Model description paper 16 Dec 2015
Model description paper | 16 Dec 2015
r.randomwalk v1, a multi-functional conceptual tool for mass movement routing
M. Mergili et al.
Related authors
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-379, https://doi.org/10.5194/tc-2020-379, 2021
Preprint under review for TC
Short summary
Short summary
We report on a recent GLOF event that occurred on 26 June 2020 in Tibet, China. We find that unlike most GLOFs in this region that have been typically triggered by an instantaneous ice/rock avalanche into a lake, this event was triggered by an initial landslide from a steep lateral moraine and has a time lag of 5–17 days with the GLOF. This represents an unprecedented case of a complex and gradual process chain, and will provide critical new process understanding on GLOF triggering mechanisms.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-234, https://doi.org/10.5194/nhess-2020-234, 2020
Preprint under review for NHESS
Short summary
Short summary
The Köfels Rock Slide in the Ötztal Valley (Tyrol, Austria) represents the largest known extremely rapid landslide in metamorphic rock masses in the Alps and was formed in the early Holocene 9527–9498 cal BP. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data to better understand the cause and triggering factors of this gigantic natural event.
Johnnatan Palacio Cordoba, Martin Mergili, and Edier Aristizábal
Nat. Hazards Earth Syst. Sci., 20, 815–829, https://doi.org/10.5194/nhess-20-815-2020, https://doi.org/10.5194/nhess-20-815-2020, 2020
Short summary
Short summary
Landslides triggered by rainfall are very common phenomena in complex tropical environments such as the Colombian Andes. In this work, we perform probabilistic analyses with r.slope.stability for landslide susceptibility analysis. We test the model in the La Arenosa catchment, northern Colombian Andes. The results are compared to those yielded with the corresponding deterministic analyses and with other physically based models applied in the same catchment.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-5677-2015, https://doi.org/10.5194/nhessd-3-5677-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We propose a procedure to compute an integrated spatial landslide probability, combining release and propagation. The zonal release probability is introduced to correct the pixel-based release probability for the size of the release zone relevant for a pixel. For a test area in Taiwan we observe that the model performs moderately well in predicting the observed landslides and that the size of the release zone influences the result to a much higher degree than the pixel-based release probability.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, https://doi.org/10.5194/nhess-13-2779-2013, 2013
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-379, https://doi.org/10.5194/tc-2020-379, 2021
Preprint under review for TC
Short summary
Short summary
We report on a recent GLOF event that occurred on 26 June 2020 in Tibet, China. We find that unlike most GLOFs in this region that have been typically triggered by an instantaneous ice/rock avalanche into a lake, this event was triggered by an initial landslide from a steep lateral moraine and has a time lag of 5–17 days with the GLOF. This represents an unprecedented case of a complex and gradual process chain, and will provide critical new process understanding on GLOF triggering mechanisms.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-234, https://doi.org/10.5194/nhess-2020-234, 2020
Preprint under review for NHESS
Short summary
Short summary
The Köfels Rock Slide in the Ötztal Valley (Tyrol, Austria) represents the largest known extremely rapid landslide in metamorphic rock masses in the Alps and was formed in the early Holocene 9527–9498 cal BP. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data to better understand the cause and triggering factors of this gigantic natural event.
Johnnatan Palacio Cordoba, Martin Mergili, and Edier Aristizábal
Nat. Hazards Earth Syst. Sci., 20, 815–829, https://doi.org/10.5194/nhess-20-815-2020, https://doi.org/10.5194/nhess-20-815-2020, 2020
Short summary
Short summary
Landslides triggered by rainfall are very common phenomena in complex tropical environments such as the Colombian Andes. In this work, we perform probabilistic analyses with r.slope.stability for landslide susceptibility analysis. We test the model in the La Arenosa catchment, northern Colombian Andes. The results are compared to those yielded with the corresponding deterministic analyses and with other physically based models applied in the same catchment.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
M. V. Nguyen, H. J. Chu, C. H. Lin, and M. J. Lalu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1249–1253, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1249-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1249-2019, 2019
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-5677-2015, https://doi.org/10.5194/nhessd-3-5677-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We propose a procedure to compute an integrated spatial landslide probability, combining release and propagation. The zonal release probability is introduced to correct the pixel-based release probability for the size of the release zone relevant for a pixel. For a test area in Taiwan we observe that the model performs moderately well in predicting the observed landslides and that the size of the release zone influences the result to a much higher degree than the pixel-based release probability.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, https://doi.org/10.5194/nhess-13-2779-2013, 2013
Related subject area
Solid Earth
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
PLUME-MoM-TSM 1.0.0: A volcanic columns and umbrella cloud spreading model
Towards a model for structured mass movements: the OpenLISEM Hazard model 2.0a
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
CobWeb 1.0: machine learning toolbox for tomographic imaging
pygeodyn 1.1.0: a Python package for geomagnetic data assimilation
IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches
A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Bayesian inference of earthquake rupture models using polynomial chaos expansion
Geodynamic diagnostics, scientific visualisation and StagLab 3.0
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution
Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies
Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
Open-source modular solutions for flexural isostasy: gFlex v1.0
FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation
PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting
Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors
PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments
Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance
On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison
Verification of an ADER-DG method for complex dynamic rupture problems
A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets
Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges
A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565, https://doi.org/10.5194/gmd-13-6547-2020, https://doi.org/10.5194/gmd-13-6547-2020, 2020
Short summary
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020, https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-227, https://doi.org/10.5194/gmd-2020-227, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
We here present PLUME-MoM-TSM, a volcanic plume model allowing to quantify the formation of aggregates during the rise of the plume, to model the phase change of water, and including the
possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is applied first to the 2015 Calbuco eruption (Chile), and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Bastian van den Bout, Theo W. J. van Asch, Wei Hu, Chenxiao Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-101, https://doi.org/10.5194/gmd-2020-101, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behavior and reducing disaster risk. Numerical models assume that the solids and fluids of which the flow exists are unstructured. In the presented model captures the internal structure during movement. This important step might lead to more accurate predictions of landslide movement.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Loïc Huder, Nicolas Gillet, and Franck Thollard
Geosci. Model Dev., 12, 3795–3803, https://doi.org/10.5194/gmd-12-3795-2019, https://doi.org/10.5194/gmd-12-3795-2019, 2019
Short summary
Short summary
The pygeodyn package is a geomagnetic data assimilation tool written in Python. It gives access to the Earth's core flow dynamics, controlled by geomagnetic observations, by means of a reduced numerical model anchored to geodynamo simulation statistics. It aims to provide the community with a user-friendly and tunable data assimilation algorithm. It can be used for education, geomagnetic model production or tests in conjunction with webgeodyn, a set of visualization tools for geomagnetic models.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, Giacomo Lari, and Alvaro Aravena
Geosci. Model Dev., 12, 581–595, https://doi.org/10.5194/gmd-12-581-2019, https://doi.org/10.5194/gmd-12-581-2019, 2019
Short summary
Short summary
Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones) and fountaining during moderately explosive eruptions. We present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. Benchmark cases and preliminary application to the simulation of the 11 February pyroclastic avalanche at Mt. Etna (Italy) are shown.
Yihao Wu, Zhicai Luo, Bo Zhong, and Chuang Xu
Geosci. Model Dev., 11, 4797–4815, https://doi.org/10.5194/gmd-11-4797-2018, https://doi.org/10.5194/gmd-11-4797-2018, 2018
Short summary
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio
Geosci. Model Dev., 11, 3071–3088, https://doi.org/10.5194/gmd-11-3071-2018, https://doi.org/10.5194/gmd-11-3071-2018, 2018
Short summary
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Short summary
We introduce the Soil and
Landscape Evolution Model (SaLEM) for the prediction of soil parent material evolution following a lithologically differentiated approach. The GIS tool is working within the software framework SAGA GIS. Weathering, erosion and transport functions are calibrated using extrinsic and intrinsic parameter data. First results indicate that our approach shows evidence for the spatiotemporal prediction of soil parental material properties.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
Diego Takahashi and Vanderlei C. Oliveira Jr.
Geosci. Model Dev., 10, 3591–3608, https://doi.org/10.5194/gmd-10-3591-2017, https://doi.org/10.5194/gmd-10-3591-2017, 2017
Short summary
Short summary
Ellipsoids are the only bodies for which the self-demagnetization can be treated analytically. This property is useful for modelling compact orebodies having high susceptibility. We present a review of the magnetic modelling of ellipsoids, propose a way of determining the isotropic susceptibility above which the self-demagnetization must be considered, and discuss the ambiguity between confocal ellipsoids, as well as provide a set of routines to model the magnetic field produced by ellipsoids.
Hein J. van Heck, J. Huw Davies, Tim Elliott, and Don Porcelli
Geosci. Model Dev., 9, 1399–1411, https://doi.org/10.5194/gmd-9-1399-2016, https://doi.org/10.5194/gmd-9-1399-2016, 2016
Short summary
Short summary
Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. We have implemented a new way to track both bulk compositions and concentrations of trace elements in a mantle convection code. In our model, chemical fractionation happens at evolving melting zones. We compare our results to a semi-analytical theory relating observed arrays of correlated Pb isotope compositions to melting age distributions.
J. Florian Wellmann, Sam T. Thiele, Mark D. Lindsay, and Mark W. Jessell
Geosci. Model Dev., 9, 1019–1035, https://doi.org/10.5194/gmd-9-1019-2016, https://doi.org/10.5194/gmd-9-1019-2016, 2016
Short summary
Short summary
We often obtain knowledge about the subsurface in the form of structural geological models, as a basis for subsurface usage or resource extraction. Here, we provide a modelling code to construct such models on the basis of significant deformational events in geological history, encapsulated in kinematic equations. Our methods simplify complex dynamic processes, but enable us to evaluate how events interact, and finally how certain we are about predictions of structures in the subsurface.
A. D. Wickert
Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, https://doi.org/10.5194/gmd-9-997-2016, 2016
Short summary
Short summary
Earth's lithosphere bends beneath surface loads, such as ice, sediments, and mountain belts. The pattern of this bending, or flexural isostatic response, is a function of both the loads and the spatially variable strength of the lithosphere. gFlex is an easy-to-use program to calculate flexural isostastic response, and may be used to better understand how ice sheets, glaciers, large lakes, sedimentary basins, volcanoes, and other surface loads interact with the solid Earth.
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, https://doi.org/10.5194/gmd-9-431-2016, 2016
Short summary
Short summary
We present FPLUME-1.0, a steady-state 1-D cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice.
M. Dumon and E. Van Ranst
Geosci. Model Dev., 9, 41–57, https://doi.org/10.5194/gmd-9-41-2016, https://doi.org/10.5194/gmd-9-41-2016, 2016
Short summary
Short summary
This paper presents a FOSS model called PyXRD used to improve the quantification of complex mixed-layer phyllosilicate assemblages using X-ray diffraction. The novelty of this model is the ab initio incorporation of the multi-specimen method, making it possible to share phases and their parameters across multiple specimens. We present results from a comparison of PyXRD with Sybilla v2.2.2 and a number of theoretical experiments illustrating the use of the multi-specimen set-up.
V. Naipal, C. Reick, J. Pongratz, and K. Van Oost
Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, https://doi.org/10.5194/gmd-8-2893-2015, 2015
Short summary
Short summary
We adjusted the topographical and rainfall erosivity factors that are the triggers of erosion in the Revised Universal Soil Loss Equation (RUSLE) model to make the model better applicable at coarse resolution on a global scale. The adjusted RUSLE model compares much better to current high resolution estimates of soil erosion in the USA and Europe. It therefore provides a basis for estimating past and future global impacts of soil erosion on climate with the use of Earth system models.
M. de' Michieli Vitturi, A. Neri, and S. Barsotti
Geosci. Model Dev., 8, 2447–2463, https://doi.org/10.5194/gmd-8-2447-2015, https://doi.org/10.5194/gmd-8-2447-2015, 2015
Short summary
Short summary
In this paper a new mathematical model of volcanic plume, named Plume-MoM, is presented. The model is based on the method of moments and it is able to describe the continuous variability in the grain size distribution (GSD) of the pyroclastic mixture ejected at the vent, crucial to characterize the source conditions of ash dispersal models. Results show that the GSD at the top of the plume is similar to that at the base and that plume height is weakly affected by the parameters of the GSD.
A. P. S. Selvadurai, A. P. Suvorov, and P. A. Selvadurai
Geosci. Model Dev., 8, 2167–2185, https://doi.org/10.5194/gmd-8-2167-2015, https://doi.org/10.5194/gmd-8-2167-2015, 2015
Short summary
Short summary
The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach.
P.-A Arrial, N. Flyer, G. B. Wright, and L. H. Kellogg
Geosci. Model Dev., 7, 2065–2076, https://doi.org/10.5194/gmd-7-2065-2014, https://doi.org/10.5194/gmd-7-2065-2014, 2014
C. Pelties, A.-A. Gabriel, and J.-P. Ampuero
Geosci. Model Dev., 7, 847–866, https://doi.org/10.5194/gmd-7-847-2014, https://doi.org/10.5194/gmd-7-847-2014, 2014
S. Carcano, L. Bonaventura, T. Esposti Ongaro, and A. Neri
Geosci. Model Dev., 6, 1905–1924, https://doi.org/10.5194/gmd-6-1905-2013, https://doi.org/10.5194/gmd-6-1905-2013, 2013
P. Machetel and C. J. Garrido
Geosci. Model Dev., 6, 1659–1672, https://doi.org/10.5194/gmd-6-1659-2013, https://doi.org/10.5194/gmd-6-1659-2013, 2013
D. R. Davies, J. H. Davies, P. C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu
Geosci. Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, https://doi.org/10.5194/gmd-6-1095-2013, 2013
Cited articles
Blahut, J., Horton, P., Sterlacchini, S., and Jaboyedoff, M.: Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy, Nat. Hazards Earth Syst. Sci., 10, 2379–2390, https://doi.org/10.5194/nhess-10-2379-2010, 2010.
Burton, A. and Bathurst, J. C.: Physically based modelling of shallow landslide sediment yield at a catchment scale, Environ. Geol., 35, 89–99, 1998.
Christen, M., Bartelt, P., and Kowalski, J.: Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results, Ann. Glaciol., 51, 161–168, 2010a.
Christen, M., Kowalski, J., and Bartelt, B.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, 2010b.
Corominas, J., Copons, R., Vilaplana, J. M., Altamir, J., and Amigó, J.: Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra, Nat. Hazards, 30, 421–435, 2003.
Evans, S. G., Roberts, N. J., Ischuk, A., Delaney, K. B., Morozova, G. S., and Tutubalina, O.: Landslides triggered by the 1949 Khait earthquake, Tajikistan, and associated loss of life, Eng. Geol., 109, 195–212, 2009.
Fischer, J.-T.: A novel approach to evaluate and compare computational snow avalanche simulation, Nat. Hazards Earth Syst. Sci., 13, 1655–1667, https://doi.org/10.5194/nhess-13-1655-2013, 2013.
Gamma, P.: Dfwalk – Murgang-Simulationsmodell zur Gefahrenzonierung, Geographica Bernensia, G66, ISBN 3-906151-53-0, University of Bern, Switzerland, 144 pp., 2000.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS) Software, Version 7.0. Open Source Geospatial Foundation, availble at: http://grass.osgeo.org, last access: 27 July 2015.
Gruber, F. E. and Mergili, M.: Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS, Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, 2013.
Guo, D., Hamada, M., He, C., Wang, Y., and Zou, Y.: An empirical model for landslide travel distance prediction in Wenchuan earthquake area, Landslides, 11, 281–291, 2014.
Guzzetti, F.: Landslide hazard and risk assessment, PhD Dissertation, University of Bonn, Germany, 2006.
Heim, A.: Bergsturz und Menschenleben, Fretz und Wasmuth, Zürich, 1932.
Hergarten, S. and Robl, J.: Modelling rapid mass movements using the shallow water equations in Cartesian coordinates, Nat. Hazards Earth Syst. Sci., 15, 671–685, https://doi.org/10.5194/nhess-15-671-2015, 2015.
Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869–885, https://doi.org/10.5194/nhess-13-869-2013, 2013.
Huggel, C.: Assessment of Glacial Hazards based on Remote Sensing and GIS Modeling, Dissertation at the University of Zurich, Schriftenreihe Physische Geographie Glaziologie und Geomorphodynamik, Zurich, Switzerland, 2004.
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., and Paul, F.: Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps, Can. Geotech. J., 39, 316–330, 2002.
Huggel, C., Kääb, A., Haeberli, W., and Krummenacher, B.: Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps, Nat. Hazards Earth Syst. Sci., 3, 647–662, https://doi.org/10.5194/nhess-3-647-2003, 2003.
Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S.: Assessment procedures for glacial hazards in the Swiss Alps, Can. Geotech. J., 41, 1068–1083, 2004a.
Huggel, C., Kääb, A., and Salzmann, N.: GIS-based modeling of glacial hazards and their interactions using Landsat-TM and IKONOS imagery, Norsk Geogr. Tidsskr., 58, 761–773, 2004b.
Hungr, O., Corominas, J., and Eberhardt, E.: State of the Art paper: Estimating landslide motion mechanism, travel distance and velocity, in: Landslide Risk Management, edited by: Hungr, O., Fell, R., Couture, R., Eberhardt, E., Proceedings of the International Conference on Landslide Risk Management, Vancouver, Canada, 31 May–3 June 2005, 129–158, 2005.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, 1997.
Jibson, R. W., Harp, E. L., Schulz, W., and Keefer, D. K.: Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002, Eng. Geol., 83, 144–160, 2006.
Krenn, J., Mergili, M., Fischer, J.-T., Davies, T., Frattini, P., and Pudasaini, S. P.: Optimizing the parameterization of mass flow models, manuscript submitted to the Proceedings of the 12th International Symposium on Landslides, Naples, Italy, 12–19 June 2016, 2015.
Kuo, Y. S., Tsai, Y. J., Chen, Y. S., Shieh, C. L., Miyamoto, K., and Itoh, T.: Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot, Landslides, 10, 191–202, 2013.
Legros, F.: The mobility of long-runout landslides, Eng. Geol., 63, 301–331, 2002.
Lied, K. and Bakkehøi, S.: Empirical calculations of snow-avalanche run-out distance based on topographic parameters, J. Glaciol., 26, 165–177, 1980.
Lin, C. W., Chang, W. S., Liu, S. H., Tsai, T. T., Lee, S. P., Tsang, Y. C., Shieh, C. J., and Tseng, C. M.: Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan, Eng. Geol., 123, 3–12, 2011.
McClung, D. M. and Lied, K.: Statistical and geometrical definition of snow avalanche runout, Cold Reg. Sci. Tech., 13, 107–119, 1987.
McDougall, S. and Hungr, O.: A Model for the Analysis of Rapid Landslide Motion across Three-Dimensional Terrain, Canadian Geotech. J., 41, 1084–1097, 2004.
McDougall, S. and Hungr, O.: Dynamic modeling of entrainment in rapid landslides, Canadian Geotech. J., 42, 1437–1448, 2005.
Mergili, M. and Chu, H.-J.: Integrated statistical modelling of spatial landslide probability, Nat. Hazards Earth Syst. Sci. Discuss., 3, 5677–5715, https://doi.org/10.5194/nhessd-3-5677-2015, 2015.
Mergili, M. and Schneider, J. F.: Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS, Nat. Hazards Earth Syst. Sci., 11, 1447–1462, https://doi.org/10.5194/nhess-11-1447-2011, 2011.
Mergili, M., Schneider, D., Worni, R., and Schneider, J. F.: Glacial lake outburst floods in the Pamir of Tajikistan: challenges in prediction and modelling, in: Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, edited by: Genevois, R., Hamilton, D. L., and Prestininzi, A., Padua, Italy, 14–17 June 2011, Italian J. Eng. Geol. Environ. – Book, 973–982, 2011.
Mergili, M., Fellin, W., Moreiras, S. M., and Stötter, J.: Simulation of debris flows in the Central Andes based on Open Source GIS: Possibilities, limitations, and parameter sensitivity, Nat. Hazards, 61, 1051–1081, 2012a.
Mergili, M., Schratz, K., Ostermann, A., and Fellin, W.: Physically-based modelling of granular flows with Open Source GIS, Nat. Hazards Earth Syst. Sci., 12, 187–200, https://doi.org/10.5194/nhess-12-187-2012, 2012b.
Mergili, M., Müller, J. P., and Schneider, J. F.: Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya river (Central Asia), Global Planet. Change, 107, 13–24, 2013.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014.
Mergili, M., Fischer, J.-T., Fellin, W., Ostermann, A., and Pudasaini, S. P.: An advanced open source computational framework for the GIS-based simulation of two-phase mass flows and process chains, EGU General Assembly, Vienna, Austria, 12–17 April 2015, Geophys. Res. Abs., 17, 2015.
Neteler, M. and Mitasova, H.: Open source GIS: a GRASS GIS approach, Springer, New York, USA, 2007.
Pearson, K: The Problem of the Random Walk, Nature, 72, 294, 318, 342, 1905.
Perla, R., Cheng, T. T., and McClung, D. M.: A Two-Parameter Model of Snow Avalanche Motion, J. Glaciol., 26, 197–207, 1980.
Pitman, E. B. and Le, L.: A two-fluid model for avalanche and debris flows, Philos. T. R. Soc. A, 363, 1573–1601, 2005.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res., 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynamics of rapid flows of dense granular avalanches, Springer, Berlin, Heidelberg, Germany, 2007.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org, last access: 27 July 2015.
Rickenmann, D.: Empirical Relationships for Debris Flows, Nat. Hazards, 19, 47–77, 1999.
Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177–215, 1989.
Scheidegger, A. E.: On the Prediction of the Reach and Velocity of Catastrophic Landslides, Rock Mech., 5, 231–236, 1973.
Scheidl, C. and Rickenmann, D.: Empirical prediction of debris-flow mobility and deposition on fans, Earth Surf. Proc. Landforms, 35, 157–173, 2010.
Smith, G. M., Davies, T. R., McSaveney, M. J., and Bell, D. H.: The Acheron rock avalanche, Canterbury, New Zealand – morphology and dynamics, Landslides, 3, 62–72, 2006.
Sosio, R., Crosta, G. B., Chen J. H., and Hungr, O.: Modelling rock avalanche propagation onto glaciers, Quat. Sci. Rev., 47, 23–40, 2012.
Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y.: Routing debris flows with particle segregation, J. Hydraul. Res., 118, 1490–1507, 1992.
Vandre, B. C.: Rudd Creek debris flow, in: Delineation of landslide, flash flood and debris flow hazards in Utah, edited by: Bowles, D. S., Utah Water Research Laboratory, Logan, Utah, USA, 117–131, 1985.
Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, 73, 159–162, 212–217, 246–249, 280–285, 1955.
Wichmann, V. and Becht, M.: Modelling of Geomorphic Processes in an Alpine Catchment, in: Proceedings of the 7th International Conference on GeoComputation, 8–10 September 2003, University of Southampton, UK, availabe at: http://www.geocomputation.org/2003/Papers/Wichmann_Paper.pdf (last access: 11 December 2015), 2003.
Wu, C. H., Chen, S. C., and Chou, H. T.: Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan, Eng. Geol., 123, 13–21, 2011.
Zimmermann, M., Mani, P., and Gamma, P.: Murganggefahr und Klimaänderung – ein GIS basierter Ansatz, NFP 31 Schlussbericht, Hochschulverlag an der ETH, Zürich, Switzerland, 1997.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(12490 KB) - Full-text XML
Short summary
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the propagation of mass movements. Mass points are routed from given release pixels through a digital elevation model until a defined break criterion is reached. In contrast to existing tools, r.randomwalk includes functionalities to account for parameter uncertainties, and it offers built-in functions for validation and visualization. We show the key functionalities of r.randomwalk for three test areas.
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the...