Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-3975-2016
https://doi.org/10.5194/gmd-9-3975-2016
Model description paper
 | 
09 Nov 2016
Model description paper |  | 09 Nov 2016

Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling

Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti

Related authors

A strategy for GIS-based 3-D slope stability modelling over large areas
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014,https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Non-susceptible landslide areas in Italy and in the Mediterranean region
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014,https://doi.org/10.5194/nhess-14-2215-2014, 2014

Related subject area

Earth and space science informatics
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary
GNNWR: An Open-Source Package of Spatiotemporal Intelligent Regression Methods for Modeling Spatial and Temporal Non-Stationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-62,https://doi.org/10.5194/gmd-2024-62, 2024
Revised manuscript accepted for GMD
Short summary
Consistency-Checking 3D Geological Models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1326,https://doi.org/10.5194/egusphere-2024-1326, 2024
Short summary

Cited articles

Alvioli, M., Guzzetti, F., and Rossi, M.: Scaling properties of rainfall-induced landslides predicted by a physically based model, Geomorphology, 213, 38–47, https://doi.org/10.1016/j.geomorph.2013.12.039, 2014.
Aplin, P. and Smith, G.: Advances in object-based image classification, in: Remote Sensing and Spatial Information Sciences XXXVII, Vol. B7 of The International Archives of the Photogrammetry, 725–728, Bejing, China, 2008.
Brabb, E. E.: Innovative approaches to landslide hazard mapping, in: Proceedings 4th International Symposium on Landslides (Toronto), Vol. 1, 307–324, Canadian geotechnical Society, Toronto, 1984.
Budimir, M., Atkinson, P., and Lewis, H.: A systematic review of landslide probability mapping using logistic regression, Landslides, 12, 419–436, https://doi.org/10.1007/s10346-014-0550-5, 2015.
Cardinali, M., Antonini, G., Reichenbach, P., and Fausto, G.: Photo-geological and landslide inventory map for the Upper Tiber River basin – CNR GNDCI, publication no. 2116, scale 1 : 100,000, available at: http://geomorphology.irpi.cnr.it/publications/repository/public/maps/UTR-data.jpg/ (last access: 3 November 2016), 2001.
Download
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.