Articles | Volume 10, issue 1
Geosci. Model Dev., 10, 239–253, 2017
https://doi.org/10.5194/gmd-10-239-2017
Geosci. Model Dev., 10, 239–253, 2017
https://doi.org/10.5194/gmd-10-239-2017

Development and technical paper 16 Jan 2017

Development and technical paper | 16 Jan 2017

A high-fidelity multiresolution digital elevation model for Earth systems

Xinqiao Duan et al.

Related authors

AN IMPROVED AUTONOMOUS EXPLORATION FRAMEWORK FOR INDOOR MOBILE ROBOTICS USING REDUCED APPROXIMATED GENERALIZED VORONOI GRAPHS
X. Zuo, F. Yang, Y. Liang, Z. Gang, F. Su, H. Zhu, and L. Li
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 351–359, https://doi.org/10.5194/isprs-annals-V-1-2020-351-2020,https://doi.org/10.5194/isprs-annals-V-1-2020-351-2020, 2020
OBJECT DETECTION AND CLASSIFICATION FROM CLUTTERED LARGE-SCALE INDOOR SCENE VIA ANCHOR-BASED GRAPH
F. Su, Y. Liang, Z. Gang, X. Zuo, F. Yang, H. Zhu, and L. Li
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 289–296, https://doi.org/10.5194/isprs-annals-V-2-2020-289-2020,https://doi.org/10.5194/isprs-annals-V-2-2020-289-2020, 2020
A Parallel Method for Accelerating Visualization for Vector Tiles
Wei Hu, Lin Li, Chao Wu, Hang Zhang, and Haihong Zhu
Abstr. Int. Cartogr. Assoc., 1, 124, https://doi.org/10.5194/ica-abs-1-124-2019,https://doi.org/10.5194/ica-abs-1-124-2019, 2019
The influence of user characteristics on spatial perception differences in 3D visual environments
Lina Huang, Yanfang Liu, and Shen Ying
Abstr. Int. Cartogr. Assoc., 1, 127, https://doi.org/10.5194/ica-abs-1-127-2019,https://doi.org/10.5194/ica-abs-1-127-2019, 2019
Using Focus + Context Techniques to Visualize Building Information Model in virtual Geo-Environment
Shen Ying, Chengpeng Li, Weiyang Li, Naibin Chen, and Zhigang Zhao
Abstr. Int. Cartogr. Assoc., 1, 422, https://doi.org/10.5194/ica-abs-1-422-2019,https://doi.org/10.5194/ica-abs-1-422-2019, 2019

Related subject area

Earth and Space Science Informatics
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021,https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020,https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020,https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020,https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Using SHAP to interpret XGBoost predictions of grassland degradation in Xilingol, China
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-59,https://doi.org/10.5194/gmd-2020-59, 2020
Revised manuscript accepted for GMD
Short summary

Cited articles

Aguilar, F. J., Agüera, F., Aguilar, M. A., and Carvajal, F.: Effects of Terrain Morphology, Sampling Density, and Interpolation Methods on Grid DEM Accuracy, Photogramm. Eng. Rem. S., 71, 805–816, https://doi.org/10.14358/PERS.71.7.805, 2005.
Ai, T. and Li, J.: A DEM generalization by minor valley branch detection and grid filling, ISPRS J. Photogramm., 65, 198–207, https://doi.org/10.1016/j.isprsjprs.2009.11.001, 2010.
Banchoff, T.: Critical points and curvature for embedded polyhedra, J. Differ. Geom., 77, 475–485, https://doi.org/10.2307/2317380, 1967.
Bates, P. D.: Integrating remote sensing data with flood inundation models: how far have we got?, Hydrol. Proc., 26, 2515–2521, https://doi.org/10.1002/hyp.9374, 2012.
Bilskie, M. V. and Hagen, S. C.: Topographic accuracy assessment of bare earth lidar-derived unstructured meshes, Adv. Water Resour., 52, 165–177, https://doi.org/10.1016/j.advwatres.2012.09.003, 2013.
Download
Short summary
This article proposes an optimized transformation for topographic datasets. The resulting topographic grid exhibits good surface approximation and quasi-uniform high-quality. Both features of the processed topography build a concrete base from which improved endogenous or exogenous parameters can be derived, and makes it suitable for Earth and environmental simulations.