Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2447-2015
https://doi.org/10.5194/gmd-8-2447-2015
Model description paper
 | 
06 Aug 2015
Model description paper |  | 06 Aug 2015

PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

M. de' Michieli Vitturi, A. Neri, and S. Barsotti

Related authors

IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023,https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Lava flow hazard modeling during the 2021 Fagradalsfjall eruption, Iceland: applications of MrLavaLoba
Gro B. M. Pedersen, Melissa A. Pfeffer, Sara Barsotti, Simone Tarquini, Mattia de'Michieli Vitturi, Bergrún A. Óladóttir, and Ragnar Heiðar Þrastarson
Nat. Hazards Earth Syst. Sci., 23, 3147–3168, https://doi.org/10.5194/nhess-23-3147-2023,https://doi.org/10.5194/nhess-23-3147-2023, 2023
Short summary
Lahar events in the last 2,000 years from Vesuvius eruptions. Part 1: Distribution and impact on densely-inhabited territory estimated from field data analysis
Mauro A. Di Vito, Ilaria Rucco, Sandro de Vita, Domenico M. Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
EGUsphere, https://doi.org/10.5194/egusphere-2023-1302,https://doi.org/10.5194/egusphere-2023-1302, 2023
Short summary
Lahar events in the last 2,000 years from Vesuvius eruptions. Part 3: Hazard assessment over the Campanian Plain
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro De Vita, and Roberto Sulpizio
EGUsphere, https://doi.org/10.5194/egusphere-2023-1295,https://doi.org/10.5194/egusphere-2023-1295, 2023
Short summary
Lahar events in the last 2,000 years from Vesuvius eruptions. Part 2: Formulation and validation of a computational model based on a shallow layer approach
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-1301,https://doi.org/10.5194/egusphere-2023-1301, 2023
Short summary

Related subject area

Solid Earth
Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023,https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023,https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023,https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
AdaHRBF v1.0: gradient-adaptive Hermite–Birkhoff radial basis function interpolants for three-dimensional stratigraphic implicit modeling
Baoyi Zhang, Linze Du, Umair Khan, Yongqiang Tong, Lifang Wang, and Hao Deng
Geosci. Model Dev., 16, 3651–3674, https://doi.org/10.5194/gmd-16-3651-2023,https://doi.org/10.5194/gmd-16-3651-2023, 2023
Short summary
PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579, https://doi.org/10.5194/gmd-16-3565-2023,https://doi.org/10.5194/gmd-16-3565-2023, 2023
Short summary

Cited articles

Adams, B. M., Bauman, L. E., Bohnhoff, W. J., Dalbey, K. R., Ebeida, M. S., Eddy, J. P., Eldred, M. S., Hough, P. D., Hu, K. T., Jakeman, J. D., Swiler, L. P., and Vigil, D. M.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.4 User's Manual, Sandia Technical Report SAND2010-2183, (updated April 2013) 2009.
Barsotti, S., Neri, A., and Scire, J.: The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation, J. Geophys. Res., 113, B03209, https://doi.org/10.1029/2006JB004624, 2008.
Bonadonna, C. and Phillips, J.: Sedimentation from strong volcanic plumes, J. Geophys. Res., 108, 2340, https://doi.org/10.1029/2002JB002034, 2003.
Briggs, G. A.: Plume rise predictions, in: Lectures on Air Pollution and Environmental Impact Analyses, edited by: Hangen, D. A., 59–111, American Meteorological Society, Boston, MA, USA, 1975.
Bursik, M.: Effect of wind on the rise height of volcanic plumes, Geophys. Res. Lett, 18, 3621–3624, 2001.
Download
Short summary
In this paper a new mathematical model of volcanic plume, named Plume-MoM, is presented. The model is based on the method of moments and it is able to describe the continuous variability in the grain size distribution (GSD) of the pyroclastic mixture ejected at the vent, crucial to characterize the source conditions of ash dispersal models. Results show that the GSD at the top of the plume is similar to that at the base and that plume height is weakly affected by the parameters of the GSD.