We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
                                            
                                            
                                        Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
                                    Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
                                    Short summary
                                    Short summary
                                            
                                                Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
                                            
                                            
                                        Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
                                    Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
                                    Short summary
                                    Short summary
                                            
                                                Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
                                            
                                            
                                        Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
                                    Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
                                    Short summary
                                    Short summary
                                            
                                                Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
                                            
                                            
                                        Cited articles
                        
                        Aguilar, F. J., Agüera, F., Aguilar, M. A., and Carvajal, F.: Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy, Photogramm. Eng. Rem. S., 71, 805–816, https://doi.org/10.14358/PERS.71.7.805, 2005.
                    
                
                        
                        Ai, T. and Li, J.: A DEM generalization by minor valley branch detection and grid filling, ISPRS J. Photogramm., 65, 198–207, https://doi.org/10.1016/j.isprsjprs.2009.11.001, 2010.
                    
                
                        
                        Banchoff, T.: Critical points and curvature for embedded polyhedra, J. Differ. Geom., 77, 475–485, https://doi.org/10.2307/2317380, 1967.
                    
                
                        
                        Bates, P. D.: Integrating remote sensing data with flood inundation models: how far have we got?, Hydrol. Proc., 26, 2515–2521, https://doi.org/10.1002/hyp.9374, 2012.
                    
                
                        
                        Bilskie, M. V. and Hagen, S. C.: Topographic accuracy assessment of bare earth lidar-derived unstructured meshes, Adv. Water Resour., 52, 165–177, https://doi.org/10.1016/j.advwatres.2012.09.003, 2013.
                    
                
                        
                        Bilskie, M. V., Coggin, D., Hagen, S. C., and Medeiros, S. C.: Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction, Adv. Water Resour., 86, 102–118, https://doi.org/10.1016/j.advwatres.2015.09.020, 2015.
                    
                
                        
                        Brioude, J., Angevine, W. M., McKeen, S. A., and Hsie, E.-Y.: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain, Geosci. Model Dev., 5, 1127–1136, https://doi.org/10.5194/gmd-5-1127-2012, 2012.
                    
                
                        
                        Budd, C. J., Russell, R. D., and Walsh, E.: The geometry of r-adaptive meshes generated using optimal transport methods, J. Comput. Phys., 282, 113–137, https://doi.org/10.1016/j.jcp.2014.11.007, 2015.
                    
                
                        
                        Cabello, S., Fort, M., and Sellarès, J. A.: Higher-order Voronoi diagrams on triangulated surfaces, Inform. Process. Lett., 109, 440–445, https://doi.org/10.1016/j.ipl.2009.01.001, 2009.
                    
                
                        
                        Cea, L. and Bladé, E.: A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications, Water Resour. Res., 51, 5464–5486, https://doi.org/10.1002/2014WR016547, 2015.
                    
                
                        
                        Chen, C. and Li, Y.: An orthogonal least-square-based method for DEM generalization, Int. J. Geogr. Inf. Sci., 27, 154–167, https://doi.org/10.1080/13658816.2012.674136, 2012.
                    
                
                        
                        Chen, C., Li, Y., and Yue, T.: Surface modeling of DEMs based on a sequential adjustment method, Int. J. Geogr. Inf. Sci., 27, 1272–1291, https://doi.org/10.1080/13658816.2012.704037, 2012.
                    
                
                        
                        Chen, C., Yan, C., Cao, X., Guo, J., and Dai, H.: A greedy-based multiquadric method for LiDAR-derived ground data reduction, ISPRS J. Photogramm., 102, 110–121, https://doi.org/10.1016/j.isprsjprs.2015.01.012, 2015.
                    
                
                        
                        Chen, Y. and Zhou, Q.: A scale-adaptive DEM for multi-scale terrain analysis, Int. J. Geogr. Inf. Sci., 27, 1329–1348, https://doi.org/10.1080/13658816.2012.739690, 2012.
                    
                
                        
                        Cohen-Steiner, D., Alliez, P., and Desbrun, M.: Variational shape approximation, ACM Trans. Graph., 23, 905–914, https://doi.org/10.1145/1186562.1015817, 2004.
                    
                
                        
                        Du, Q., Faber, V., and Gunzburger, M.: Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, 41, 637–676, https://doi.org/10.1137/S0036144599352836, 1999.
                    
                
                        
                        Du, Q., Gunzburger, M. D., and Ju, L.: Constrained Centroidal Voronoi Tessellations for Surfaces, SIAM J. Sci. Comput., 24, 1488–1506, https://doi.org/10.1137/S1064827501391576, 2003.
                    
                
                        
                        Du, Q., Max, G., and Ju, L.: Advances in Studies and Applications of Centroidal Voronoi Tessellations, Numer. Math. Theor. Meth. Appl., 3, 119–142, https://doi.org/10.4208/nmtma.2010.32s.1, 2010.
                    
                
                        
                        Fiddes, J. and Gruber, S.: TopoSCALE v.1.0: downscaling gridded climate data in complex terrain, Geosci. Model Dev., 7, 387–405, https://doi.org/10.5194/gmd-7-387-2014, 2014.
                    
                
                        
                        Florinsky, I. and Pankratov, A.: Digital terrain modeling with the Chebyshev polynomials, arXiv preprint arXiv:1507.03960, 2015.
                    
                
                        
                        Glover, R. W.: Influence of Spatial Resolution and Treatment of Orography on GCM Estimates of the Surface Mass Balance of the Greenland Ice Sheet, J. Climate, 12, 551–563, https://doi.org/10.1175/1520-0442(1999)012<0551:IOSRAT>2.0.CO;2, 1999.
                    
                
                        
                        Guba, O., Taylor, M. A., Ullrich, P. A., Overfelt, J. R., and Levy, M. N.: The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity, Geosci. Model Dev., 7, 2803–2816, https://doi.org/10.5194/gmd-7-2803-2014, 2014.
                    
                
                        
                        Guilbert, E., Gaffuri, J., and Jenny, B.: Terrain Generalisation, in: Abstracting Geographic Information in a Data Rich World, edited by: Burghardt, D., Duchêne, C., and Mackaness, W., Lecture Notes in Geoinformation and Cartography, Springer International Publishing, 2014.
                    
                
                        
                        Hand, E.: Deep magma chambers seen beneath Mount St. Helens, available at http://www.sciencemag.org/news/2015/11/deep-magma-chambers-seen-beneath-mount-st-helens, 2015.
                    
                
                        
                        Heckbert, P. S. and Garland, M.: Survey of polygonal surface simplification algorithms, DTIC Document, 1997.
                    
                
                        
                        Hughes, J. K., Ross, A. N., Vosper, S. B., Lock, A. P., and Jemmett-Smith, B. C.: Assessment of valley cold pools and clouds in a very high-resolution numerical weather prediction model, Geosci. Model Dev., 8, 3105–3117, https://doi.org/10.5194/gmd-8-3105-2015, 2015.
                    
                
                        
                        Hunter, N. M., Bates, P. D., Horritt, M. S., and Wilson, M. D.: Simple spatially-distributed models for predicting flood inundation: A review, Geomorphology, 90, 208–225, https://doi.org/10.1016/j.geomorph.2006.10.021, 2007.
                    
                
                        
                        Jenny, B., Jenny, H., and Hurni, L.: Terrain Generalization with Multi-scale Pyramids Constrained by Curvature, Cartogr. Geogr. Inform., 38, 110–116, https://doi.org/10.1559/15230406382110, 2011.
                    
                
                        
                        Jiménez, P. A. and Dudhia, J.: On the Ability of the WRF Model to Reproduce the Surface Wind Direction over Complex Terrain, J. Appl. Meteorol. Climatol., 52, 1610–1617, https://doi.org/10.1175/JAMC-D-12-0266.1, 2013.
                    
                
                        
                        Ke, Y., Leung, L. R., Huang, M., Coleman, A. M., Li, H., and Wigmosta, M. S.: Development of high resolution land surface parameters for the Community Land Model, Geosci. Model Dev., 5, 1341–1362, https://doi.org/10.5194/gmd-5-1341-2012, 2012.
                    
                
                        
                        Kennelly, P. J.: Terrain maps displaying hill-shading with curvature, Geomorphology, 102, 567–577, https://doi.org/10.1016/j.geomorph.2008.05.046, 2008.
                    
                
                        
                        Kesserwani, G. and Liang, Q.: Dynamically adaptive grid based discontinuous Galerkin shallow water model, Adv. Water Resour., 37, 23–39, https://doi.org/10.1016/j.advwatres.2011.11.006, 2012.
                    
                
                        
                        Kim, B., Sanders, B. F., Schubert, J. E., and Famiglietti, J. S.: Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver, Adv. Water Resour., 68, 42–61, https://doi.org/10.1016/j.advwatres.2014.02.013, 2014.
                    
                
                        
                        Kimmel, R. and Sethian, J. A.: Computing geodesic paths on manifolds, P. Natl. Acad. Sci. USA, 95, 8431–8435, 1998.
                    
                
                        
                        Kumar, S. V., Peters-Lidard, C. D., Santanello, J., Harrison, K., Liu, Y., and Shaw, M.: Land surface Verification Toolkit (LVT) – a generalized framework for land surface model evaluation, Geosci. Model Dev., 5, 869–886, https://doi.org/10.5194/gmd-5-869-2012, 2012.
                    
                
                        
                        Lee, J. A. Y.: Comparison of existing methods for building triangular irregular network, models of terrain from grid digital elevation models, Int. J. Geogr. Inf. Syst., 5, 267–285, https://doi.org/10.1080/02693799108927855, 1991.
                    
                
                        
                        Leempoel, K., Parisod, C., Geiser, C., Daprà, L., Vittoz, P., and Joost, S.: Very high-resolution digital elevation models: are multi-scale derived variables ecologically relevant?, Method. Ecol. Evol., 6, 1373–1383, https://doi.org/10.1111/2041-210X.12427, 2015.
                    
                
                        
                        Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129–137, https://doi.org/10.1109/TIT.1982.1056489, 1982.
                    
                
                        
                        Meyer, M., Desbrun, M., Schröder, P., and Barr, A.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, in: Visualization and Mathematics III, edited by: Hege, H.-C. and Polthier, K., Mathematics and Visualization, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-662-05105-4_2, 2003.
                    
                
                        
                        Milnor, J. W.: Morse theory, Princeton university press, 1963.
                    
                
                        
                        Mitášová, H. and Hofierka, J.: Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis, Math. Geol., 25, 657–669, https://doi.org/10.1007/BF00893172, 1993.
                    
                
                        
                        Nikolos, I. K. and Delis, A. I.: An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput. Method. Appl. M, 198, 3723–3750, https://doi.org/10.1016/j.cma.2009.08.006, 2009.
                    
                
                        
                        Nunalee, C. G., Horváth, Á., and Basu, S.: High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data, Geosci. Model Dev., 8, 2645–2653, https://doi.org/10.5194/gmd-8-2645-2015, 2015.
                    
                
                        
                        Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier, K., Zhang, C., and Wang, W.: Robust modeling of constant mean curvature surfaces, ACM Trans. Graph., 31, 1–11, https://doi.org/10.1145/2185520.2185581, 2012.
                    
                
                        
                        Ringler, T., Ju, L., and Gunzburger, M.: A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations, Ocean Dynam., 58, 475–498, https://doi.org/10.1007/s10236-008-0157-2, 2008.
                    
                
                        
                        Ringler, T. D., Jacobsen, D., Gunzburger, M., Ju, L., Duda, M., and Skamarock, W.: Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations, Mon. Weather Rev., 139, 3348–3368, https://doi.org/10.1175/MWR-D-10-05049.1, 2011.
                    
                
                        
                        Schneider, B.: Extraction of Hierarchical Surface Networks from Bilinear Surface Patches, Geogr. Anal., 37, 244–263, https://doi.org/10.1111/j.1538-4632.2005.00638.x, 2005.
                    
                
                        
                        Shi, W. Z., Li, Q. Q., and Zhu, C. Q.: Estimating the propagation error of DEM from higher-order interpolation algorithms, Int. J. Remote Sens., 26, 3069–3084, https://doi.org/10.1080/01431160500057905, 2005.
                    
                
                        
                        Tarolli, P.: High-resolution topography for understanding Earth surface processes: Opportunities and challenges, Geomorphology, 216, 295–312, https://doi.org/10.1016/j.geomorph.2014.03.008, 2014.
                    
                
                        
                        Valette, S. and Chassery, J.-M.: Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening, Comput. Graph. Forum, 23, 381–389, https://doi.org/10.1111/j.1467-8659.2004.00769.x, 2004.
                    
                
                        
                        Valette, S., Chassery, J. M., and Prost, R.: Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams, IEEE T. Vis. Comput. Gr., 14, 369–381, https://doi.org/10.1109/TVCG.2007.70430, 2008.
                    
                
                        
                        Weibel, R.: Models and Experiments for Adaptive Computer-Assisted Terrain Generalization, Cartogr. Geogr. Inform., 19, 133–153, https://doi.org/10.1559/152304092783762317, 1992.
                    
                
                        
                        Weller, H., Weller, H. G., and Fournier, A.: Voronoi, Delaunay, and Block-Structured Mesh Refinement for Solution of the Shallow-Water Equations on the Sphere, Mon. Weather Rev., 137, 4208–4224, https://doi.org/10.1175/2009MWR2917.1, 2009.
                    
                
                        
                        Weller, H., Browne, P., Budd, C., and Cullen, M.: Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge–Ampère type equation, J. Comput. Phys., 308, 102–123, https://doi.org/10.1016/j.jcp.2015.12.018, 2016.
                    
                
                        
                        Wilby, R. L. and Wigley, T. M. L.: Downscaling general circulation model output: a review of methods and limitations, Prog. Phys. Geog., 21, 530–548, https://doi.org/10.1177/030913339702100403, 1997.
                    
                
                        
                        Wilson, J. P.: Digital terrain modeling, Geomorphology, 137, 107–121, https://doi.org/10.1016/j.geomorph.2011.03.012, 2012.
                    
                
                        
                        Wilson, J. P. and Gallant, J. C.: Terrain Analysis: Principles and Applications, in: Digital Terrain Analysis, Wiley, New York, 2000.
                    
                
                        
                        Zakšek, K. and Podobnikar, T.: An effective DEM generalization with basic GIS operations, 8th ICA WORKSHOP on Generalisation and Multiple Representation, A Coruńa, Spain, 7–8 July, 2005.
                    
                
                        
                        Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable-Resolution Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon. Weather Review, 142, 1221–1239, https://doi.org/10.1175/MWR-D-13-00179.1, 2014.
                    
                
                        
                        Zhou, Q. and Chen, Y.: Generalization of DEM for terrain analysis using a compound method, ISPRS J. Photogramm., 66, 38–45, https://doi.org/10.1016/j.isprsjprs.2010.08.005, 2011.
                    
                Short summary
            This article proposes an optimized transformation for topographic datasets. The resulting topographic grid exhibits good surface approximation and quasi-uniform high-quality. Both features of the processed topography build a concrete base from which improved endogenous or exogenous parameters can be derived, and makes it suitable for Earth and environmental simulations.
            This article proposes an optimized transformation for topographic datasets. The resulting...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
             
            