Articles | Volume 9, issue 4
Geosci. Model Dev., 9, 1399–1411, 2016
Geosci. Model Dev., 9, 1399–1411, 2016

Development and technical paper 14 Apr 2016

Development and technical paper | 14 Apr 2016

Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA

Hein J. van Heck et al.

Related authors

Breaking supercontinents; no need to choose between passive or active
Martin Wolstencroft and J. Huw Davies
Solid Earth, 8, 817–825,,, 2017
Short summary
A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling
D. R. Davies, J. H. Davies, P. C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu
Geosci. Model Dev., 6, 1095–1107,,, 2013

Related subject area

Solid Earth
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565,,, 2020
Short summary
Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381,,, 2020
Short summary
PLUME-MoM-TSM 1.0.0: A volcanic columns and umbrella cloud spreading model
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev. Discuss.,,, 2020
Revised manuscript accepted for GMD
Short summary
Towards a model for structured mass movements: the OpenLISEM Hazard model 2.0a
Bastian van den Bout, Theo W. J. van Asch, Wei Hu, Chenxiao Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev. Discuss.,,, 2020
Revised manuscript accepted for GMD
Short summary
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164,,, 2020
Short summary

Cited articles

Allègre, C., Brevart, O., Dupré, B., and Minster, J.-F.: Isotopic and chemical effects produced in a continuously differentiating convecting Earth mantle, Philos. T. R. Soc. Lond., 297, 447–477, 1980.
Armstrong, R. L.: A model for the evolution of strontium and lead isotopes in a dynamic earth, Rev. Geophys., 6, 175–199, 1968.
Baumgardner, J. R.: Three-dimensional treatment of convective flow in the Earth's mantle, J. Stat. Phys., 39, 501–511, 1985.
Baumgardner, J. R. and Frederickson, P. O.: Icosahedral discretization of the two-sphere, SIAM J. Numer. Anal., 22, 1107–1115, 1985.
Brandenburg, J. and van Keken, P.: Methods for thermochemical convection in Earth's mantle with force-balanced plates, Geochem. Geophy. Geosys., 8, Q11004,, 2007a.
Short summary
Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. We have implemented a new way to track both bulk compositions and concentrations of trace elements in a mantle convection code. In our model, chemical fractionation happens at evolving melting zones. We compare our results to a semi-analytical theory relating observed arrays of correlated Pb isotope compositions to melting age distributions.