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Abstract. We introduce r.randomwalk, a flexible and multi-

functional open-source tool for backward and forward anal-

yses of mass movement propagation. r.randomwalk builds

on GRASS GIS (Geographic Resources Analysis Support

System – Geographic Information System), the R software

for statistical computing and the programming languages

Python and C. Using constrained random walks, mass points

are routed from defined release pixels of one to many mass

movements through a digital elevation model until a defined

break criterion is reached. Compared to existing tools, the

major innovative features of r.randomwalk are (i) multiple

break criteria can be combined to compute an impact in-

dicator score; (ii) the uncertainties of break criteria can be

included by performing multiple parallel computations with

randomized parameter sets, resulting in an impact indicator

index in the range 0–1; (iii) built-in functions for validation

and visualization of the results are provided; (iv) observed

landslides can be back analysed to derive the density dis-

tribution of the observed angles of reach. This distribution

can be employed to compute impact probabilities for each

pixel. Further, impact indicator scores and probabilities can

be combined with release indicator scores or probabilities,

and with exposure indicator scores. We demonstrate the key

functionalities of r.randomwalk for (i) a single event, the

Acheron rock avalanche in New Zealand; (ii) landslides in

a 61.5 km2 study area in the Kao Ping Watershed, Taiwan;

and (iii) lake outburst floods in a 2106 km2 area in the Gunt

Valley, Tajikistan.

1 Introduction

Mass movement processes such as landslides, debris flows,

rock avalanches, or snow avalanches may lead to damages

or even disasters when interacting with society. Computer

models predicting travel distances, hazardous areas, impact

energies, or travel times may help the society to mitigate the

effects of such processes and, consequently, to reduce the risk

and the losses (Hungr et al., 2005).

Physically based dynamic models are used for in-detailed

analyses of specific events or situations (e.g., Savage and

Hutter, 1989; Takahashi et al., 1992; Iverson, 1997; Puda-

saini and Hutter, 2007; McDougall and Hungr, 2004, 2005;

Pitman and Le, 2005; Christen et al., 2010a, b; Mergili

et al., 2012b; Pudasaini, 2012; Hergarten and Robl, 2015;

Mergili et al., 2015). Since the processes are complex in de-

tail and the input parameters are uncertain, simplified con-

ceptual models for the motion of mass flows are today used

in combination with GIS (Geographic Information System).

These models may be used for single events. However, they

are particularly useful to indicate potential impact areas at

broader scales. Hypothetic mass points are routed from a re-

lease pixel through a digital elevation model (DEM) until a

defined break criterion is reached. Monte Carlo techniques

(random walks, Pearson, 1905; Gamma, 2000) or multiple

flow direction algorithms (Horton et al., 2013) are employed

to simulate the lateral spreading of the flow.

Published by Copernicus Publications on behalf of the European Geosciences Union.



4028 M. Mergili et al.: r.randomwalk v1, a multi-functional conceptual tool

The break criteria often consist in threshold values of the

angle of reach (i.e., the average slope of the path) or hori-

zontal and vertical distances (Lied and Bakkehøi, 1980; Van-

dre, 1985; McClung and Lied, 1987; Burton and Bathurst,

1998; Corominas et al., 2003; Haeberli, 1983; Zimmermann

et al., 1997; Huggel et al., 2002, 2003, 2004a, b), sometimes

related to volume (Rickenmann, 1999; Scheidl and Ricken-

mann, 2010). However, those relationships usually display a

large degree of scatter. Further, key parameters for design is-

sues, such as impact pressures, are not provided (Hungr et

al., 2005).

Some approaches include simplified physically

based models going back to the mass flow model of

Voellmy (1955), relating the shear traction to the square of

the velocity and assuming an additional Coulomb friction

effect (Pudasaini and Hutter, 2007). They consider only the

centre of the flowing mass, but not its deformation and the

spatial distribution of the flow variables. This type of models

is mainly used for snow avalanches and debris flows (Perla

et al., 1980; Gamma, 2000; Wichmann and Becht, 2003;

Mergili et al., 2012a; Horton et al., 2013).

Various – mostly open-source – software tools for concep-

tual modelling of mass movements (mainly flows) at medium

or broad scales are available (e.g., Gamma, 2000; Wich-

mann and Becht, 2003; Mergili et al., 2012a; Horton et al.,

2013). However, most of these tools lack substantial fea-

tures: (i) they are limited to one single type of break criterion;

(ii) they do not allow one to directly account for the uncer-

tainty of the break criteria; (iii) they do not allow one to back

calculate the statistics of a set of observed mass movements;

and (iv) they do not offer built-in functionalities for evaluat-

ing the model results against observations. Consequently, the

key objectives of the present study are

– to introduce r.randomwalk, a freely available, compre-

hensive and flexible tool for routing mass movements;

– to demonstrate the various functionalities of

r.randomwalk, particularly in terms of overcoming

the issues (i)–(iv);

– to discuss the potentials and limitations of this tool.

Next, we will describe the r.randomwalk software tool

(Sect. 2). Furthermore, we will present the test areas and the

results (Sect. 3). Finally, we will discuss the findings (Sect. 4)

and conclude with some key messages of the work (Sect. 5).

2 The r.randomwalk application

2.1 Computational implementation

r.randomwalk is implemented as a raster module of the open-

source software package GRASS (Geographic Resources

Analysis Support System) GIS 7 (Neteler and Mitasova,

2007; GRASS Development Team, 2015). We use the Python

programming language for data management, pre-processing

and post-processing tasks (module r.randomwalk). The rout-

ing procedure (see Sect. 2.2–2.4) is written in the C pro-

gramming language (sub-module r.randomwalk.main). The

R software environment for statistical computing and graph-

ics (R Core Team, 2015) is employed for built-in validation

and visualization functions (see Sect. 2.5). Parallelization of

multiple model runs is enabled. It allows for the exploitation

of all computational cores available, speeding up analysis

processes. The parallelization procedure is implemented at

the Python level (analogous to the way described in Mergili

et al., 2014): the module r.randomwalk produces a batch file

for each model run. This batch file calls the Python-based

sub-module r.randomwalk.mult, which is then used to launch

r.randomwalk.main with the specific parameters for the asso-

ciated model run. Thereby, the Python library “Threading”,

a higher-level threading interface, and the Python module

“Queue”, a class helping to block execution until all the items

in the queue have been processed, are exploited. Parallel pro-

cessing serves for reducing the computational time in the fol-

lowing contexts:

– Analyses with multiple random subsets of the release

areas or coordinates. In each model run, one subset is

used for back calculating the probability density func-

tion (PDF) of the angle of reach, the other subset is

employed for validating the distribution of the impact

probability derived with this PDF against the observed

deposition areas.

– Analyses with multiple combinations of input parame-

ters varied in a controlled or randomized way, enabling

one to consider parameter uncertainties and to explore

parameter sensitivity.

r.randomwalk was developed and tested with

Ubuntu 12.04 LTS and is expected to also work on

other UNIX systems. A simple user interface is available.

However, the tool may be started more efficiently through

command line parameters, enabling a straightforward batch-

ing on the shell script level. This feature facilitates model

testing, the combination with other GRASS GIS modules

and the consideration of process chains (i.e., using the output

of one analysis as the input for the next one). The logical

framework is illustrated in Fig. 1, the key variables used in

r.randomwalk are summarized in Table 1.

All tests (see Sect. 3) are performed on an Intel®

Core i7 975 with 3.33 GHz and 16 GB RAM (DDR3, PC3-

1333 MHz), exploring a maximum of eight cores through hy-

perthreading.

2.2 Random walk routing

The term random walk refers to a Monte Carlo approach

for routing an object through any type of space. The term

was introduced by Pearson (1905). Constrained random
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Figure 1. Logical framework of r.randomwalk. Only those compo-

nents covered in the present article are shown.

walk approaches are used for routing mass movements such

as debris flows through elevation maps (DEMs), e.g. by

Gamma (2000), Wichmann and Becht (2003), Mergili et

al. (2012a), and Gruber and Mergili (2013). Such methods

enable a certain degree of spreading of the movement by

also considering other routing directions than the steepest de-

scent. It avoids the concentration of flows – or any other types

of mass movements – to linear features, which would not

be realistic for debris flows, snow avalanches, or other types

of mass movements. However, the routing is constrained or

weighted by factors such as the slope or the perpetuation of

the flow direction. An alternative to constrained random walk

routing would consist in a multiple flow direction algorithm

(Horton et al., 2013).

In the context of r.randomwalk, each random walk routes a

hypothetic mass point from a release pixel through the DEM

until a break criterion is reached (see Sect. 2.3). A large set

of random walks is required for each mass point in order

to achieve a satisfactory cover of the possible impact area.

r.randomwalk is designed for

– one set of random walks for one mass movement, start-

ing from a defined set of coordinates;

– multiple sets of random walks for one mass movement,

one set starting from each pixel of the release area;

– sets of random walks for multiple mass movements in

a study area (either starting from one set of coordinates

per mass movement, or from all pixels defined as release

areas);

– one set of random walks starting from each pixel in the

study area.

Overlay rules for different random walks and sets of ran-

dom walks are applied (see Sect. 2.4).

Figure 2. Control length Lctrl and segment length Lseg. (a) Appli-

cation of Lctrl to avoid sharp bending of the flow. (b) Smoothing

of the flow path by introducing segments with maximum length of

Lseg.

During the pixel-to-pixel routing procedure, turns of > 90◦

are not supported. Neighbour pixels are further considered

invalid as target pixels in case they are out of the study area

or conflict with at least one of the following limitations:

– In order to constrain upward movements, a user-defined

maximum vertical run-up height Rmax is introduced. It

takes the lowest elevation the random walk has passed

through as reference.

– Certain types of mass flows (i.e., those with high vis-

cosity) hardly change their flow direction sharply. The

user-defined horizontal control distance Lctrl defines the

backward distance of each step over which the horizon-

tal distance of motion has to increase (Fig. 2a).

The probability Ppx of any other neighbour pixel px to be-

come the target pixel is

Ppx =
ppx

qx=n∑
qx=1

pqx

, p = fde
fβ tanβ , (1)

where n is the total number of valid neighbour pixels, and

β is the local slope between the current pixel and the con-

sidered neighbour pixel. fd and fβ are weighting factors for

the perpetuation of the flow direction and for the slope. fd

is governed by the input parameter d: fd = d
2 for the same

flow direction as the previous one, fd = d for a 45◦ turn and

fd = 1 for a 90◦ turn.
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Table 1. Summary of the key variables used in r.randomwalk.

Symbol Unit Name Description/remarks

[range]

Input

nwalks −[≥ 0] Size of a set of walks Logarithm (base of 10) of the number of random walks

Lctrl m [> 0] Control length Backward distance of each step of a random walk over which

the horizontal distance of motion has to increase (see Fig. 2a)

Lseg m [> 0] Segment length Length of segments used for computing Lmax (see Fig. 2b)

Rmax m [≥ 0] Maximum vertical run-up height –

fd −[≥ 1] Direction factor Factor for weighting the perpetuation of the movement direction

during routing

fβ −[≥ 0] Slope factor Factor for weighting the slope during routing

V m3 [> 0] Movement volume –

Qp m3 s−1 [> 0] Peak discharge Applicable to lake outburst events (see Table 3)

a,b,c – [ ] – Parameters needed by the rules and relationships applied (see

Table 3)

PR −[0–1] Release probability Spatial probability that a mass movement is released from a

given pixel (Mergili and Chu, 2015)

RIS −[≥ 0] Release indicator score Ordinal score denoting the tendency of a pixel to produce a mass

movement

EIS −[≥ 0] Exposure indicator score Ordinal score denoting the exposed values at a given pixel

Output

Lmax m [≥ 0] Travel distance Horizontal distance between the release pixel and the most dis-

tant pixel reached by a set of random walks, measured along the

segments of the path (see Fig. 2b)

Z m [≥ 0] Elevation loss Vertical distance between the release pixel and the most distant

pixel reached by a set of random walks

ωT
◦ [< |90|] Angle of reach Average slope angle measured between the release pixel and the

most distant pixel reached by a set of random walks

IF −[≥ 0] Impact frequency Number of random walks impacting a given pixel

IIS −[≥ 0] Impact indicator score Number of rules and relationships predicting an impact on a

given pixel

IHIS −[≥ 0] Impact hazard indicator score Ordinal score serving as a qualitative surrogate for the hazard

of an impact on a given pixel

III −[0–1] Impact indicator index Fraction of model runs impacting a given pixel out of all model

runs

PI −[0–1] Impact probability Spatial probability that a given pixel is impacted, building on

user-defined release areas and a cumulative density function

PI,C −[0–1] Composite probability Spatial probability that a given pixel is impacted, building on

PR and PI (Mergili and Chu, 2015)

IRIS −[≥ 0] Impact risk indicator score Ordinal score denoting the expected/potential loss at a given

pixel
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Table 2. Possibilities to define the break criteria. The flags provided through the command line or the user interface define the type of break

criterion. RC is release coordinates (release from highest points of release areas), RP is release pixels (release from all pixels within release

areas), • is relevant for most applications, and ◦ is relevant for some applications.

Flag Mode Release Output Validation Multiple cores

RC RP

q Published relationships (see Table 3) • IIS ◦

m Published relationship, multiple runs • III ◦ •

p Impact probability ◦ ◦ PI ◦

p+ n Impact probability, multiple runs ◦ ◦ PI • •

b Reconstruction of observation ◦ ◦ CDF

The break criteria for the random walks (see Sect. 2.3) are

directly or indirectly related to the travel distance Lmax i.e.,

the horizontal length between the release pixel and the ter-

minal pixel measured along the flow path. Preliminary tests

reveal that random walk routing through raster maps may re-

sult in quite uneven flow paths (see Fig. 2b). Consequently,

the distance calculated by summing up all the pixel-to-pixel

distances may be significantly longer than the more relevant

distance along the observed main flow paths. Employing the

sums of the pixel-to-pixel distances would lead to an under-

estimation of the angle of reach and, consequently, of the pre-

dicted travel distances and impact areas. We approach this

problem by dividing the flow paths into straight segments

with a user-defined maximum length of Lseg. The travel dis-

tance Lmax is defined as the sum of the length of all segments

(see Fig. 2b). Larger values of Lseg are expected to result in

shorter travel distances due to the more pronounced smooth-

ing of the path.

2.3 Break criteria

Each random walk continues until at least one neighbour

pixel is outside the study area, or until the user-defined break

criterion is fulfilled. The break criteria are the key parameters

for estimating the mass flow impact areas and can be defined

in various ways (Table 2):

– The angle of reach ωT or the maximum travel distance

Lmax is computed from empirical–statistical rules or re-

lationships, based on the analysis of observed events

(Table 3). They usually refer to the distance between

the highest spot of the release area and the most dis-

tant spot of the impact area along the flow path (the

Fahrböschung according to Heim, 1932). Consequently,

random walks using this type of break criterion have

to start from the set of coordinates defining the highest

point of the observed or expected mass movement. Al-

ternatively, also a semi-deterministic model (Perla et al.,

1980) can be used.

– Empirical–statistical relationships or the semi-

deterministic model may be applied in a large number

of parallel computations with randomized values of

the parameters a, b and c (see Fig. 1 and Table 3).

This allows one to explore the effects of uncertainties

in the relationships. Only one type of relationship is

considered at once, and the output consists in a raster

map of the impact indicator index III in the range 0–1,

representing the fraction of tested parameter combi-

nations predicting an impact on the pixel (i.e., where

impact indicator score (IIS)= 1). Further, the results of

all model runs are stored in a way ready to be analysed

with the parameter sensitivity and optimization tool

AIMEC (Automated Indicator-based Model Evaluation

and Comparison; Fischer, 2013).

– An impact probability raster map PI in the range 0–1 is

computed from a user-defined sample of observed val-

ues of tan(ωT ), which is employed to build a cumulative

density function (CDF). The CDF represents the prob-

ability that the movement reaches the pixel associated

with each value of tan(ωT ). The sample of observed val-

ues may be divided into one subset of mass movements

for building the CDF, and another one for computing PI.

This ensures a clear separation between parameter op-

timization and model validation (see Sect. 2.5). Parallel

processing may be used to repeat the analysis for many

random subsets in order to achieve a more robust result.

– If an inventory of events is available, the observed im-

pact areas may be back calculated by routing each ran-

dom walk until it leaves the observed impact area of the

corresponding mass movement. This mode can be used

to explore the statistical distribution of ωT . The result-

ing CDF can be used as input to estimate PI.

2.4 Overlay of random walk results

The overlay of individual random walks operates at two lev-

els:

1. Random walks of the same mass point: impact fre-

quency (IF) is increased by 1 for each random walk pre-

dicting an impact. IIS is increased by 1 for each model

where at least 1 random walk predicts an impact. The

average angle of path – and therefore also PI – is derived

www.geosci-model-dev.net/8/4027/2015/ Geosci. Model Dev., 8, 4027–4043, 2015
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Table 3. Types of rules and relationships supported by r.randomwalk. ωT is angle of reach, Lmax is travel distance, V is volume of motion,

Z is elevation loss, Qp is peak discharge at release, and vT is velocity at termination.

ID Equation Examples

Reference Process a b c

1 ωT = a (2) Haeberli (1983); Debris flow from GLOF 11

Huggel et al. (2002)

2 log10 tanωT = alog10V + b (3) Scheidegger (1973) Rock avalanche −0.15666 0.62419

3 Lmax = aV
bZc (4) Rickenmann (1999) Debris flow 1.9 0.16 0.83

4 ωT = aQ
b
p (5) Huggel (2004) GLOF 18 −0.07

5 vT = 0 (6) Perla et al. (1980)

from the random walk with the shortest travel distance

(i.e., the straightest flow path and the highest value of

ω) at the considered pixel.

2. Sets of random walks for different mass points: the val-

ues of IF for all random walks impacting a pixel are just

added up whilst the maximum of IIS is applied to each

pixel. The issue gets more complex when it comes to

PI: depending on the specific application, the maximum

or the average out of all sets of random walks is more

appropriate.

The resulting maps of PI or IIS can be automatically over-

laid with a release probability (PR; result: composite prob-

ability PI,C; Mergili and Chu, 2015) or a release indicator

score (RIS; result: impact hazard indicator score – IHIS), and

with an exposure indicator score (EIS) derived from the land

cover (result: impact risk indicator score – IRIS; see Table 1).

These steps are not further considered in this article and are

therefore not shown in Fig. 1.

2.5 Validation

r.randomwalk includes three possibilities for validation of

the model results. All three build on the availability of a

raster map of the observed deposition area of the mass move-

ment(s) under investigation. All parts of the observed impact

areas outside of the observed deposition areas are set to no

data (Fig. 3).

– For IIS, the true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) predictions are

counted on the basis of pixels and put in relation. All

pixels with IIS≥ 1 are considered as observed positives

(OP); all pixels with IIS= 0 are considered as observed

negatives (ON).

– ROC (receiver operating characteristics) plots are pro-

duced for III or PI: the true positive rate rTP (TP/OP)

is plotted against the false positive rate rFP (FP/ON) for

various levels of III or PI. The area under the curve con-

necting the resulting points, AUCROC, is used as an indi-

cator for the quality of the prediction (see Fig. 3). If the

Figure 3. Model validation with an ROC plot, relating the false pos-

itive rate rFP and the true positive rate rTP. This way of validation

is suitable for predictor raster maps in the range 0–1, such as III or

PI. It can also be used for binary predictor maps (0 or 1). In such a

case AUCROC is computed from two threshold levels only.

CDF for PI is derived from the same set of landslides,

r.randomwalk includes the option to randomly split the

set of observed landslides into a set for parameter opti-

mization, and one for validation. This is done for a user-

defined number of times, exploiting multiple processors

(see Sect. 2.3 and Fig. 1). It results in an ROC plot with

multiple curves. Note that two ROC plots are produced:

one of them builds on the original number of TN pix-

els. For the other one, the number of ON pixels is set

to 5 times the number of OP pixels. Whilst the num-

ber of FP pixels remains unchanged, the number of TN

pixels is modified accordingly. This procedure aims at

normalizing the ROC curves in order to enable a com-

parison of the prediction qualities yielded for different

study areas.

– If only one mass movement is considered, a longitudi-

nal profile may be defined by a set of coordinates of

the profile vertices. The observed and predicted (IIS≥ 1

or PI > 0) travel distances are measured and compared

along this profile.

Geosci. Model Dev., 8, 4027–4043, 2015 www.geosci-model-dev.net/8/4027/2015/
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3 Test cases and results

3.1 Acheron rock avalanche, New Zealand

3.1.1 Area description and model parameterization

The Acheron rock avalanche in Canterbury, New Zealand

(Fig. 4), was triggered approx. 1100 years BP (Smith et

al., 2006). Within the present study, the release volume,

V = 6.4 million m3, is approximated from the reconstruction

of the pre-failure topography and is lower than the value of

V = 7.5 million m3 estimated by Smith et al. (2006). We use

a 10 m resolution DEM derived by stereo-matching of aerial

photographs. Impact, release and deposition areas are derived

from field and imagery interpretation as well as from data

published by Smith et al. (2006). All random walks start from

the highest pixel of the release area.

We use this case study for demonstrating how to compute

the impact indicator index III from an elevation map, the re-

lease area, and the release volume. Before doing so, we have

to analyse the influence of the pixel size and the parame-

ters nwalks, Rmax, Lctrl, Lseg, fβ , and fd on the model result.

Preliminary tests have shown that r.randomwalk yields plau-

sible results with the number of random walks: nwalks = 104,

Rmax = 10 m, Lctrl = 1000 m, Lseg = 100 m, fβ = 5, fd = 2,

and a pixel size of 20 m. These values are taken as a basis

to explore the sensitivity of the model results to the varia-

tion of each parameter and the best fit of the parameters in

terms of the travel distance, AUCROC, and the size of the

predicted impact area (Table 4). ωT = 11.62◦ , the angle of

reach observed for the Acheron rock avalanche, is applied as

the break criterion for all tests. Some of the tests are run in

the back-calculation mode (flag b; see Tables 2 and 4).

III is computed by executing r.randomwalk 100 times,

with the parameter values optimized according to Table 4.

We explore an empirical–statistical relationship for ωT de-

rived from a compilation of 127 case studies (Fig. 5). The

offset of the equation (b in Eq. 4 and Fig. 5) is randomly sam-

pled between the lower and upper envelopes of the regres-

sion. The quality of the prediction is evaluated using the ROC

plot (see Figs. 1 and 3). Note that the Acheron rock avalanche

(not included in the relationship developed in Fig. 5) is found

close to the lower envelope, meaning that it was very mobile

compared to most of the other events.

3.1.2 Results

Figure 6 summarizes the findings of the test s 1–3 (see Ta-

ble 4). Test 1 leads to the expected result that the predicted

impact area increases with the number of random walks.

However, the predicted impact area is also a function of the

pixel size: with larger pixels, less random walks are needed

to cover an area of similar size than with smaller pixels. Fig-

ure 6a further indicates that the possible impact area is not

fully covered even at 105 random walks: no substantial flat-

Figure 4. Acheron rock avalanche. (a) Panoramic view; photo:

M. Mergili, 28 February 2015. (b) Location and geometry.

Figure 5. Empirical–statistical relationship relating the angle of

reach ωT to the volume V of avalanching flows of rock or debris.

The data are compiled from Scheidegger (1973), Legros (2002), Jib-

son et al. (2006), Evans et al. (2009), Sosio et al. (2012), and Guo

et al. (2014).

tening of the curves is observed. We conclude that (i) a very

high value of nwalks would be necessary to fully cover the

possible impact area, and (ii) this would lead to a substantial

overestimation of the observed impact area.

On the other hand, the quality of the prediction in terms

of AUCROC reaches a maximum at nwalks ≈ 102 (pixel size

40 m) or nwalks ≈ 103 (pixel size 20 m), decreasing with

higher values of nwalks. At a pixel size of 10 m, AUCROC

reaches a constant level at nwalks ≈ 104 (see Fig. 6b). We

may conclude that excessive numbers of random walks lead

www.geosci-model-dev.net/8/4027/2015/ Geosci. Model Dev., 8, 4027–4043, 2015



4034 M. Mergili et al.: r.randomwalk v1, a multi-functional conceptual tool

Table 4. Tests of the parameters nwalks, Lctrl, Lseg, Rmax, fβ , fd, and the pixel size. Where ranges of values are given in bold, the model

is run with 100 random samples constrained by the minima and maxima indicated. Where values given in bold are separated by commas, in

these cases exactly these values are tested.

Test nwalks Lctrl (m) Lseg (m) Rmax (m) fβ fd Pixel size (m)

11,3 100–106 1000 100 10 5 2 10, 20, 40

22 104 50, 1000 10–150 1000 5 2 10, 20, 40

31,2,3 104 50–10002 100 10002 5 2 10, 20, 402

1000–40001,3 101,3 201,3

41,3 104 1000 100 0–120 5 2 20

51,3 104 1000 100 10 0–10 2 20

61,3 104 1000 100 10 5 1–10 20

Test criteria: 1 impact area; 2 travel distance Lmax (flag b); 3 AUCROC.

Figure 6. Results of the tests 1–3 (number of test indicated in the yellow circle). Number of random walks plotted against (a) the impact

area and (b) the area under the ROC curve. (c) Computed travel distance Lmax as a function of Lseg (in the legend, the corresponding value

of Lctrl is given in parentheses). (d) Computed Lmax as a function of Lctrl.

to an overestimation of the impact area rather than to a better

prediction quality. Coarser pixel sizes allow one to achieve

the same level of coverage and the same prediction quality at

lower values of nwalks. However, the pixel size has to be fine

enough to account for the main geometric characteristics of

the process under investigation (see Sect. 4). All further tests

are performed with nwalks = 104.

Figure 6c illustrates that, at Lctrl = 1000 m, the travel dis-

tance computed within the observed impact area decreases

with increasing values of Lseg (tests 2 and 3 in Table 4).

This pattern is well explained by Fig. 2b. At short segment

lengths, the effects of flow paths frequently changing their

direction are particularly evident for pixel sizes of 10 m and

20 m. Lmax drops below the observed value of 3550 m (see

Fig. 4b) at 75≤ Lseg ≤ 100 m. With Lseg ≥ 3050 m, corre-
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Figure 7. Sensitivity of impact area and AUCROC to selected input parameters. The numbers of the corresponding tests (see Table 4) are

indicated in the yellow circles. (a) Control distance Lctrl; (b) maximum run-up height Rmax; (c) slope factor fβ ; (d) direction factor fd.

sponding to the Euclidean distance between the release point

and the terminal point of the Acheron rock avalanche, Lmax

would also take a value of 3050 m. At Lctrl = 50 m (only

shown for a pixel size of 20 m), r.randomwalk tends to pre-

dict too long travel distances, compared to the observation.

This phenomenon occurs as flow directions are not well de-

fined in the relatively plane deposition zone of the Acheron

rock avalanche; therefore, flow paths may frequently change

their direction or even go backwards or in a circular way if

such a behaviour is not impeded by sufficiently high values

of Lctrl (see Fig. 2a). Figure 6d indicates that this undesired

behaviour (visible in the area marked by the X in the gray

circle) disappears at Lctrl > 200 m.

On the other hand, the value of Lctrl should not be cho-

sen too high as this may negatively impact the model perfor-

mance. In the case of the Acheron rock avalanche, a drop

in AUCROC is observed between Lctrl ≈ 2000 and Lctrl ≈

2500 m (Fig. 7a). This drop is explained by an increasing

number of false negative pixels in those areas, which cannot

be reached by the random walks due to the strict constraint

of flow direction.

Within the tested ranges of parameter values, the quality

of the prediction is highest at values of Rmax ≈ 5–10 m (see

Fig. 7b) and fβ ≥ 5 (see Fig. 7c), whilst it reaches it maxi-

mum at fd ≈ 2–3 (see Fig. 7d). The predicted impact area in-

creases with increasing Rmax and fd whilst it decreases with

increasing fβ .

Figures 6 and 7 indicate that the initial values of nwalks,

Lctrl, LsegRmax, fβ , fd, and the pixel size suggested in

Sect. 3.1.1 and Table 4 are within the optimum range of val-

ues (see Sect. 4). Therefore, they are used for computing

the impact indicator index for the Acheron rock avalanche

(Fig. 8a). Concerning the break criteria, this can be classi-

fied as a forward analysis. As expected from Fig. 5, where

the Acheron rock avalanche falls in between the envelopes

of the relationship employed, the upper part of the observed

impact area displays a value of III= 1, whilst the remaining

part of the observed impact area displays values of 1 > III > 0,

decreasing towards the terminus. As the event was compara-

tively mobile within the context of the relationship used (see

Sect. 3.1.1 and Fig. 5), the values of III are close to zero in

the terminal area, and the area with III > 0 does not reach far

beyond the observed terminus. Note that the maximum value

of III is 0.8, meaning that 20 % of all model runs did not even

start due to very high values of ωT yielded with the random-

ized values of b (see Fig. 5). Evaluation against the observed

deposit yields a value of AUCROC = 0.94 (see Fig. 8b). All

values of AUCROC shown in Figs. 6 and 7 and the ROC plot

of Fig. 8b build on normalized ON areas (see Sect. 2.5).

III was generated within a computational time of 188 s.
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Figure 8. Impact indicator score for the Acheron rock avalanche.

(a) Classified III map. (b) ROC plot, building on normalized ON

area (see Sect. 2.5).

3.2 Kao Ping Watershed, Taiwan

3.2.1 Area description and model parameterization

Between 7 and 9 August 2009, Typhoon Morakot struck Tai-

wan and triggered enormous landslides, causing significant

land cover change (Fig. 9). More than 22 000 landslides were

recorded in southern Taiwan (Lin et al., 2011). One of the hot

spots of mass wasting was the Kao Ping Watershed (Wu et

al., 2011), where the extremely heavy rainfall (in total, more

than 2000 mm depth and 90 h duration) triggered a catas-

trophic landslide in the Hsiaolin Village (Kuo et al., 2013).

We consider a 61.5 km2 subset of the Kao Ping Watershed

for computing the landslide impact probability PI, based on

the observed landslide release areas. In all, 207 landslides are

mapped in the shale, sandstone, and colluvium slopes (see

Fig. 9). A 10 m DEM is used along with an inventory of the

landslide impact areas. Release and deposition areas are ex-

tracted from the inventory. We employ the values of nwalks,

Rmax, fβ , fd, Lctrl, Lseg resulting from the optimization pro-

cedure for the Acheron rock avalanche (see Sect. 3.1.1), and

a pixel size of 20 m. PI is computed as follows:

1. A set of random walks (nwalks = 104) is started from

each release point (i.e., the highest pixel of each land-

slide). Each random walk stops as soon as it would leave

Figure 9. Location, terrain and landslide inventory of the Kao Ping

Watershed, Taiwan. Comparison of the satellite images illustrates

the landslide-induced land cover changes associated with the Ty-

phoon Morakot. The landslide inventory builds on the interpretation

of the FORMOSAT-2 imagery.

the impact area of the same landslide (back calculation,

flag b).

2. After completing all random walks for the study area,

the statistical distribution of ωT is analysed. All land-

slides with Lmax < 100 m are excluded. A fraction of

20 % out of all landslides (i.e., all values of ωT associ-

ated with those landslides) is randomly selected and re-

tained for validation. Using visual comparison, we have

identified the log-normal distribution as the most suit-

able type of distribution for this purpose. Consequently,

the log-normal CDF stands for the probability that a

moving mass point leaves the observed impact area at

or below the associated threshold of ωT .

3. We perform a forward analysis of PI by starting a set

of random walks (nwalks = 104) from the release points

of the retained landslides, and assigning the cumulative

density associated with the average angle of path to each

pixel. The result is validated against the observed depo-

sition zones of the retained landslides by means of an

ROC plot.

4. Steps 2. and 3. are repeated for 100 randomly selected

subsets (parallel processing is applied). The final map of

PI is generated by applying for each pixel the maximum

of the values yielded by all the model runs.

We refer to this work flow as test 1 and repeat the analysis

with starting random walks not only from the release points

but also from all the pixels within the observed release ar-

eas (test 2). This means that the CDF is derived from a much

larger sample of data than when considering only one point

per landslide for starting random walks. We exclude all sets

of random walks yielding Lmax < 100 m, use a log-normal

CDF and start a set of only 103 random walks from each

release pixel for computing PI.
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3.2.2 Results

Starting sets of 104 random walks from the highest points

of all landslides (test 1) results in a range of values of

16.0≤ ωT ≤ 43.5◦, an average of 30.4◦, and a standard de-

viation of 5.2◦ (derived from n= 132 landslides, exclud-

ing those with Lmax < 100 m). Repeating the analysis with

104 random walks started from each pixel within the land-

slide release areas (test 2), we observe a range of values

16.4≤ ωT ≤ 44.1◦, an average of 26.9◦, and a standard devi-

ation of 4.8◦ (n= 1563). Figure 10 illustrates the histograms,

probability density, and cumulative density functions derived

from both analyses. Even though the ranges of values are

similar in both tests, test 1 yields (i) a higher average of ωT
and (ii) a broader range of values than test 2; (i) is explained

by the fact that those random walks starting from lower parts

of the release areas are expected to leave the observed impact

area at lower values of ωT ; (ii) is most likely the consequence

of a number of rather small landslides with high or low val-

ues of ωT strongly reflected in the statistics. Such outliers

are less prominent in the statistics of test 2 due to the much

higher number of cases, most of them related to the larger

landslides.

Each of the impact probabilities shown in Fig. 11 repre-

sents the overlay of 100 analyses where random sets of 80 %

of the landslides are used for deriving the CDF and the re-

maining 20 % are used for computing the impact probabil-

ities. The maps illustrate the maximum values of PI out of

the overlay of the 100 results. Each of the results is derived

using a slightly different CDF. Both tests yield largely simi-

lar patterns of PI. We note that (i) test 2 predicts larger im-

pact areas and higher values of PI than test 1, and (ii) some

random walks take the wrong direction in test 2 (indicated

by “1” in the yellow circle in Fig. 11b), a phenomenon not

observed for test 1; (i) is explained by the higher number

– and the broader distribution – of release pixels in test 2,

compared to test 1. The reason for (ii) is that random walks

starting from the highest point of an observed landslide are

forced to flow into the observed landslide area (test 1), a con-

straint not applicable when starting random walks from each

release pixel (test 2). In this case it happens that pixels lo-

cated at or near a crest produce random walks in both di-

rections. In test 1, the computational time amounted to 63 s

for deriving the CDF and 8613 s for calculating PI. In test 2,

these times increased to 1719 and 9752 s, respectively. The

relatively slight increase with regard to PI results from the

reduced value of nwalks in test 2.

The prediction quality is tested for each of the 100 model

runs for the two tests, producing sets of 100 ROC

curves (Fig. 12). AUCROC = 0.917± 0.038 for test 1 and

0.920± 0.029 for test 2, both computed with the original

number of TN pixels (see Sect. 2.5).

In contrast, the procedures demonstrated in the two tests

vary strongly in their scope of applicability. We have demon-

Figure 10. Histograms, probability densities, and cumulative den-

sities of ωT of mass movements in the test area in the Kao Ping

Watershed. (a) Result for a set of 104 random walks started from

the highest point of each landslide (test 1). (b) Result for a set of

104 random walks started from each pixel within the release areas

of all landslides (test 2).

strated the methodologies by back calculating observed land-

slides. As soon as this is done, one may go one step further:

– The methodology shown in test 1 can be employed to

make forward predictions for defined expected future

landslides, given that a sufficient set of observed land-

slides of similar behaviour is available to derive the

CDF.

– The methodology demonstrated in test 2 can be used in

combination with maps of landslide release probability

to explore the composite probability of a landslide im-

pact (see Sects. 2.4 and 4).

In either case the statistics (see Fig. 10) have to be derived

with the same type of approach later used for producing the

PI map.

3.3 Gunt Valley, Tajikistan

3.3.1 Area description and model parameterization

As most mountain areas worldwide, the Pamir of Tajikistan

experiences a significant retreat of the glaciers. One of the

consequences thereof consists in the formation and growth

of lakes, some of which are subject to glacial lake outburst

floods (GLOFs), which may evolve into destructive debris

flows (Mergili and Schneider, 2011; Mergili et al., 2013;

Gruber and Mergili, 2013). No records of historic GLOFs

in the test area are known to the authors. However, in Au-

gust 2002 a GLOF in the nearby Shakhdara Valley evolved

into a debris flow, which destroyed the village of Dasht,

claiming dozens of lives (Mergili et al., 2011).

The frequency of such events is low and historical data

are sparse. Consequently, possible travel distances of GLOFs

may not be derived in a purely statistical way. Instead, we

have to use published empirical–statistical relationships and

simple rules to produce an impact indicator score (IIS) map.
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Figure 11. Impact probability in the range 0–1. (a) Result of test 1 (random walks starting from the highest point of each landslide; cumulative

density according to Fig. 10a). (b) Result of test 2 (random walks starting from all release pixels; cumulative density according to Fig. 10b).

Figure 12. ROC plots illustrating the prediction quality of (a) test 1

and (b) test 2, using the original number of TN pixels (see Sect. 2.5).

We compute IIS with regard to GLOFs for a 2106 km2

study area in the Gunt Valley (Fig. 13). The analysis builds on

the ASTER GDEM (Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer – Global Digital Elevation

Model) V2 and the coordinates and characteristics (estimates

of V and Qp) of 113 lakes in the area (Gruber and Mergili,

2013).

A set of random walks (nwalks = 104) is routed from the

outlet of each lake through the DEM. Six break criteria

are combined to compute IIS, partly following Gruber and

Mergili (2013). The relationships and rules employed as

break criteria are summarized in Table 5. Rule 1 is applied

with ωT = 11◦ (test 1 – according to Haeberli, 1983 and

Huggel et al., 2003, 2004a, b for debris flows from glacier-

or moraine-dammed lakes, and Zimmermann et al., 1997 for

coarse- and medium-grained debris flows) and with ωT = 7◦

(test 2 – Zimmermann et al., 1997 for fine-grained debris

flows). All other rules and relationships are used for both

tests. For each pixel, IIS consists in the number of relation-

ships or rules predicting an impact (i.e., IIS takes values in

the range 0–6).

Rmax, Lctrl, Lseg, fβ , and fd are set to the optimum values

found for the Acheron rock avalanche, the pixel size is set to

60 m.

3.3.2 Results

Figure 14 illustrates the possible impact areas of GLOFs in

the Gunt Valley study area according to the relationships

listed in Table 5.

Figure 14a shows the impact indicator score IIS i.e., the

number of relationships predicting an impact, resulting from

test 1 (rule 1 applied with ωT = 11◦). Except for one promi-

nent exception, IIS > 3 (possible debris flow impact) only for

the largely uninhabited upper portions of the tributaries to the

Gunt Valley. In contrast, a possible flood impact (1≤ IIS≤ 3)

is predicted for much of the main valley. test 2 (rule 1 applied

with ωT = 7◦) predicts a possible debris flow impact also for

part of the main valleys (see Fig. 14b). The IF (per cent of

random walks impacting each pixel) for test 1 is shown in

Fig. 14c for a subsection of the test area, classified by quan-

tiles. IF is strongly governed by the width of the movement,

i.e. by the local topography, and may serve as a surrogate for

the expected depth rather than as for the probability of an

impact.

Note that Fig. 14 only indicates the tendency of an al-

ready released GLOF to impact certain pixels. It does not

provide any information on the susceptibility of a certain

lake to produce a GLOF at all. Earlier, Mergili and Schnei-

der (2011) and Gruber and Mergili (2013) have attempted to

combine GLOF release indicators with impact indicators and

land cover maps to generate hazard and risk indicator maps.

However, the results of their studies may underestimate the

possible impact areas as the travel distance was computed on

a pixel-to-pixel basis, possibly yielding too low values of ωT
(see Figs. 2 and 6).
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Figure 13. The test area in the Gunt Valley, Tajikistan. (a) Location, topography, glaciers and lakes. (b) Proglacial lake in the upper Varshedz-

dara Valley; photo: M. Mergili, 18 August 2011.

Table 5. Empirical–statistical relationships and simple rules used for computing the IIS of GLOFs in the Gunt Valley (see Table 3).

IDtest Relationship Reference Process

11 ωT = 11◦ Haeberli (1983); Zimmermann et al. (1997);

Flood or debris flow

Huggel et al. (2003, 2004a, b)

12 ωT = 7◦ Zimmermann et al. (1997)

21,2 ωT = 18Q−0.07
p Huggel (2004)

31,2 Lmax = 1.9V 0.16Z0.83 Rickenmann (1999)3

41,2 ωT = 6◦

Flood51,2 ωT = 4◦

61,2 ωT = 2◦ Haeberli (1983); Huggel et al. (2004a)

1,2 ID(s) of test(s) where the rule or relationship is applied. 3 A bulking factor of 5 is applied to V (modified after Iverson, 1997).

The robustness and appropriateness of the rules and re-

lationships for low-frequency events, such as GLOFs (see

Table 5), is questionable. The rules building on a unique

value of ωT overpredict the possible impact areas for those

lakes where not enough water is available to produce a

flood in downstream valleys. Applying the rules and rela-

tionships for debris flows implies a blind assumption that

enough entrainable sediment is available to produce a de-

bris flow. Whilst ωT ≥ 11◦ is considered the worst case for

debris flows of GLOFs from glacier- or moraine-dammed

lakes in the European Alps according to Haeberli (1983) and

Huggel et al. (2002), ωT = 9.3◦ was measured for the 2002

Dasht Event, the only well-documented GLOF near the test

area (Mergili et al., 2011). Also the relationship proposed by

Rickenmann (1999) severely underestimates the travel dis-

tance of this event, even when massive bulking is assumed.

Applying ωT = 7◦ as given by Zimmermann et al. (1997) for

fine-grained debris flows might be more suitable as worst-

case assumption for debris flows from GLOFs in the Pamir,

even though this threshold leads to very conservative predic-

tions.

We have measured computational times of 1520 s for test 1

and 1556 s for test 2.

4 Discussion

Whilst conceptual tools are commonly applied for routing

mass movements at medium and broad scales, most of them

use single values or rules as break criteria, disregarding the

high degree of uncertainty (e.g., Gamma, 2000; Wichmann

and Becht, 2003; Huggel et al., 2002; Horton et al., 2013;

Blahut et al., 2010). r.randomwalk introduces a set of tools to

deal with uncertain break criteria in a flexible way, depend-

ing on the quality of rules or relationships available. In gen-

eral, empirical–statistical relationships represent rough sim-

plifications as mass movement processes may also stop when

reaching valleys of higher order, run against opposite slopes

or lose energy when bending sharply. However, relatively ro-

bust rules or relationships exist for the most common types

of processes such as rock avalanches (Scheidegger, 1973; see

Fig. 5) or debris flows (Rickenmann, 1999). They build on

data sets large enough to derive meaningful envelopes and

to compute impact indicator indices with r.randomwalk. Re-
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Figure 14. Possible GLOF impact areas in the Gunt Valley, Tajikistan. (a) Impact indicator score derived with test 1. (b) Impact indicator

score derived with test 2. (c) Impact frequency derived with test 1, classified by quantiles.

lationships for less frequent types of processes are less ro-

bust as it was illustrated for GLOFs (Haeberli, 1983; Zim-

mermann et al.; 1997; Huggel et al., 2002; Huggel, 2004;

see Sect. 3.3.2). In such cases we recommend to compute

impact indicator scores building on more than one model,

as shown by Gruber and Mergili (2013) and in the present

work. Impact indicator indices and scores are mainly useful

for anticipating the possible impact area of expected single

events (see Sect. 3.1.2), or for application at broader scales

(see Sect. 3.3.2).

The impact probability is useful for predicting possible im-

pact areas of mass movements in areas where many events

are documented, but the volumes of possible future events

are not known. Whilst in the present paper it was demon-

strated how to compute impact probabilities related to ob-

served release areas, r.randomwalk also includes the option

to combine the impact probability with the release probabil-

ity PR (see Table 1). Landslide release probability (suscep-

tibility) maps are often produced from a landslide inventory

and a set of environmental layers (e.g., Guzzetti, 2006). Start-

ing random walks from each single pixel of a study area, and

combining the release probability of this pixel with the im-

pact probability allows one to produce a composite probabil-

ity PI,C map. Doing this is non-trivial and requires specific

strategies. It is therefore covered in a separate article (Mergili

and Chu, 2015). Gruber and Mergili (2013) have combined

release and impact indicator scores for various types of high-

mountain hazards, and overlaid the results with a land cover

data set to produce a risk indicator score.

The sensitivity of r.randomwalk to variations of the param-

eters nwalks, Rmax, fβ , fd, Lctrl, Lseg (see Sect. 2.2) and the

pixel size were tested for the Acheron rock avalanche. Even

though the optimized values are applied also to the other

cases in the present work, this issue requires further inves-

tigation, also with regard to the scale of the processes. This

is particularly true for the pixel size, which has to be fine

enough not to lose the geometrical characteristics governing

the motion (Blahut et al., 2010). Furthermore, coarser pix-

els and a larger number of random walks make results more

conservative. Rmax, fβ , and fd control the degree of lateral

spreading and therefore influence the conservativeness of the

results. In the future we plan to compare the performance

of r.randomwalk to software tools using multiple flow direc-

tion algorithms (e.g., Flow-R; Horton et al., 2013) in terms

of computational times and prediction success.

Overestimating the travel distance at a certain pixel is

avoided by choosing sufficiently high values of Lseg (see

Fig. 6c). Shorter travel distances at a certain pixel are as-

sociated with higher values of ω and, consequently, larger

predicted impact areas, i.e. more conservative results that are

desirable for many applications. The values of Rmax lead-

ing to the best prediction quality are considerably lower than

run-up height observed for the Acheron rock avalanche. This

phenomenon is explained by the facts that (i) the observed

maximum run-up height refers to a limited area, whilst

r.randomwalk applies the run-up height defined by Rmax in

any place; and (ii) not all random walks reach the bottom of

the valley before running up.
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We have demonstrated how to estimate the prediction

quality of III and PI maps. Where sufficient reference data

are available to prove the validity of the model, the results

may be applied for hazard zoning. Where data are not avail-

able, the outcomes of r.randomwalk are suitable for broad-

scale overviews of possibly affected areas, which have to be

considered as rough indicators only. A suitable level of spa-

tial aggregation may be necessary in such cases (Gruber and

Mergili, 2013).

r.randomwalk includes a break criterion building on the

two-parameter friction model of Perla et al. (1980) (see

Sect. 1 and Table 3), which can be used to compute flow

velocities (e.g., Wichmann and Becht, 2013; Mergili et al.,

2012a; Horton et al., 2013). Evaluating this functionality has

to build on (i) specific strategies for the sensitivity analy-

sis and optimization of multiple parameters and (ii) a sound

comparison with the outcome of physically based models.

This effort will be presented in a separate article (Krenn et

al., 2015). Further, the parameter sensitivity and optimiza-

tion code AIMEC (Fischer, 2013) can be directly coupled to

r.randomwalk.

5 Conclusions

We have introduced the open-source GIS tool r.randomwalk,

designed for conceptual modelling of the propagation of

mass movements. r.randomwalk offers built-in functions for

considering uncertainties and for validation. Employing a set

of three contrasting test areas, we have demonstrated (i) the

possibility to combine results yielded with various break cri-

teria into one impact indicator score; (ii) the option to explore

multiple computational cores for combining the results ob-

tained with many randomized parameter combinations into

an impact indicator index; (iii) the possibility to back calcu-

late the CDF of the angles of reach of observed landslides,

and to use this CDF to make forward predictions of the im-

pact probability; and (iv) integrated functions for the valida-

tion and visualization of the results. This includes strategies

to properly separate the data sets for parameter optimization

and model validation.

We have further shown that controls for smoothing of the

flow path and the avoidance of circular flows have to be intro-

duced to avoid underestimating travel distances and impact

areas. The number of random walks executed for each mass

point and the pixel size influence the level of conservative-

ness of the results rather than the quality of the prediction.

The scope of applicability of r.randomwalk strongly depends

on the availability of robust break criteria and on the avail-

ability of reference data for evaluation.

Code availability

The model codes, a user manual, the scripts used for starting

the tests presented in Sect. 3 and some of the test data are

available at http://www.mergili.at/randomwalk.html.
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