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Abstract. In this paper a new integral mathematical model

for volcanic plumes, named PLUME-MoM, is presented.

The model describes the steady-state dynamics of a plume

in a 3-D coordinate system, accounting for continuous vari-

ability in particle size distribution of the pyroclastic mixture

ejected at the vent. Volcanic plumes are composed of pyro-

clastic particles of many different sizes ranging from a few

microns up to several centimeters and more. A proper de-

scription of such a multi-particle nature is crucial when quan-

tifying changes in grain-size distribution along the plume

and, therefore, for better characterization of source condi-

tions of ash dispersal models. The new model is based on

the method of moments, which allows for a description of

the pyroclastic mixture dynamics not only in the spatial do-

main but also in the space of parameters of the continuous

size distribution of the particles. This is achieved by formula-

tion of fundamental transport equations for the multi-particle

mixture with respect to the different moments of the grain-

size distribution. Different formulations, in terms of the dis-

tribution of the particle number, as well as of the mass dis-

tribution expressed in terms of the Krumbein log scale, are

also derived. Comparison between the new moments-based

formulation and the classical approach, based on the dis-

cretization of the mixture in N discrete phases, shows that

the new model allows for the same results to be obtained with

a significantly lower computational cost (particularly when

a large number of discrete phases is adopted). Application

of the new model, coupled with uncertainty quantification

and global sensitivity analyses, enables the investigation of

the response of four key output variables (mean and stan-

dard deviation of the grain-size distribution at the top of the

plume, plume height and amount of mass lost by the plume

during the ascent) to changes in the main input parameters

(mean and standard deviation) characterizing the pyroclas-

tic mixture at the base of the plume. Results show that, for

the range of parameters investigated and without considering

interparticle processes such as aggregation or comminution,

the grain-size distribution at the top of the plume is remark-

ably similar to that at the base and that the plume height is

only weakly affected by the parameters of the grain distri-

bution. The adopted approach can be potentially extended to

the consideration of key particle–particle effects occurring in

the plume including particle aggregation and fragmentation.

1 Introduction

In the past decades, numerical simulation of volcanic erup-

tions has greatly advanced and models are now often able

to deal with the multi-phase nature of volcanic flows. This

is the case, for example, with models describing the dynam-

ics of pyroclastic particles in a volcanic plume, or that of

bubbles and crystals dispersed in the magma rising in a vol-

canic conduit. Despite this, in numerical models, the poly-

dispersity associated with the multi-phase nature of volcanic

flows is often ignored or largely simplified (Valentine and

Wohletz, 1989; Neri at al., 2003; Dartevelle, 2004; Dufek

and Bergantz, 2007; Esposti Ongaro et al., 2007; de’ Michieli

Vitturi et al., 2010). For instance, in most of the existing con-

duit models, crystals and bubbles are treated as simple flow

components and described by volume fractions only, while in

plume dynamics and ash dispersal models the grain-size dis-

tribution (GSD) of pyroclasts is discretized in a finite num-

ber of classes (i.e., phases). Both approaches make proper
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treatment of the continuous variability of the dimension of

pyroclastic particles and gas bubbles difficult. Literature re-

sults (Llewellin et al., 2002; Pal, 2003; Costa et al., 2010)

clearly show that this variability can largely affect relevant

physical/chemical processes that occur during the transport

of the dispersed phase such as, for example, the nucleation

and growth of bubbles and the coalescence/breakage of bub-

bles and crystals in the conduit or the aggregation of pyro-

clastic particles in a volcanic plume.

A theoretical framework and the corresponding computa-

tional models, namely, the method of moments for disperse

multi-phase flows, have been developed in the past decades,

mostly in the chemical engineering community (Hulburt and

Katz, 1964; Marchisio et al., 2003), to track the evolution

of these systems not only in the physical space but also in

the space of properties of the dispersed phase (called inter-

nal coordinates). According to this method, a population bal-

ance equation is formulated as a continuity statement writ-

ten in terms of a density function. From the density function

some integral quantities of interest (namely, the moments,

i.e., specific quantitative measures of the shape of the density

function) are then derived and their transport equations are

formulated.

In this work we present an extension of the Eulerian

steady-state volcanic plume model presented in Barsotti et al.

(2008) (derived from Bursik, 2001) obtained by adopting the

method of moments. In contrast to the original works where

pyroclastic particles are partitioned into a finite number of

classes with different sizes and properties, the new model is

able to consider a continuous size distribution function of py-

roclasts, f (D), representing the number or the mass fraction

of particles (per unit volume) with diameter between D and

D+ dD. Accordingly, conservation equations of the plume

are expressed in terms of the transport equations for the mo-

ments of the ash particle size distribution. In particular, in the

following we present the new multi-phase model formulation

based on the implementation of the quadrature method of

moments (McGraw, 2006) and we investigate the sensitivity

of the model to uncertain or variable input parameters such

as those describing the grain-size distribution of the mixture.

To quantify and incorporate this epistemic uncertainty affect-

ing the input parameters (characterizing lack-of-knowledge)

into our application of the model, we tested two different ap-

proaches, a modification of the Monte Carlo method based on

Latin hypercube sampling (LHS) and a stochastic approach,

namely, the generalized polynomial chaos expansion (gPCE)

method.

This paper is organized as follows: in Sect. 2 we present

the method of moments applied to two different descriptions

of particle distribution. In Sect. 3 the equations of the model

for the two formulations are described. Section 4 is devoted

to the numerical discretization of the model and the numer-

ical implementation of the method of moments. Section 5

presents the application of the model to three test cases with

a comparison of the model results for different formulations

of the plume model, and finally an uncertainty quantification

and a sensitivity analysis are applied to model results.

2 Method of moments

2.1 Moments of the size distribution

In contrast to previous works, where the solid particles are

partitioned in a finite number of classes with different sizes

(Barsotti et al., 2008), we introduce here a continuous size

distribution function representing the number (or mass) con-

centration of particles (per unit volume) as a function of par-

ticle diameter. In general, this particle size distribution (PSD)

is a function of time t , of the spatial coordinate and of the di-

ameter of the particles.

First, we present the method of moments for a particle size

distribution f (D), representing the number concentration of

particles (particles per unit volume) with diameter between

D andD+dD, whereD is expressed in meters. When more

than one family of particles are present, for example lithics

and pumice, we will use the subscript j to distinguish among

them. Consequently, the function fj (D)will denote the num-

ber concentration of particles of the j th family.

Given a particle size distribution fj (D), we observe that

its “shape” can be quantified through the moments M
(i)
j

(Hazewinkel, 2001), defined by

M
(i)
j =

+∞∫
0

Difj (D)dD. (1)

The particular definition of fj (D) we adopt, expressing

the number concentration of particles of size D, allows for

the following physical interpretation of the first four mo-

ments:

– M
(0)
j is the total number of particles of the j th family

(per unit volume).

– M
(1)
j is the sum of the particle’s diameters of the j th

family (per unit volume).

– M
(2)
j is the total surface area of particles of the j th fam-

ily (per unit volume).

– π
6
M
(3)
j is the total volume of particles of the j th family

(per unit volume) or the local volume fraction of the j th

dispersed phase, also denoted with αs,j . The multiply-

ing factor π
6

is obtained assuming spherical particles.

For particles with different shape, if volume scales with

the third power of length, we can still relate the particle

volume V with the particle lengthD through a volumet-

ric shape factor kv such as V = kvL
3.

We also note that the central moments (i.e., those taken

about the mean) can be expressed as function of the raw
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moments (i.e., those taken about zero as in Eq. 1), and in

this way it is possible to relate the moments of the distri-

bution with the mean, variance, skewness and kurtosis. Fur-

thermore, a mean particle size can be defined as the ratio of

the moments M
(i+1)
j /M

(i)
j for any value of i. For example,

the Sauter mean diameter (defined as the ratio between the

mean volume and the mean surface area) is obtained by set-

ting i = 2, giving Lj,32 =M
(3)
j /M

(2)
j . Similarly, it is possi-

ble to define the mean particle length averaged with respect

to particle number density Lj,10 =M
(1)
j /M

(0)
j , i.e., the sum

of the lengths of particles (per unit volume) divided by the

number of particles (per unit volume), and the mean parti-

cle length averaged with respect to particle volume fraction

Lj,43 =M
(4)
j /M

(3)
j .

The motivation for the introduction of the moments is to

minimize computational costs by avoiding the discretization

of the size distribution in several classes, and nevertheless to

capture the polydispersity of the flow through the correct de-

scription of the evolution of the moments (Carneiro, 2011).

The moments approach also allows one to treat interparti-

cle processes such as particle aggregation and fragmentation

that strongly depend on and affect the GSD of the mixture

(Marchisio et al., 2003). The moments and the correspond-

ing transport velocities appear naturally in the mathematical

formulation as a direct consequence of the integration of the

Eulerian particle equations over the diameter spectrum, as

will be shown in the next section.

2.2 Moments of other quantities

In the plume model, several quantities characteristic of the

particles, such as settling velocity, density and specific heat

capacity, are also defined as functions of the particle diam-

eter, and thus we can define their moments as was carried

out for the particle size distribution fj (D). In general, for a

quantity ψj that is a function of the diameter D, we define

its moments as

ψ
(i)
j =

1

M
(i)
j

+∞∫
0

ψj (D)D
ifj (D)dD. (2)

As a first example, we consider here the moments of

particle density ρs. In particular, following Bonadonna and

Phillips (2003), density of lithics is assumed to be con-

stant, whereas density of pumices ρs,pum(D) with diameter

D <D2 (here equal to 2 mm) is assumed to decrease and

to reach the lithic density value when the fragment diame-

ter decreases belowD1 (here equal to 8 µm). Substituting the

expression for the particle density of the j th particle family

in Eq. (2), we obtain the moments of the density as

ρ
(i)
s,j =

1

M
(i)
j

+∞∫
0

ρs,j (D)D
ifj (D)dD. (3)

We remark that moments of different order are generally dif-

ferent, they will only be equal (ρ
(l)
s,j = ρ

(m)
s,j , l 6=m) in two

limiting cases: for a monodisperse distribution with diameter

D∗ and density ρ∗s , i.e., fj (D)= δ(D−D
∗) (where δ is the

Dirac-delta function) and ρs,j (D
∗)= ρ∗s ; or if all particles

have the same density, i.e., ρs,j (D)= ρ
∗

s,j , ∀D. In both cases,

ρ
(i)
s,j = ρ

∗

s,j , ∀i. Otherwise, there is no reason, e.g., for ρ
(1)
s,j

and ρ
(3)
s,j to be the same, as they represent length- and volume-

weighted density averages, respectively. For our application,

we are interested mostly in the volumetric-averaged density

ρ
(3)
s,j , i.e., the average mass per unit volume of particles from

now on denoted with ρ̃s,j .

The moments defined by Eq. (3) can also be used to define

other properties of the gas-particles mixture. For example, it

follows from the definition of the moments that if we have

a mixture of a gas with density ρg and a family of polydis-

perse distributions of particles with density ρs,j = ρs,j (D),

the mixture density is given by

ρmix =

∑
j

αs,j ρ̃s,j + (1−
∑
j

αs,j )ρg

=

∑
j

π

6
M
(3)
j ρ

(3)
s,j + (1−

∑
j

π

6
M
(3)
j )ρg, (4)

and consequently the mass fraction of the j th solid phase

with respect to the gas-particles mixture is given by

xs,j =
αs,j ρ̃s,j

ρmix

=

π
6
M
(3)
j ρ

(3)
s,j∑

j

π
6
M
(3)
j ρ

(3)
s,j + (1−

∑
j

π
6
M
(3)
j )ρg

. (5)

We also remark here that the gas phase is a mixture of at-

mospheric air, entrained in the plume during the rise in the

atmosphere, and a volcanic gas component, generally water

vapor. In the following, we will use the subscript atm to de-

note the atmospheric air and wv for the volcanic water vapor.

In contrast to the approach used in Barsotti et al. (2008),

where a constant settling velocity for each class is provided

by the user, here several models have been implemented in

the code (Pfeiffer et al., 2005; Textor et al., 2006a, b). For

the application presented in this work, the settling velocity is

defined as a function of the particle diameter and density as

in Textor et al. (2006a):

ws,j (D)=



k1

(
D

2

)2

ρs,j (D)

√
ρ0

atm

ρatm

D ≤ 10µm

k2

(
D

2

)
ρs,j (D)

√
ρ0

atm

ρatm

10<D ≤ 103 µm

k3

√
D

2

√
ρs,j (D)

CD

√
ρ0

atm

ρatm

D > 103 µm,

(6)

where k1 = 1.19× 105 m2 kg−1 s−1, k2 = 8 m3 kg−1 s−1 and

k3 = 4.833 m2 kg−1/2 s−1. The drag coefficient CD is a pa-

rameter accounting for the particle surface roughness, and
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for this work we used a value of 0.75 as in Carey and Sparks

(1986).

As carried out for particle density, it is possible to evaluate

the moments w
(i)
s,j of the settling velocity ws,j (D), defined as

w
(i)
s,j =

1

M
(i)
j

+∞∫
0

ws,j (D)D
ifj (D)dD (7)

and representing weighted integrals of the settling velocity

over the size spectrum. Again, moments of different order

are generally different. There is no reason, e.g., for w
(2)
s,j and

w
(3)
s,j to be the same, as they represent surface and volume-

weighted averages, respectively.

Finally, it is possible to define the moments C
(i)
s,j of the

particles’ specific heat capacity Cs,j :

C
(i)
s,j =

1

M
(i)
j

+∞∫
0

Cs,j (D)D
ifj (D)dD. (8)

We observe that for the specific heat capacity, we are gen-

erally not interested in a volumetric average but in the mass

average, denoted here with the notation Cs,j and given by the

following expression:

Cs,j =

+∞∫
0

Cs,j (D)
ρs,j (D)D

3

ρ̃s,jM
(3)
j

fj (D)dD

=
1

ρ̃s,j

[
Cs,jρs,j

](3)
. (9)

2.3 Mass fraction distribution

While in chemical engineering, where the method of mo-

ments is commonly used, the particle number distribution

fj (D) is generally preferred to describe the polydispersity

of the particles; in volcanology it is more common to use a

mass fraction distribution γj (φ), defined as a function of the

Krumbein phi (φ) scale:

φ =−log2

1000D

D0

,

where D is the diameter of the particle expressed in meters,

and D0 is a reference diameter, equal to 1 mm (to make the

equation dimensionally consistent).

In this case, the distribution γj (φ) represents the mass

fraction of particles (mass per unit mass of the gas-particles

mixture) of the j th family with diameter between φ and

φ+ dφ. Again, the shape of the distribution γj (φ) can be

characterized by its moments 5ij , defined by

5
(i)
j =

+∞∫
−∞

φiγj (φ)dφ. (10)

Also in this case the particular definition of γj (φ) allows for

a physical interpretation of the moments; for example, the

moment 5
(0)
j is the mass fraction of the j th solid phase xs,j

with respect to the gas-particles mixture. As carried out for

particle number distribution, it is possible to define a mean

particle size in terms of the moments of the mass fraction dis-

tribution as5
(i+1)
j /5

(i)
j ; this ratio, for i = 0, gives the mass-

averaged diameter, corresponding to the volume-averaged di-

ameter Lj,43 =M
(4)
j /M

(3)
j when the density ρs,j (φ) is con-

stant.

Again, it is possible to define the moments of other quan-

tities ψj (φ) in terms of the continuous distribution of mass

fraction γj (φ) as

ψ
(i)
j =

1

5
(i)
j

+∞∫
−∞

ψj (φ)φ
iγj (φ)dφ. (11)

For example, when the mass fraction distribution γj (φ) is

used, the mass-averaged heat capacity Cs,j is given by the

following expression:

Cs,j =
1

xs,j

+∞∫
−∞

Cs,j (φ)γs,j (φ)dφ = C
(0)
s,j (12)

and the volumetric-averaged density, i.e., the mass of parti-

cles per unit volume, can be evaluated from

1

ρ̃s,j

=
1

xs,j

+∞∫
−∞

γs,j (φ)

ρs,j (φ)
dφ =

[
1

ρs,j

](0)
. (13)

3 Plume model

In this section we describe the assumption and the equations

of the model. As in Bursik (2001), the model assumes an ho-

mogeneous mixture of particles and gases with thermal and

mechanical equilibrium between all phases. Aggregation and

breakage effects are not considered and consequently density

does not change with time. Finally, the model does not con-

sider effects of humidity and water phase changes.

The equation set for the plume rise model is solved in a

3-D coordinate system (s,η,θ) by considering the bulk prop-

erties of the eruptive mixture (see Fig. 1). The plume is as-

sumed with a circular section in the plane normal to the cen-

terline trajectory with curvilinear coordinate s, a top-hat pro-

file of the velocity along the centerline, an inclination on the

ground defined by an angle η between the axial direction and

the horizon, and an angle θ in the horizontal plane (x,y)with

respect to the x axis. These angles are needed to describe the

evolution of weak explosive eruptions that are strongly af-

fected by atmospheric conditions.

Following Bursik et al. (1992) and Ernst et al. (1996), the

conservation of flux of particles with sizeD of the j th family

Geosci. Model Dev., 8, 2447–2463, 2015 www.geosci-model-dev.net/8/2447/2015/
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Figure 1. Schematic representation of the Eulerian plume model.

The dashed black line represent the axis of the curvilinear coordi-

nate s.

is given by

d

ds

(
fj (D)πr

2Usc

)
=−2πrpws,j (D),fj (D) (14)

where r is characteristic plume radius, Usc represents the ve-

locity of the plume cross section along its centerline (a top-

hat profile is assumed) and p is the probability that an indi-

vidual particle will fall out of the plume, defined as a function

of an entrainment coefficient α as

p =

(
1+ 6

5
α
)2

− 1(
1+ 6

5
α
)2

+ 1

. (15)

Equation (14) states that the number of particles of the j th

family with size D lost from the plume is proportional to the

number of particles at the plume margin, given by fj (D)×

2πr , to the settling velocity ws,j (D) and to the probability

factor p.

Now, multiplying both the sides of Eq. (14) for Di and

then integrating over the size spectrum [0,+∞], we obtain

the following conservation equations for the moments M
(i)
j :

d

ds

(
M
(i)
j Uscr

2
)
=−2rpw

(i)
s,jM

(i)
j . (16)

If we compare our formulation with that presented in Barsotti

et al. (2008), where the effects of a polydisperse solid phase

are taken into account partitioning the size spectrum in a fi-

nite numberN of solid classes, the set of Eq. (16) replaces the

N mass conservation equations for the N particulate classes.

From Eq. (14), if we multiply both the terms by the mass

of the particles of size D, given by π
6
D3ρs,j (D), we obtain

the additional equation

d

ds

(
fj (D)

π

6
D3ρs,j (D)πr

2Usc

)
=

− 2πrpws,j (D)fj (D)
π

6
D3ρs,j (D) (17)

and, integrating over the size spectrum,

d

ds

(
Uscr

2π

6
M
(3)
j ρ

(3)
s,j

)
=−2rp

π

6
M(3)

[
ws,jρs,j

](3)
, (18)

where on the left-hand side the term π
6
M
(3)
j ρ

(3)
s,j represents

the volume average bulk density of the particles of the j th

family (i.e., the mass of particles of the j th family per unit

volume of gas-particles mixture, denoted with the superscript

B, ρBs,j ), while on the right-hand side the term
[
ws,jρs,j

](3)
represents the mass-averaged settling velocity of the particles

of the j th family multiplied by the volume-averaged particle

density. Equation (18) is the mass conservation equation for

the j th family of particles, relating the variation of the mass

flux of particles within the plume with the loss at the plume

margin.

Now, following the same procedure, we reformulate the

other conservation equations describing the steady-state as-

cent of the plume in terms of the moments of the continuous

distributions of sizes, densities and settling velocities instead

of the averages over a finite number of classes of particles

with different size.

First of all, we derive the conservation equation for the

mixture mass. As in the plume theory, we assume that the en-

trainment, due to both turbulence in the rising buoyant jet and

to the crosswind field, is parameterized through the use of

two entrainment coefficients, αε and γε . The theory assumes

that the efficiency of mixing with ambient air is proportional

to the product of a reference velocity (the vertical plume ve-

locity in one case and the wind field component along the

plume centerline in the other), by αε and γε (Morton, 1959;

Briggs, 1975; Wright, 1984; Weil, 1988). Thus, following

Hewett et al. (1971) and Bursik (2001), we define the en-

trainment velocity Uε as a function of wind speed, Uatm, as

well as axial plume speed, Usc:

Uε = αε |Usc−Uatm cosφ| + γε |Uatm sinφ|, (19)

where αε |Usc−Uatm cosφ| is entrainment by radial inflow

minus the amount swept tangentially along the plume mar-

gin by the wind, and γε |Uatm sinφ| is entrainment from

wind. With this notation, the total mass conservation equa-

www.geosci-model-dev.net/8/2447/2015/ Geosci. Model Dev., 8, 2447–2463, 2015
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tion solved by the model becomes

d

ds

(
ρmixUscr

2
)
= 2rρatmUε

− 2rp
∑
j

π

6
M
(3)
j

[
ws,jρs,j

](3)
, (20)

stating that the variation of mass flux (left-hand-side term)

is due to air entrainment (first right-hand-side term) and loss

of solid particles (second right-hand-side term), as obtained

from Eq. (18).

From Newton’s second law and the variation of mass flux,

we can derive also the horizontal and vertical components of

the momentum balance solved by the model as

d

ds

(
ρmixUscr

2(u−Uatm)
)
=

− r2ρmixw
dUatm

dz
− 2upr

∑
j

π

6
M
(3)
j

[
ws,jρs,j

](3)
, (21)

and

d

ds

(
ρmixUscr

2w
)
=

gr2(ρatm− ρmix)− 2wpr
∑
j

π

6
M
(3)
j

[
ws,jρs,j

](3)
, (22)

where the two components of plume velocity along the hor-

izontal and vertical axes are u and w, respectively, and they

are linked by the relation Usc =
√
u2+w2. In the right-hand

side of Eq. (21) the terms related to the exchange of momen-

tum due to the wind (Barsotti et al., 2008) and to momentum

loss from the fall of solid particles appear. Similar contri-

butions are evident in the right-hand-side term of Eq. (22)

where the vertical momentum is changed by the gravitational

acceleration term and the fall-out of particles.

Now, following the notation adopted above and denoting

with T the mixture temperature, the equation for conserva-

tion of thermal energy solved by the model is written as

d

ds

(
ρmixUscr

2CmixT
)
= 2rρatmUεCatmTatm

− r2wρatmg− 2Tpr
∑
j

π

6
M
(3)
j

[
Cs,jws,jρs,j

](3)
. (23)

The first term on right-hand side describes the cooling of the

plume due to ambient air entrainment, the second one takes

into account atmospheric thermal stratification, and the third

term allows for heat loss due to loss of solid particles. Again,

this last term is obtained writing the heat loss for the parti-

cles of sizeD, and then integrating over the size spectrum. A

thermal equilibrium between solid and gaseous phases is as-

sumed. In Eq. (23) Catm and Cmix are the heat capacity of the

entrained atmospheric air and of the mixture, respectively,

the latter being defined as

Cmix =

(
1−

∑
j

xs,j

)
Cp,g +

∑
j

xs,jCs,j (24)

or, in terms of the bulk densities ρBatm = xatmρmix, ρBwv =

xwvρmix and ρBs,j =
π
6
M
(3)
j ρ̃s,j , as

Cmix =

ρBatmCatm+ ρ
B
wvCwv+

∑
j

ρBs,jCs,j

ρBatm+ ρ
B
wv+

∑
j

ρBs,j
. (25)

From this expression, if we multiply all the terms at the nu-

merator and the denominator of the right-hand side by Uscr
2

and we differentiate with respect to s, we obtain after some

cancellation and algebra manipulations the following equa-

tion for the variation of the mixture specific heat with s:

dCmix

ds
=

1

ρmixUscr2

[
(Catm−Cmix)

d

ds

(
ρBatmUscr

2
)

+

∑
j

(
Cs,j −Cmix

) d
ds

(
ρBs,jUscr

2
)]

+

∑
j

ρBs,j

ρmix

 d
ds

(
Cs,jρ

B
s,jUscr

2
)

ρBs,jUscr2

−

Cs,j
d
ds

(
ρBs,jUscr

2
)

ρBs,jUscr2

 . (26)

Now, substituting the expressions for the derivatives appear-

ing in each term on the right-hand side, we obtain the equa-

tion for the variation rate of mixture specific heat in terms of

the moments:

dCmix

ds
=

1

ρmixUscr2

[
Catm2rρatmUε −Cmix

(
2rρatmUε

− 2pr
∑
j

π

6
M
(3)
j

[
ws,jρs,j

](3))
− 2pr

∑
j

π

6
M
(3)
j

[
ws,jρs,jCs,j

](3)]
. (27)

Similarly, a gas constant Rg can be defined as a weighted

average of the gas constant for the entrained atmospheric air

Ratm and the gas constant of the volcanic water vapor Rwv

Rg =
ρBatmRatm+ ρ

B
wvRwv

ρBatm+ ρ
B
wv

, (28)

and a conservation equation can be derived, knowing that the

variation of gaseous mass fraction with height is solely due

to entrained air:

dRg

ds
=

Ratm−Rg

ρmix(1− xs)Uscr2
× 2rρatmUε . (29)

This formulation reduces, for particular cases, to the expres-

sions of Woods (1988) and Glaze and Baloga (1996). Equa-

tions (27) and (29) are needed in order to close the system of
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equations and recover the new values of the temperature and

the mixture density once the system of ordinary differential

equations is integrated. Otherwise, without the solutions of

Eqs. (27) and (29), we should use the old values of ρmix and

Cmix at s to obtain the values of the temperature at s+ ds

from the lumped term (ρmixUscr
2CmixT ) obtained integrat-

ing Eq. (23).

Finally, as in Bursik (2001), the equations expressing the

coordinate transformation between (x,y,z) and (s,η,θ) are

given by

dz

ds
= sinη,

dx

ds
= cosηcosθ,

dy

ds
= cosη sinθ. (30)

3.1 Mass fraction distribution

Similarly to the distribution of particle number fj (D) and the

moments M
(i)
j , it is possible to derive a set of conservation

equations in terms of the moments 5
(i)
j of the mass fraction

distribution γj (φ) expressed as a function of the Krumbein

scale.

In this case, the conservation of mass flux of particles with

size φ of the j th family is written as

d

ds

(
ρmixγj (φ)πr

2Usc

)
=−2πrpws,j (φ)ρmixγj (φ). (31)

Multiplying both sides of the equation by φi and integrating

over the size spectrum [−∞,+∞], we obtain the following

conservation equations for the moments of the continuous

distributions γj (φ):

d

ds

(
5
(i)
j ρmixUscr

2
)
=−2rpρmixw

(i)
s,j5

(i)
j . (32)

For i = 0, the equations of conservation of the moments give

d

ds

(
xs,jρmixUscr

2
)
=−2rpρmixw

(0)
s,j xs,j (33)

expressing the loss of mass flux of the particles of the j th

family and thus we can write the total mass conservation

equation as

d

ds

(
ρmixUscr

2
)
= 2rρatmUε − 2rpρmix

∑
j

w
(0)
s,j5

(0)
j . (34)

From the variation of mass flux, as was carried out for the

distribution of particle number fj (D) and the momentsM
(i)
j ,

we derive the horizontal and vertical components of the mo-

mentum balance:

d

ds

(
ρmixUscr

2(u−Uatm)
)
=

− r2ρmixw
dUatm

dz
− 2uprρmix

∑
j

w
(0)
s,j5

(0)
j , (35)

d

ds

(
ρmixUscr

2w
)
=

gr2(ρatm− ρmix)− 2wprρmix

∑
j

w
(0)
s,j5

(0)
j . (36)

The equation for conservation of thermal energy is

d

ds

(
ρmixUscr

2CmixT
)
= 2rρatmUεCatmTatm

− r2wρatmg− 2Tprρmix

∑
j

[
Cs,jws,j

](0)
5
(0)
j (37)

and the equation for the variation rate of mixture specific heat

in terms of the moments of the mass fraction distribution is

written as

dCmix

ds
=

1

ρmixUscr2

[
Catm2rρatmUε −Cmix

(
2rρatmUε

− 2rpρmix

∑
j

w
(0)
s,j5

(0)
j

)
− 2prρmix

∑
j

[
Cs,jws,j

](0)
5
(0)
j

]
. (38)

The formulation of the equations for the gas constant Rg

and the coordinates of the (x,y,z) remain unchanged.

4 Numerical scheme

The plume rise equations are solved with a predictor–

corrector Heun’s scheme (Petzold and Ascher, 1998) that

guarantees a second-order accuracy, keeping the execution

time on the order of seconds. If we rewrite the system of

ordinary differential equations with the following compact

notation:

dy

ds
= f (s,y), y(s0)= y0, (39)

where y is the vector of the quantities in the left-hand sides of

the conservation equations presented in the previous section,

then the procedure for calculating the numerical solution by

way of Heun’s method (Süli and Mayers, 2003) is to first

calculate the intermediate values ỹi+1 and then the solution

yi+1 at the next integration point

ỹi+1 = yi + dsf (si,yi), predictor step (40)

yi+1 = yi +
ds

2

(
f (si,yi)+ f (si+1, ỹi+1)

)
, corrector step.
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4.1 Quadrature method of moments

We observe that to calculate the right-hand side for both the

predictor and corrector step we need not only the moments

M(i) but also the additional moments [ws]
i , [wsρs]

(i) and

[wsρsCs]
(i). As in Marchisio and Fox (2013), the integral in

the definition of these moments is replaced by a quadrature

formula and the moments, for a generic variable ψ = ψ(D),

are approximated as

ψ (i) =
1

M(i)

+∞∫
0

ψ(D)f (D)DidD ≈

N∑
l=1

ψ(Dl)D
i
lωl . (41)

Here ωl and Dl are known as “weights” and “nodes” (or

“abscissae”) of the quadrature, respectively, and the accuracy

of a quadrature formula is quantified by its degree. The de-

gree of accuracy is equal to d if the interpolation formula is

exact when the integrand is a polynomial of an order less than

or equal to d and there exists at least one polynomial of an

order d + 1 that makes the interpolation formula inexact. In

particular, an N point Gaussian quadrature rule, is a quadra-

ture rule constructed to yield an exact result for polynomials

of degree 2N−1 or less by a suitable choice of the nodesDl
and weights ωl for l = 1, . . .,N (Golub and Welsch, 1969).

The Wheeler algorithm, as presented in Marchisio and Fox

(2013), provides an efficient O(N2) algorithm for finding a

full set of weights and abscissas for a realizable moment set.

The resulting nodes Dl are always within the support (and

therefore represent realizable values of the particle size), and

the weights ωl are always positive, ensuring that, when the

quadrature is used, accurate results are obtained (Marchisio

and Fox, 2013). Nevertheless, these properties are respected

only if the moment set is realizable, meaning that there ex-

ists a particle size distribution resulting in that specific set of

moments.

A strategy that might overcome the problem of moment

corruption (i.e., the transformation during the integration of

the moment-transport equations of a realizable set of mo-

ments into an unrealizable one) is replacing unrealizable mo-

ment sets as soon as they appear. An algorithm of this kind

was developed by McGraw (McGraw, 2006). The algorithm

first verifies whether the moment set is realizable (by look-

ing at the second-order difference vector or by looking at the

Hankel–Hadamard determinants; Gautschi, 2004). If the mo-

ment set is unrealizable it proceeds with the correction. In the

numerical model presented here, the implementation of the

correction algorithm of Wright (1984) is derived from the

version presented in Marchisio and Fox (2013).

Thus, in both the predictor and corrector step, the follow-

ing algorithm is used:

– The nodes Dj,l and weights ωj,l are calculated with the

Wheeler algorithm for l = 1, . . .,N .

– The quadrature formula (Eq. 41) is used to evaluate the

moments [ws]
(i)
j , [wsρs]

(i)
j and [wsρsCs]

(i)
j .

– The right-hand side of the ODE’s system (Eq. 39) is

evaluated explicitly.

– The solution is advanced with the predictor (or the cor-

rector) step of the Heun’s scheme.

– For each particle family j , the moments M
(i)
j (i =

0, . . .,2N − 1), if required, are corrected with the Mc-

Graw (or Wright) algorithm.

We observe that if the j th family of particles is monodis-

perse with diameter dj , the Wheeler algorithm fed with the

first two moments only gives a result of a single quadrature

node Dj,1 = dj with weight ωj,1 = 1. This allows us also to

use the model for the simplified case where the solid particle

distribution is partitioned in a finite number of classes with

constant size, assigning to each class a monodisperse distri-

bution.

4.2 Initial condition

Initial conditions at the vent include the initial plume radius

(r0), mixture velocity (Usc,0) and temperature (T0), gas mass

fraction (n0) and the particle size distribution through the ini-

tial moments M
(i)
0 . In the next section we derive analytically

the moments of a specific initial distribution (a normal dis-

tribution in the Krumbein scale) for both the formulations

based on the number of particles as a function of the parti-

cle diameter expressed in meters and the formulation based

on the mass concentration expressed as a function of the phi

scale.

Lognormal distribution

For the application presented in this work, the initial distri-

bution f (D) at the base of the plume is defined as a function

of the particle diameter expressed in meters (m), in order to

give a corresponding normal distribution with parameters µ

and σ for the mass concentration expressed as a function of

the Krumbein phi (φ) scale (when all the particles have the

same density):

γ (φ)=
K0

σ
√

2π
e
−
(φ−µ)2

2σ2 , (42)

where K0 is a parameter that has to be chosen in order to

satisfy the initial condition on the solid mass fraction.

Given the parameters µ and σ , the initial distribution

f (D) is then written as

f (D)=
6C0

(−σ ln2)D4
√

2π3
e
−

[− ln(1000D)−µ ln2]2

2(σ ln2)2 , (43)

where C0, analogously to K0, is a parameter that has to be

fixed in order to satisfy the initial condition prescribed for

the mass (or volume) fraction of particles.

Geosci. Model Dev., 8, 2447–2463, 2015 www.geosci-model-dev.net/8/2447/2015/



M. de’ Michieli Vitturi et al.: PLUME-MoM 2455

We observe that if we introduce the following re-scaled

variables for the diameter, the mean and the variance:

D = 1000D, µ=−µ ln2, σ =−σ ln2, (44)

then it is possible to rewrite the particle distribution f (D)

in terms of a lognormal distribution in the variable D with

parameters µ and σ :

f (D)=
6× 1012C0

πD
3

1

σD
√

2π
e
−

[ln(D)−µ]2

2σ2

=
6× 1012C0

πD
3

lognorm (D,µ,σ ). (45)

Consequently, we can evaluate the moments M(i) of f (D)

analytically from the moments of the lognormal distribution

as

M(i)
=

6C0

π
103(3−i) exp

[
(i− 3)µ+

1

2
(i− 3)2σ 2

]
, (46)

and we obtain, for the third moment,

M(3)
=

6C0

π
⇒ C0 = α

0
s , (47)

where α0
s is the initial volume fraction of the particles in the

solid-gas mixture.

From the expressions of the moments it follows also that, if

the mass concentration expressed as a function of the Krum-

bein scale has a normal distribution, the Sauter mean diame-

ter DA expressed in meters can be evaluated as

DA = L32 =
M(3)

M(2)
= 10−3 exp

(
µ−

1

2
σ 2

)
, (48)

or, if expressed in φ, as

D
φ
A = L

φ
32 = µ+

1

2
σ 2 ln(2). (49)

Processes involving the mutual interaction between par-

ticles and the interaction between the particles and the car-

rier fluid (friction and cohesion between the particles; vis-

cous drag; chemical reactions between fluid and solid com-

ponents) operate at the surface of the particles. For this rea-

son the Sauter mean diameter, based on the specific area of

the particles, is a convenient descriptor and it is important to

remark that it differs from the meanµ of the lognormal distri-

bution by a factor proportional to the variance σ 2. For numer-

ical models describing the multi-phase (particulate) nature of

the matter and which approximate the particle size distribu-

tion with an average size, it is hence more appropriate to use,

as particle size representative of a lognormal distribution, the

Sauter mean diameter than the mean diameter µ. The differ-

ence between the two approximations is smaller the narrower

the particle size distribution. We must also remark that, for

particles in the inertial-dominated regime (e.g.,Rep > 2000),

Loth et al. (2004) showed that the Sauter mean diameter is

the effective diameter, regardless of particle shape, particle

size distribution, particle density distribution or net volume

fraction; for particles in the creeping flow regime (Rep� 1)

the effective mean diameter is the volume-width diameter.

When the Sauter mean diameter is used, also the variance

and the standard deviation SD should be based on the specific

surface area (Rietema, 1991). Hence,

σ 2
A =

+∞∫
0

(
1

D
−

1

DA

)2
π

6
D3f (D)dD, (50)

or expressed as a function of the moments:

σ 2
A =

M(1)M(3)
− (M(2))2

(M(3))2
. (51)

Finally, we note that if the particle density is constant

and the mass concentration expressed as a function of the

Krumbein scale has a lognormal distribution and both the

Sauter mean diameter L32 =M
(3)/M(2) and the mean par-

ticle length averaged with respect to particle number density

L10 =M
(1)/M(0) (or if the first 4 moments) are known, then

we can solve for the re-scaled mean and variance µ and σ

the following system:
L10 = 10−3 exp

(
µ−

5

2
σ 2

)
L32 = 10−3 exp

(
µ−

1

2
σ 2

) . (52)

Once the re-scaled mean and variance are known, we can

obtain µ and σ in the Krumbein φ scale.

When the initial distribution is expressed for the mass frac-

tions instead of the particle number, and the mass fraction

written as a function of the Krumbein scale has a normal dis-

tribution with mean µ and variance σ 2, then the continuous

distribution is given by Eq. (42). We observe that this ex-

pression of the distribution is not based on the assumption of

constant density for the particles of different size.

In this case, the moments 5(i) are given by the following

expression

5(i) =K0

di/2e∑
j=0

(
i

2j

)
(2j − 1)!!σ 2jµi−2j . (53)

where the symbols de and !! denote the integer part and the

double factorial (n!! =
∏m
k=0(n−2k), wherem= dn/2e−1),

respectively.

Now, as the 0th moment is equal to the mass frac-

tion of particles, we obtain K0 = xs. Furthermore, we ob-

serve that the mass fraction-averaged diameter in the φ

scale is given by the ratio 5(1)/5(0), while the vari-

ance of the mass fraction distribution can be evaluated as
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Table 1. Input parameters used for the numerical simulations. Vent height is the elevation of the base of the column above sea level. The

values ρ1,2 andD1,2 are used to compute the density of the particles as a function of the diameter, according to the formulation of Bonadonna

and Phillips (2003). The values reported for µ and σ define the range used for the uncertainty quantification and sensitivity analysis.

Parameters Units Test case 1 Test case 2 Test case 3

Vent radius m 27 27 708

Vent velocity m s−1 135 135 275

Vent temperature K 1273 1273 1053

Vent gas mass fraction 0.03 0.03 0.05

Vent height m 1500 1500 1500

ρ1 kg m−3 2000 2000 2000

ρ2 kg m−3 2600 2600 2600

D1 m 8× 10−6 8× 10−6 8× 10−6

D2 m 2× 10−3 2× 10−3 2× 10−3

µ φ [−1.0;3.0] [−1.0;3.0] [−1.0;3.0]

σ φ [0.5;2.5] [0.5;2.5] [0.5;2.5]

[
5(2)5(0)− (5(1))2

]
/(5(0))2. These two quantities corre-

spond to the parameters (µ,σ 2) generally used to describe

the mass fraction when a normal distribution in the φ scale is

assumed. For this reason, when we want to track the changes

of the mass fraction-averaged diameter and its standard de-

viation (or variance) in the φ scale during the plume rise, it

is preferred to use a formulation based on the moments 5(i)

than the moments M(i).

5 Application

5.1 Simulation inputs

We applied the model to three different test cases with differ-

ent vent and atmospheric conditions:

– test case 1 – low-flux plume without wind;

– test case 2 – low-flux plume with wind (weak bent

plume);

– test case 3 – high-flux plume (strong plume).

The parameters used for the different test cases are listed

in Table 1, while the atmospheric conditions are plotted in

Fig. 3. For the low-flux plumes, a mass flow rate of 1.5×

106 kg s−1 has been fixed, while for the strong plume the

value is 1.5× 109 kg s−1. The temperature pressure and den-

sity profiles used for the test case without wind (test case 1)

are those defined by the International Organization for

Standardization for the International Standard Atmosphere

(Champion et al., 1985), while the profiles for the other two

test cases come from reanalysis data.

For all the runs presented here, a single family of particles

has been used, with a normal distribution (with parameters µ

and σ ) for the mass concentration as a function of the diam-

eter expressed in the φ scale and with density varying with

the particle diameter.

We first present a comparison of the plume profiles ob-

tained with the three different descriptions presented in the

previous sections and highlighted in the three colored boxes

of Fig. 2 for the test case 2: method of moments for the par-

ticle number that is the function of the size expressed in me-

ters; method of moments for the particle mass fraction that is

the function of the size expressed in the φ scale; discretiza-

tion in uniform bins in the φ scale. For this comparison, the

mass flow rate at the vent is 1.5× 106 kg s−1 and a rotating

wind is present, as shown in Fig. 3, while the mean and the

standard deviation of the initial total grain-size distribution

are, respectively, 2 and 1.5, expressed in the φ scale. The

results of the numerical simulations obtained with the three

different formulations are presented in Fig. 4 and they per-

fectly match, showing that the method of moments (dotted

lines), both applied to the continuous distribution of the par-

ticle number (red) or to the mass distribution (green), gives

the same results of the classical formulation based on the

discretization of the mass distribution in bins (solid line).

For these simulations, we used only the first six moments

of the distributions, while 13 bins have been employed with

the discretized formulation. This results in a smaller number

of equations to solve for the method of moments and, de-

spite the additional cost of the method of moments due to the

evaluation of the quadrature points and formulas through the

Wheeler algorithm, in a smaller computational time, with a

gain of about 30 %.

5.2 Simulation results

In this section we want to study the variation during the as-

cent of solid mass flux (due to particle settling) and of the

mean and the variance of the mass distribution along the col-

umn. As shown in the previous section, there are no signifi-

cant differences in the results obtained with the three differ-

ent descriptions of the grain-size distribution. For this reason,

in the following we restrict the analysis only to the formula-

Geosci. Model Dev., 8, 2447–2463, 2015 www.geosci-model-dev.net/8/2447/2015/



M. de’ Michieli Vitturi et al.: PLUME-MoM 2457

Number-averaged Mean
Diameter (M(1)/M(0))

Length-averaged Mean
Diameter (M(2)/M(1))

Diameter (m)

0

10

20
P
ar

tic
le

s 
vo

lu
m

e
di

st
rib

ut
io

n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

2

4
x 10

4

Diameter (m)

P
ar

tic
le

s 
m

as
s

di
st

rib
ut

io
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10 5 0 5 10
0

0.2

0.4

Diameter (φ)

M
as

s 
fr
ac

tio
n

di
st

rib
ut

io
n

- -

--10 5 0 5 10
0

20

40

Diameter (φ)

T
ot

al
 g

ra
in

 s
iz

e
di

st
rib

ut
io

n
(m

as
s 

%
)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-50

10
0

10
50

Diameter (m)
P
ar

tic
le

s 
nu

m
be

r
di

st
rib

ut
io

n

Sauter Mean
Diameter (M(3)/M(2))

Mean value μ of the initial
mass-fraction distribution
expressed as a function of
diameter in the phi scale

Figure 2. Visualization of a normal initial distribution in the Krumbein φ scale for the solid particles. On the top plot, the particle number

distribution expressed as a function of the diameter expressed in meters is plotted. On the second and third plots from the top, the correspond-

ing distributions of volume and mass are plotted, these two being different because the density is a function of the diameter. On the fourth

plot the continuous distribution (lognormal) of mass fraction as a function of the φ scale is plotted, while in the last plot the distribution has

been discretized with 13 bins in the range (−4;8). On each panel different average radii are also plotted, together with the mean of the initial

distribution. The first, fourth and fifth panel are highlighted with different colors, also used in Fig. 4 for the solutions obtained with the three

different representations of the initial grain-size distribution.
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Figure 3. Atmospheric profiles for the three test cases. The height is expressed in meters above sea level, and for all the test cases the vent is

located at 1500 m above sea level. For the wind profiles, only the profiles for the two test cases with wind are plotted.

tion based on the moments of the mass fraction distribution

as a function of the diameter expressed in the φ scale. With

this approach, the mean, the variance and the skewness of the

mass distribution along the column are easily obtained from

the first four moments 5(i) of the mass fraction distribution.

In Fig. 5 we present the results relative to the test case 2

for an initial particle size distribution with mean diameter 2

and standard deviation 1.5, expressed in the φ scale. In the

left and middle panels the mean, the variance and the skew

of the mass fraction distribution are shown, while in the right

panel the cumulative loss of solid mass flux is plotted as a

percentage of the initial value. We observe a decrease in the

mean size of the particles, due to the different settling veloc-

ities of particles of different sizes. A decrease in the variance

of the size distribution with height is also observed from the

second plot. We remark that the particles have a normal dis-

tribution only at the base of the column (resulting in a null

skewness), and the negative skew at the top of the column

indicates that the tail on the left side of the grain-size distri-

bution is longer than the tail on the right side; i.e., the mass
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Figure 4. Height vs. radius (left) and velocity (right) for a low-flux

plume, simulated with three different models. In blue the profiles

obtained using 13 bins, in red the profiles obtained using a continu-

ous distribution of the particle number density and in green using a

continuous distribution of the mass fraction.

is more concentrated on the right of the spectrum of particle

sizes (finer particles). For this reason we do not have to look

at the mean and the variance plotted in Fig. 5 as the param-

eters of a normal (and symmetric) distribution. Nonetheless,

changes in the mean, the variance and the skewness are ob-

served, we remark that these changes are quite small and for

this reason the parameters of the total grain-size distribution

at the top of the eruptive column are a good approximation

of the parameters at the base of the column, and vice versa.

However, this is true for the specific input condition of this

test case and not in general. For this reason, it is important

to quantify the uncertainty of this assumption for different

initial total grain-size distributions and different atmospheric

conditions.

5.3 Uncertainty and sensitivity analysis

When dealing with volcanic processes and volcanic hazards,

our understanding of the physical system is limited, and vent

parameters (volatile contents, temperature, grain-size distri-

bution, etc.) are often not well constrained or are constrained

with significant uncertainty. These factors mean that it is dif-

ficult to predict the characteristic of the ash cloud released

from the volcanic column with certainty. An alternative is

to quantify the probability of the outcomes (for example the

grain-size distribution at the top of the column) by coupling

deterministic numerical codes with stochastic approaches. It

is our goal in this work also to assess the ability to systemati-

cally quantify the uncertainty and the sensitivity of the plume

model outcomes to uncertain or variable input parameters, in

particular to those characterizing the grain-size distribution

at the base of the eruptive column.

Uncertainty quantification (UQ) or nondeterministic anal-

ysis is the process of characterizing input uncertainties, prop-

agating forward these uncertainties through a computational

model, and performing statistical or interval assessments on

the resulting responses. This process determines the effect

of uncertainties on model outputs or results. In particular, in

this work we wanted to investigate for different test cases the

uncertainty in four response functions (plume height, solid

mass flux lost and mean and variance of the mass fraction
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Figure 5. Particle distribution parameters (mean, variance and

skewness) and cumulative loss of solid mass flux for the test case 2

(low flux without wind), simulated with the formulation based on

the moments of the mass fraction distribution.

distribution at the top of the eruptive column) when the mean

and the standard deviation of the distribution at the base are

random variables with a uniform probability distribution in

the space (µ,σ ) ∈ [−1;3]× [0.5;2.5].

In volcanology Monte Carlo simulations are frequently

used to perform uncertainty quantification analysis. These

methods rely on repeated random sampling of input param-

eters to obtain numerical results; typically one runs simula-

tions many times over in order to obtain the distribution of

an unknown output variable. The cost of the Monte Carlo

method can be extremely high in terms of number of simula-

tions to run, and thus several alternative approach have been

developed. LHS is another sampling technique for which the

range of each uncertain variable is divided into Ns segments

of equal probability, where Ns is the number of samples re-

quested. The relative lengths of the segments are determined

by the nature of the specified probability distribution (e.g.,

uniform has segments of equal width; normal has small seg-

ments near the mean and larger segments in the tails). For

each of the uncertain variables, a sample is selected randomly

from each of these equal probability segments. TheseNs val-

ues for each of the individual parameters are then combined

in a shuffling operation to create a set ofNs parameter vectors

with a specified correlation structure. Compared to Monte

Carlo sampling, the LHS has the advantage that in the re-

sulting sample set every row and column in the hypercube of

partitions has exactly one sample, and thus a smaller number

of samples is required to cover all the parameter space. In the

left panel of Fig. 6 an example of LHS with Ns = 10 and a

uniform distribution probability for both µ and σ is plotted.

An alternative approach to uncertainty quantification is the

so-called generalized polynomial chaos expansion method, a

technique that mirrors deterministic finite element analysis

utilizing the notions of projection, orthogonality and weak

convergence (Ghanem and Red-Horse, 1999). The polyno-

mial chaos expansion (PCE) method was developed by Nor-

bert Wiener in 1938 and it soon became widely used because
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Figure 6. Two-parameters Latin hypercube sampling (LHS) with

10 points (left) and tensor product grid using 9×9 Clenshaw–Curtis

points (right).

of its efficiency when compared to Monte Carlo simulations.

The term “chaos” here simply refers to the uncertainties in

input, while the word “polynomial” is used because the prop-

agation of uncertainties is described by polynomials. If ζ is

the vector of uncertain input variables, the aim of the gPCE

is to express the response function Y in the form of a poly-

nomial ξ as follows:

ξ(ζ )= ξ0+ ξ1P1(ζ )+ ξ2P2(ζ )+ . . .+ ξmPm(ζ ), (54)

where P1, . . .,Pm are polynomials that form an orthogonal

basis. The choice of the polynomials basis depends on the

probability distribution of the input variables. In particular,

for a uniform distribution, the basis of the expansion is given

by the Lagrange polynomials. For the application presented

in this work the coefficients of the expansion have been eval-

uated using a spectral projection where the computation of

the required multi-dimensional integrals is based on the ten-

sor product of 1-D Gaussian quadrature rules. In order to

compute the quadrature points, the grid used in our work is

the Clenshaw–Curtis grid (Fig. 6, right), representing a good

solution for a multi-dimensional Gaussian quadrature with a

small number of variables (Eldred and Burkardt, 2009).

We present here the results of several tests performed cou-

pling the plume model with the Dakota toolkit (Adams et al.,

2009) to investigate systematically the capability of the LHS

and the gPCE techniques to assess the uncertainty in four

response functions (plume height, solid mass flux lost and

mean and variance of the mass fraction distribution at the

top of the eruptive column) when the mean and the variance

at the base are unknown. For all the test cases three sets of

500, 1000 and 2000 simulations have been performed for the

LHS, and the results have been compared with those obtained

with three tests for the gPCE and respectively 9, 36 and

81 simulations performed for the multi-dimensional quadra-

ture. The first set of runs for the LHS, consisting of 500 simu-

lations only, was not sufficient to provide accurate results and

for this reason in the following we presents only the results

obtained with 1000 and 200 simulations. In order to com-

pare the two techniques, the cumulative distributions of the

four response functions obtained with the LHS and the gPCE,

have been plotted in Fig. 7 for test case 1 (no wind). On the

x axes we can see the range of the values obtained for the re-

sponse functions:−1–3.5 for the mean of the total grain-size

distribution (TGSD) at top of the column expressed in the φ

scale; 0.4–2.2 for the standard deviation; 10.41–10.47 km for

the column height and 10–60 % for the percentage of solid

mass flux lost. All the uncertainty quantification tests pro-

duced very similar results, with a small difference in the cu-

mulative distribution observed only in the distribution of the

solid mass flux lost obtained with the gPCE technique and 9

and 36 quadrature points. Similar results have been obtained

for the other test cases (not shown here). Thus, the results

highlights that for the model and the applications presented

in this work gPCE represents a valid alternative to Monte

Carlo simulations, with a number of runs required to produce

the same accuracy reduced by a factor 10 (81 simulations

vs. 1000 simulations). If more parameters were varied, the

computational cost would increase for both gPCE and LHS,

although the advantage of gPCE would be reduced.

As mentioned previously, the aim of the gPCE is to express

the output of the models as polynomials and these polyno-

mials can be used to obtain response surfaces for the out-

put parameters as functions of the unknown input parameters

through the polynomials defined by Eq. (54). In the four bot-

tom panels of Fig. 7 the contours of the four response sur-

faces for the output investigated in this work have been plot-

ted, showing the dependence on the uncertain input parame-

ters. The mean and the standard deviation of the TGSD at the

top of the eruptive column clearly reflects the corresponding

values at the bottom, with a small effect of the bottom stan-

dard deviation on the mean size at the top, resulting in an

increase in the average grain size with increasing values of

the initial standard deviation (see the curves in the first panel

bending on the left for higher values of σ ). Conversely, the

plume height for this test case shows a nonlinear dependency

but at the same time a small sensitivity to the initial grain-size

distribution, with changes, for the specific conditions consid-

ered here, smaller than 1 % of the average height. This can be

explained by the fact that a large amount of air is entrained in

the column during the ascent and the contribution of the solid

fraction to the overall dynamics becomes small compared to

that exerted by the gas. Finally, we observe that the loss of

particles is mostly controlled by the mean size of the TGSD.

In Fig. 8 the same contour plots are shown for the polyno-

mial expansion computed for test case 2 (top) and test case 3

(bottom) with 81 quadrature points. The results show again

that the total grain-size distribution at the base of the vent

represents a reasonable approximation of that at the top of the

column. For these test cases, both the column height and the

solid mass lost appear to be mostly controlled by the mean

size of the TGSD at the base of the column, with a small sen-

sitivity of the height to the initial grain-size distribution. We

also observe that the maximum percentage of loss in the solid

mass flux is about 15 % for the strong plume simulations, and

it is attained for larger mean sizes and smaller variance of the
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Figure 7. Cumulative distributions and response surfaces for test case 1 (low-flux plume without wind). In the top panels the cumulative

probability for several variables describing the outcomes of the simulations (mean and variance of the grain-size distribution at the top of the

column, column height and cumulative fraction of solid mass lost) are plotted for the uncertainty quantification analysis carried out with the

two different techniques and for different numbers of simulations. The contour plots of the response functions of the four output variables,

resulting by the polynomials given by Eq. (54) and obtained with the PCE with 81 quadrature points, are plotted in the bottom panels. The

variables contoured in the lower panels are the same as those on the horizontal axes in the upper panels.

initial TGSD. This value is noticeably smaller than that ob-

tained for the weak bent test case (≈ 40 %) and for the weak

test case without wind (≈ 60 %). Despite the loss of particles,

in both the cases the range of variation of the column height

is quite small and, as previously mentioned, this is due to the

large amount of air entrained in the volcanic column that re-

duces the contribution of the solid fraction to the overall dy-

namics. As an example to understand the relevance of the en-

trained air, for a simulation performed for the low-flux plume

without wind and with µ= 2 and σ = 1.5 in the φ scale, the

mass flow rate at the top of the column is 1.2× 108 kg s−1,

compared to the value at the base of 1.5× 106 kg s−1.

5.4 Sensitivity analysis

With the polynomial chaos expansion it is also possible to

easily obtain the variance-based sensitivity indices (Saltelli

et al., 2008) with no additional computational cost. In con-

trast with some instances, where the term sensitivity is used

in a local sense to denote the computation of response deriva-

tives at a point, here the term is used in a global sense to de-

note the investigation of variability in the response functions.

In this context, variance-based decomposition is a global sen-

sitivity method that summarizes how the variability in model

output can be apportioned to the variability in individual in-

put variables (Adams et al., 2009). This sensitivity analysis

uses two primary measures, the main effect sensitivity index

Si and the total effect index Ti. These indices are also called

the Sobol indices. The main effect sensitivity index corre-

sponds to the fraction of the uncertainty in the output, Y , that

can be attributed to input xi alone. The total effects index

corresponds to the fraction of the uncertainty in the output,

Y , that can be attributed to input xi and its interactions with

other variables. The main effect sensitivity index compares

the variance of the conditional expectation Varxi
[E(Y |xi)]

against the total variance Var(Y ). Formulas for the indices

are

Si =
Varxi

[(Y |xi)]

Var(Y )
(55)

and

Ti =
E(Var(Y |X−i))

Var(Y )
, (56)

where Y = f (x) and x−i = (x1, . . .,xi−1,xi+1, . . .,xm). Sim-

ilarly, it is also possible to define the sensitivity indices

for higher-order interactions such as the two-way interac-

tion Si,j . The calculation of Si and Ti requires the evaluation
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Figure 8. Response surfaces for test case 2 (low-flux plume with wind, four top panels) and test case 3 (strong plume with wind, four bottom

panels) obtained with the PCE with 81 quadrature points. Please note that the color scale is not consistent between plots.

of m-dimensional integrals that are typically approximated

by Monte Carlo sampling. However, in stochastic expansion

methods, it is possible to approximate the sensitivity indices

as analytic functions of the coefficients in the stochastic ex-

pansion.

The results of the sensitivity analysis for the four outputs

and the three test cases investigated are presented in the bar

plot of Fig. 9. For each of the four groups (one for each of the

different output functions), the three bars represent the main

sensitivity indices for the three test cases (test 1 on the left,

test 2 in the middle and test 3 on the right), while the different

colors are for the sensitivity indices with respect to different

variables (blue is for the mean of the initial TGSD, green

for the standard variation of the initial TGSD and brown for

the second-order coupled interaction). Again, the sensitivity

analysis confirms that the mean and the standard deviation of

the grain-size distributions at the top of the eruptive column

are controlled primarily by the respective parameters of at

base of the column. The mean of the TGSD also controls the

percentage of solid mass flux lost during the rise of the col-

umn and the plume height for the two test cases with wind,

while for the weak test case without wind the dispersion of

the distribution and second-order interaction also play a ma-

jor role in controlling plume height variability. However, as

already observed with the uncertainty quantification analy-

sis, we remark that the variability in the plume height, when

the mean and the standard deviation of the TGSD vary in the

investigated ranges, is extremely small for all the test cases

(less than 1% with respect to the average values), and thus

the investigation of how the variability in model output can

be apportioned to the variability in individual input variables
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Figure 9. Sobol main sensitivity indices. For each of the four output

parameters the three bars are for the different test cases: test case 1

on the left, test case 2 in the middle and test case 3 on the right. For

each test case the different colors of the bars are for the different

sensitivity indices: blue for first-order sensitivity index with respect

to the bottom TGSD mean, green for the first-order sensitivity index

with respect to the bottom TGSD standard deviation and brown for

the second-order combined sensitivity index.

is less relevant for the plume height than for the other output

parameters.

6 Conclusions

In this work we have presented an extension, based on the

method of moments, of the Eulerian steady-state volcanic

plume model presented in Barsotti et al. (2008) (derived from

Morton, 1959; Ernst et al., 1996; Bursik, 2001). Two differ-

ent formulations, one based on a continuous distribution of

the number of particles as a function of the size and a second

based on the continuous distribution of the mass fraction,

have been presented. The tracking of the moments of mass

distribution, defined as a function of the Krumbein phi scale,
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has the advantage that with the first three moments only we

are able to recover the mean and the standard deviation of

the total grain-size distribution. The results of a comparison

between the two formulations based on the method of mo-

ments and the classical formulation based on the discretiza-

tion of the mass distribution in bins show that the different

approaches produce the same results, with an advantage of

the method of moments in terms of computational costs. Fur-

thermore, a formulation based on continuous description of

particle size, is better suited to properly describe complex in-

terparticle processes such as particle aggregation and frag-

mentation that are likely to play an important role in the

plume evolution. In particular, the method of moments has

already been successfully applied to model aggregation and

breakage processes in particulate systems (Marchisio et al.,

2003).

An uncertainty quantification analysis has also been ap-

plied to the formulation based on the moments of the mass

distribution. The results show, for the range of conditions

investigated here and neglecting likely relevant interparticle

processes such as particle aggregation and comminution, a

small change of the mean and variance of the particle mass

distribution along the column, indicating that the total grain-

size distribution at the base of the vent represents a reason-

able approximation of that at the top of the column. Further-

more, based on the plume model assumptions and outcomes,

we observe a small sensitivity of the plume height to the ini-

tial grain-size distribution, with variations on the order of

tens of meters for a plume rising to several kilometers.

For the application presented in this work, involving only

two parameters, the comparison between the Latin hypercube

sampling technique and the gPCE method shows that the

latter only requires 81 simulations to produce the same re-

sults, in terms of cumulative probability distributions of sev-

eral output, obtained with 1000 simulations and the LHS. In

fact, the full uncertainty quantification analysis performed on

a high-performance computing 48-multicore shared-memory

system (HPC-SM) at Istituto Nazionale di Geofisica e Vul-

canologia (INGV) in Pisa, Italy, required less than 2 s for

the gPCE method with 81 quadrature points. These results

make the new numerical code presented here, coupled with

the uncertainty technique investigated, well-suited for real-

time hazard assessment.

Code availability

The source code with the input files for some simulation pre-

sented in this work are available for download on the Volcano

Modelling and Simulation gateway (http://vmsg.pi.ingv.it/)

and on the site for collaborative volcano research and risk

mitigation Vhub (https://vhub.org/).
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