Articles | Volume 18, issue 3
https://doi.org/10.5194/gmd-18-787-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-787-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin
CORRESPONDING AUTHOR
Philosophy Department, Queens College, City University of New York, New York, NY 11367, USA
Department of Philosophy, Baruch College, City University of New York, New York, NY 10010, USA
Richard Neale
National Center for Atmospheric Research, Boulder, CO 80305, USA
Travis A. O'Brien
Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA
Lawrence Berkeley Lab Climate and Ecosystem Sciences Division, Berkeley, CA 94720, USA
Related authors
No articles found.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Joshua Elms, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5575–5603, https://doi.org/10.5194/gmd-18-5575-2025, https://doi.org/10.5194/gmd-18-5575-2025, 2025
Short summary
Short summary
Simulating extreme weather events in a warming world is a challenging task for current weather and climate models. These models' computational cost poses a challenge in studying low-probability extreme weather. We use machine learning to construct a new probabilistic system. We give an in-depth explanation of how we constructed this system. We present a thorough pipeline to validate our method. Our method requires fewer computational resources than existing weather and climate models.
Ankur Mahesh, William D. Collins, Boris Bonev, Noah Brenowitz, Yair Cohen, Peter Harrington, Karthik Kashinath, Thorsten Kurth, Joshua North, Travis A. O'Brien, Michael Pritchard, David Pruitt, Mark Risser, Shashank Subramanian, and Jared Willard
Geosci. Model Dev., 18, 5605–5633, https://doi.org/10.5194/gmd-18-5605-2025, https://doi.org/10.5194/gmd-18-5605-2025, 2025
Short summary
Short summary
We use machine learning emulators to create a massive ensemble of simulated weather extremes. This ensemble provides a large sample size, which is essential to characterize the statistics of extreme weather events and study their physical mechanisms. Also, these ensembles can be beneficial to accurately forecast the probability of low-likelihood extreme weather.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Ankur Mahesh, Travis A. O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William D. Collins
Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024, https://doi.org/10.5194/gmd-17-3533-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are extreme weather events that can alleviate drought or cause billions of US dollars in flood damage. We train convolutional neural networks (CNNs) to detect ARs with an estimate of the uncertainty. We present a framework to generalize these CNNs to a variety of datasets of past, present, and future climate. Using a simplified simulation of the Earth's atmosphere, we validate the CNNs. We explore the role of ARs in maintaining energy balance in the Earth system.
Arjun Babu Nellikkattil, Danielle Lemmon, Travis Allen O'Brien, June-Yi Lee, and Jung-Eun Chu
Geosci. Model Dev., 17, 301–320, https://doi.org/10.5194/gmd-17-301-2024, https://doi.org/10.5194/gmd-17-301-2024, 2024
Short summary
Short summary
This study introduces a new computational framework called Scalable Feature Extraction and Tracking (SCAFET), designed to extract and track features in climate data. SCAFET stands out by using innovative shape-based metrics to identify features without relying on preconceived assumptions about the climate model or mean state. This approach allows more accurate comparisons between different models and scenarios.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins
Geosci. Model Dev., 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021, https://doi.org/10.5194/gmd-14-107-2021, 2021
Short summary
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Cited articles
Balmaceda-Huarte, R., Baño-Medina, J., Olmo, M. E., and Bettolli, M. L.: On the use of convolutional neural networks for downscaling daily temperatures over southern South America in a climate change scenario, Clim. Dynam., 62, 383–397, https://doi.org/10.1007/s00382-023-06912-6, 2023.
Barnes, E. A., Barnes, R. J., Martin, Z. K., and Rader, J. K.: This Looks Like That There: Interpretable Neural Networks for Image Tasks When Location Matters, Artif. Intell. Earth Syst., 1, e220001, https://doi.org/10.1175/AIES-D-22-0001.1, 2022.
Baron, S.: Explainable AI and Causal Understanding: Counterfactual Approaches Considered, Minds Mach., 33, 347–377, https://doi.org/10.1007/s11023-023-09637-x, 2023.
Bau, D., Zhu, J.-Y., Strobelt, H., Zhou, B., Tenenbaum, J. B., Freeman, W. T., and Torralba, A.: GAN Dissection: Visualizing and Understanding Generative Adversarial Networks, arXiv [preprint], https://doi.org/10.48550/arXiv.1811.10597, 8 December 2018.
Baumberger, C., Knutti, R., and Hadorn, G. H.: Building confidence in climate model projections: an analysis of inferences from fit, WIREs Clim. Change, 8, e454, https://doi.org/10.1002/wcc.454, 2017.
Beroche, H.: Generative Adversarial Networks for Climate Change Scenarios, URBAN AI, https://urbanai.fr/generative-adversarial-networks-for-climate-change-scenarios/ (last access: 16 December 2024), 2021.
Besombes, C., Pannekoucke, O., Lapeyre, C., Sanderson, B., and Thual, O.: Producing realistic climate data with generative adversarial networks, Nonlin. Processes Geophys., 28, 347–370, https://doi.org/10.5194/npg-28-347-2021, 2021.
Beucler, T., Rasp, S., Pritchard, M., and Gentine, P.: Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling, arXiv [preprint], https://doi.org/10.48550/arXiv.1906.06622, 15 June 2019.
Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.: Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems, Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/PhysRevLett.126.098302, 2021.
Bommer, P., Kretschmer, M., Hedström, A., Bareeva, D., and Höhne, M. M.-C.: Finding the right XAI method – A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science, arXiv [preprint], https://doi.org/10.48550/arXiv.2303.00652, 1 March 2023.
Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M., Kashinath, K., and Anandkumar, A.: Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere, arXiv [preprint], https://doi.org/10.48550/arXiv.2306.03838, 6 June 2023.
Brenowitz, N. D., Beucler, T., Pritchard, M., and Bretherton, C. S.: Interpreting and Stabilizing Machine-Learning Parametrizations of Convection, J. Atmospheric Sci., 77, 4357–4375, https://doi.org/10.1175/JAS-D-20-0082.1, 2020.
Bukovsky, M. S., McCrary, R. R., Seth, A., and Mearns, L. O.: A Mechanistically Credible, Poleward Shift in Warm-Season Precipitation Projected for the U.S. Southern Great Plains?, J. Climate, 30, 8275–8298, https://doi.org/10.1175/JCLI-D-16-0316.1, 2017.
Carrier, M. and Lenhard, J.: Climate Models: How to Assess Their Reliability, Int. Stud. Philos. Sci., 32, 81–100, https://doi.org/10.1080/02698595.2019.1644722, 2019.
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Treut, H. L., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette, J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.: Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models, Science, 245, 513–516, https://doi.org/10.1126/science.245.4917.513, 1989.
Chakraborty, D., Başağaoğlu, H., Gutierrez, L., and Mirchi, A.: Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management, Environ. Res. Lett., 16, 114024, https://doi.org/10.1088/1748-9326/ac2fde, 2021.
Cilli, R., Elia, M., D'Este, M., Giannico, V., Amoroso, N., Lombardi, A., Pantaleo, E., Monaco, A., Sanesi, G., Tangaro, S., Bellotti, R., and Lafortezza, R.: Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe, Sci. Rep., 12, 16349, https://doi.org/10.1038/s41598-022-20347-9, 2022.
Clare, M. C. A., Sonnewald, M., Lguensat, R., Deshayes, J., and Balaji, V.: Explainable Artificial Intelligence for Bayesian Neural Networks: Toward Trustworthy Predictions of Ocean Dynamics, J. Adv. Model. Earth Sy., 14, e2022MS003162, https://doi.org/10.1029/2022MS003162, 2022.
Collins, W. D., Hackney, J. K., and Edwards, D. P.: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model, J. Geophys. Res.-Atmos., 107, ACL 17-1–ACL 17-20, https://doi.org/10.1029/2001JD001365, 2002.
Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F.: Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What's Next, J. Sci. Comput., 92, 88, https://doi.org/10.1007/s10915-022-01939-z, 2022.
de Burgh-Day, C. O. and Leeuwenburg, T.: Machine learning for numerical weather and climate modelling: a review, Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023, 2023.
De Regt, H. W.: Understanding Scientific Understanding, Oxford University Press, 321 pp., ISBN: 9780190652913, 2017.
De Regt, H. W. and Dieks, D.: A Contextual Approach to Scientific Understanding, Synthese, 144, 137–170, https://doi.org/10.1007/s11229-005-5000-4, 2005.
Diffenbaugh, N. S. and Barnes, E. A.: Data-Driven Predictions of the Time Remaining until Critical Global Warming Thresholds Are Reached, P. Natl. Acad. Sci. USA, 120, e2207183120, https://doi.org/10.1073/pnas.2207183120, 2023.
Easterbrook, S. M.: Computing the Climate: How We Know What We Know About Climate Change, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316459768, 2023.
Eidhammer, T., Gettelman, A., Thayer-Calder, K., Watson-Parris, D., Elsaesser, G., Morrison, H., van Lier-Walqui, M., Song, C., and McCoy, D.: An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6, Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, 2024.
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M., Hurtt, G. C., Jahn, A., Jones, C. D., Klein, S. A., Krasting, J. P., Kwiatkowski, L., Lorenz, R., Maloney, E., Meehl, G. A., Pendergrass, A. G., Pincus, R., Ruane, A. C., Russell, J. L., Sanderson, B. M., Santer, B. D., Sherwood, S. C., Simpson, I. R., Stouffer, R. J., and Williamson, M. S.: Taking climate model evaluation to the next level, Nat. Clim. Change, 9, 102–110, https://doi.org/10.1038/s41558-018-0355-y, 2019.
Felsche, E. and Ludwig, R.: Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations, Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, 2021.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and Zhang, H.: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 923–1054, https://doi.org/10.1017/9781009157896.009, 2021.
Frigg, R., Thompson, E., and Werndl, C.: Philosophy of Climate Science Part II: Modelling Climate Change, Philos. Compass, 10, 965–977, https://doi.org/10.1111/phc3.12297, 2015.
Gates, W. L.: AMIP: The Atmospheric Model Intercomparison Project, B. Am. Meteorol. Soc., 73, 1962–1970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2, 1992.
Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., Lamarque, J.-F., Fasullo, J. T., Bailey, D. A., Lawrence, D. M., and Mills, M. J.: High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2), Geophys. Res. Lett., 46, 8329–8337, https://doi.org/10.1029/2019GL083978, 2019.
Gleckler, P. J., Randall, D. A., Boer, G., Colman, R., Dix, M., Galin, V., Helfand, M., Kiehl, J., Kitoh, A., Lau, W., Liang, X.-Y., Lykossov, V., McAvaney, B., Miyakoda, K., Planton, S., and Stern, W.: Cloud-radiative effects on implied oceanic energy transports as simulated by Atmospheric General Circulation Models, Geophys. Res. Lett., 22, 791–794, https://doi.org/10.1029/95GL00113, 1995.
Gleckler, P. J., Taylor, K. E., and Doutriaux, C.: Performance metrics for climate models, J. Geophys. Res.-Atmos., 113, D06104, https://doi.org/10.1029/2007JD008972, 2008.
González-Abad, J., Baño-Medina, J., and Gutiérrez, J. M.: Using Explainability to Inform Statistical Downscaling Based on Deep Learning Beyond Standard Validation Approaches, arXiv [preprint], https://doi.org/10.48550/arXiv.2302.01771, 3 February 2023.
Gordon, E. M., Barnes, E. A., and Hurrell, J. W.: Oceanic Harbingers of Pacific Decadal Oscillation Predictability in CESM2 Detected by Neural Networks, Geophys. Res. Lett., 48, e2021GL095392, https://doi.org/10.1029/2021GL095392, 2021.
Grenier, H. and Bretherton, C. S.: A Moist PBL Parameterization for Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine Boundary Layers, Mon. Weather Rev., 129, 357–377, https://doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2, 2001.
Grundner, A., Beucler, T., Gentine, P., Iglesias-Suarez, F., Giorgetta, M. A., and Eyring, V.: Deep Learning Based Cloud Cover Parameterization for ICON, J. Adv. Model. Earth Sy., 14, e2021MS002959, https://doi.org/10.1029/2021MS002959, 2022.
Hall, A. and Qu, X.: Using the current seasonal cycle to constrain snow albedo feedback in future climate change, Geophys. Res. Lett., 33, L03502, https://doi.org/10.1029/2005GL025127, 2006.
Ham, Y.-G., Kim, J.-H., and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, Nature, 573, 568–572, https://doi.org/10.1038/s41586-019-1559-7, 2019.
Hausfather, Z., Drake, H. F., Abbott, T., and Schmidt, G. A.: Evaluating the Performance of Past Climate Model Projections, Geophys. Res. Lett., 47, e2019GL085378, https://doi.org/10.1029/2019GL085378, 2020.
He, R., Zhang, L., and Chew, A. W. Z.: Data-driven multi-step prediction and analysis of monthly rainfall using explainable deep learning, Expert Syst. Appl., 235, 121160, https://doi.org/10.1016/j.eswa.2023.121160, 2024.
Hedström, A., Weber, L., Krakowczyk, D., Bareeva, D., Motzkus, F., Samek, W., Lapuschkin, S., and Höhne, M. M.-C.: Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond, J. Mach. Learn. Res., 24, 1–11, http://jmlr.org/papers/v24/22-0142.html (last access: 16 December 2024), 2023.
Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y., Orsini, J. A. M., Nicholls, N., Penner, J. E., Stott, P. A., Allen, M., Ammann, C., Andronova, N., Betts, R. A., Clement, A., Collins, W. D., Crooks, S., Delworth, T. L., Forest, C., Forster, P., Goosse, H., Gregory, J. M., Harvey, D., Jones, G. S., Joos, F., Kenyon, J., Kettleborough, J., Kharin, V., Knutti, R., Lambert, F. H., Lavine, M., Lee, T. C. K., Levinson, D., Masson-Delmotte, V., Nozawa, T., Otto-Bliesner, B., Pierce, D., Power, S., Rind, D., Rotstayn, L., Santer, B. D., Senior, C., Sexton, D., Stark, S., Stone, D. A., Tett, S., Thorne, P., van Dorland, R., Wong, T., Xu, L., Zhang, X., Zorita, E., Karoly, D. J., Ogallo, L., and Planton, S.: Understanding and Attributing Climate Change, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, 84, https://www.ipcc.ch/report/ar4/wg1/ (last access: 16 December 2024), 2007.
Held, I. M.: The Gap between Simulation and Understanding in Climate Modeling, B. Am. Meteorol. Soc., 86, 1609–1614, https://doi.org/10.1175/BAMS-86-11-1609, 2005.
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F., Rochetin, N., Fairhead, L., Idelkadi, A., Musat, I., Dufresne, J.-L., Lahellec, A., Lefebvre, M.-P., and Roehrig, R.: LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection, Clim. Dynam., 40, 2193–2222, https://doi.org/10.1007/s00382-012-1343-y, 2013.
Humphreys, P.: The philosophical novelty of computer simulation methods, Synthese, 169, 615–626, https://doi.org/10.1007/s11229-008-9435-2, 2009.
Jebeile, J., Lam, V., and Räz, T.: Understanding climate change with statistical downscaling and machine learning, Synthese, 199, 1877–1897, https://doi.org/10.1007/s11229-020-02865-z, 2021.
Jeevanjee, N., Hassanzadeh, P., Hill, S., and Sheshadri, A.: A perspective on climate model hierarchies, J. Adv. Model. Earth Sy., 9, 1760–1771, https://doi.org/10.1002/2017MS001038, 2017.
Kashinath, K., Mustafa, M., Albert, A., Wu, J.-L., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K., Wang, R., Chattopadhyay, A., Singh, A., Manepalli, A., Chirila, D., Yu, R., Walters, R., White, B., Xiao, H., Tchelepi, H. A., Marcus, P., Anandkumar, A., Hassanzadeh, P., and Prabhat, null: Physics-informed machine learning: case studies for weather and climate modelling, Philos. T. R. Soc. A, 379, 20200093, https://doi.org/10.1098/rsta.2020.0093, 2021.
Katzav, J. and Parker, W. S.: The future of climate modeling, Climatic Change, 132, 475–487, https://doi.org/10.1007/s10584-015-1435-x, 2015.
Knüsel, B. and Baumberger, C.: Understanding climate phenomena with data-driven models, Stud. Hist. Philos. Sci. Part A, 84, 46–56, https://doi.org/10.1016/j.shpsa.2020.08.003, 2020.
Knutti, R.: Why are climate models reproducing the observed global surface warming so well?, Geophys. Res. Lett., 35, L18704, https://doi.org/10.1029/2008GL034932, 2008.
Kravitz, B., Robock, A., Forster, P. M., Haywood, J. M., Lawrence, M. G., and Schmidt, H.: An overview of the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 118, 13103–13107, https://doi.org/10.1002/2013JD020569, 2013.
Labe, Z. M. and Barnes, E. A.: Comparison of Climate Model Large Ensembles With Observations in the Arctic Using Simple Neural Networks, Earth Space Sci., 9, e2022EA002348, https://doi.org/10.1029/2022EA002348, 2022a.
Labe, Z. M. and Barnes, E. A.: Predicting Slowdowns in Decadal Climate Warming Trends With Explainable Neural Networks, Geophys. Res. Lett., 49, e2022GL098173, https://doi.org/10.1029/2022GL098173, 2022b.
Krishna, S., Han, T., Gu, A., Pombra, J., Jabbari, S., Wu, S., and Lakkaraju, H.: The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective, arXiv [preprint], https://doi.org/10.48550/arXiv.2202.01602, 8 February 2022.
Labe, Z. M. and Barnes, E. A.: Detecting Climate Signals Using Explainable AI With Single-Forcing Large Ensembles, J. Adv. Model. Earth Sy., 13, e2021MS002464, https://doi.org/10.1029/2021MS002464, 2021.
Lenhard, J.: Surprised by a Nanowire: Simulation, Control, and Understanding, Philos. Sci., 73, 605–616, https://doi.org/10.1086/518330, 2006.
Lenhard, J. and Winsberg, E.: Holism, entrenchment, and the future of climate model pluralism, Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys., 41, 253–262, https://doi.org/10.1016/j.shpsb.2010.07.001, 2010.
Li, D.: Machines Learn Better with Better Data Ontology: Lessons from Philosophy of Induction and Machine Learning Practice, Minds Mach., 33, 429–450, https://doi.org/10.1007/s11023-023-09639-9, 2023.
Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., and Orth, R.: Widespread increasing vegetation sensitivity to soil moisture, Nat. Commun., 13, 3959, https://doi.org/10.1038/s41467-022-31667-9, 2022.
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.: Fourier Neural Operator for Parametric Partial Differential Equations, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.08895, 16 May 2021.
Lin, Q.-J., Mayta, V. C., and Adames Corraliza, Á. F.: Assessment of the Madden-Julian Oscillation in CMIP6 Models Based on Moisture Mode Theory, Geophys. Res. Lett., 51, e2023GL106693, https://doi.org/10.1029/2023GL106693, 2024.
Lipton, Z. C.: The mythos of model interpretability (2016), arXiv [preprint], https://doi.org/10.48550/arXiv.1606.03490, 2016.
Liu, Y., Duffy, K., Dy, J. G., and Ganguly, A. R.: Explainable deep learning for insights in El Niño and river flows, Nat. Commun., 14, 339, https://doi.org/10.1038/s41467-023-35968-5, 2023.
Lloyd, E. A.: Confirmation and Robustness of Climate Models, Philos. Sci., 77, 971–984, https://doi.org/10.1086/657427, 2010.
Lloyd, E. A.: Model robustness as a confirmatory virtue: The case of climate science, Stud. Hist. Philos. Sci. Part A, 49, 58–68, https://doi.org/10.1016/j.shpsa.2014.12.002, 2015.
Mahesh, A., O'Brien, T. A., Loring, B., Elbashandy, A., Boos, W., and Collins, W. D.: Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1, Geosci. Model Dev., 17, 3533–3557, https://doi.org/10.5194/gmd-17-3533-2024, 2024.
Maloney, E. D., Gettelman, A., Ming, Y., Neelin, J. D., Barrie, D., Mariotti, A., Chen, C.-C., Coleman, D. R. B., Kuo, Y.-H., Singh, B., Annamalai, H., Berg, A., Booth, J. F., Camargo, S. J., Dai, A., Gonzalez, A., Hafner, J., Jiang, X., Jing, X., Kim, D., Kumar, A., Moon, Y., Naud, C. M., Sobel, A. H., Suzuki, K., Wang, F., Wang, J., Wing, A. A., Xu, X., and Zhao, M.: Process-Oriented Evaluation of Climate and Weather Forecasting Models, B. Am. Meteorol. Soc., 100, 1665–1686, https://doi.org/10.1175/BAMS-D-18-0042.1, 2019.
Mamalakis, A., Ebert-Uphoff, I., and Barnes, E. A.: Explainable Artificial Intelligence in Meteorology and Climate Science: Model Fine-Tuning, Calibrating Trust and Learning New Science, in: xxAI – Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, edited by: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., and Samek, W., Springer International Publishing, Cham, 315–339, https://doi.org/10.1007/978-3-031-04083-2_16, 2022a.
Mamalakis, A., Ebert-Uphoff, I., and Barnes, E. A.: Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset, Environ. Data Sci., 1, e8, https://doi.org/10.1017/eds.2022.7, 2022b.
Mayernik, M. S.: Credibility via Coupling: Institutions and Infrastructures in Climate Model Intercomparisons:, Engag. Sci. Technol. Soc., 7, 10–32, https://doi.org/10.17351/ests2021.769, 2021.
McGinnis, S., Korytina, D., Bukovsky, M., McCrary, R., and Mearns, L.: Credibility Evaluation of a Convolutional Neural Net for Downscaling GCM Output over the Southern Great Plains, 2021, GC42A-03, https://ui.adsabs.harvard.edu/abs/2021AGUFMGC42A..03M%2F/abstract (last access: 3 February 2025), 2021.
Molina, M. J., O'Brien, T. A., Anderson, G., Ashfaq, M., Bennett, K. E., Collins, W. D., Dagon, K., Restrepo, J. M., and Ullrich, P. A.: A Review of Recent and Emerging Machine Learning Applications for Climate Variability and Weather Phenomena, Artif. Intell. Earth Syst., 2, 220086, https://doi.org/10.1175/AIES-D-22-0086.1, 2023.
Neelin, J. D., Krasting, J. P., Radhakrishnan, A., Liptak, J., Jackson, T., Ming, Y., Dong, W., Gettelman, A., Coleman, D. R., Maloney, E. D., Wing, A. A., Kuo, Y.-H., Ahmed, F., Ullrich, P., Bitz, C. M., Neale, R. B., Ordonez, A., and Maroon, E. A.: Process-Oriented Diagnostics: Principles, Practice, Community Development, and Common Standards, B. Am. Meteorol. Soc., 104, E1452–E1468, https://doi.org/10.1175/BAMS-D-21-0268.1, 2023.
Notz, D., Haumann, F. A., Haak, H., Jungclaus, J. H., and Marotzke, J.: Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model, J. Adv. Model. Earth Sy., 5, 173–194, https://doi.org/10.1002/jame.20016, 2013.
NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES), https://www.ai2es.org/, last access: 13 August 2024.
O'Brien, T. A., Li, F., Collins, W. D., Rauscher, S. A., Ringler, T. D., Taylor, M., Hagos, S. M., and Leung, L. R.: Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models, J. Climate, 26, 9313–9333, https://doi.org/10.1175/JCLI-D-13-00005.1, 2013.
O'Loughlin, R.: Robustness reasoning in climate model comparisons, Stud. Hist. Philos. Sci. Part A, 85, 34–43, https://doi.org/10.1016/j.shpsa.2020.12.005, 2021.
O'Loughlin, R.: Diagnosing errors in climate model intercomparisons, Eur. J. Philos. Sci., 13, 20, https://doi.org/10.1007/s13194-023-00522-z, 2023.
Oreopoulos, L., Mlawer, E., Delamere, J., Shippert, T., Cole, J., Fomin, B., Iacono, M., Jin, Z., Li, J., Manners, J., Räisänen, P., Rose, F., Zhang, Y., Wilson, M. J., and Rossow, W. B.: The Continual Intercomparison of Radiation Codes: Results from Phase I, J. Geophys. Res.-Atmos., 117, D06118, https://doi.org/10.1029/2011JD016821, 2012.
Park, M., Tran, D. Q., Bak, J., and Park, S.: Advanced wildfire detection using generative adversarial network-based augmented datasets and weakly supervised object localization, Int. J. Appl. Earth Obs., 114, 103052, https://doi.org/10.1016/j.jag.2022.103052, 2022.
Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and Anandkumar, A.: FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators, arXiv [preprint], https://doi.org/10.48550/arXiv.2202.11214, 22 February 2022.
Pincus, R., Forster, P. M., and Stevens, B.: The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6, Geosci. Model Dev., 9, 3447–3460, https://doi.org/10.5194/gmd-9-3447-2016, 2016.
Pitari, G., Aquila, V., Kravitz, B., Robock, A., Watanabe, S., Cionni, I., Luca, N. D., Genova, G. D., Mancini, E., and Tilmes, S.: Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.-Atmos., 119, 2629–2653, https://doi.org/10.1002/2013JD020566, 2014.
Rader, J. K., Barnes, E. A., Ebert-Uphoff, I., and Anderson, C.: Detection of Forced Change Within Combined Climate Fields Using Explainable Neural Networks, J. Adv. Model. Earth Sy., 14, e2021MS002941, https://doi.org/10.1029/2021MS002941, 2022.
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell., 1, 206–215, https://doi.org/10.1038/s42256-019-0048-x, 2019.
Schmidt, G. A. and Sherwood, S.: A practical philosophy of complex climate modelling, Eur. J. Philos. Sci., 5, 149–169, https://doi.org/10.1007/s13194-014-0102-9, 2015.
Schneider, S. H.: On the Carbon Dioxide–Climate Confusion, J. Atmos. Sci., 32, 2060–2066, https://doi.org/10.1175/1520-0469(1975)032<2060:OTCDC>2.0.CO;2, 1975.
Schneider, S. H.: Verification of Parameterizations in Climate Modeling, in: Report of the Study Conference on Climate Models: Performance, Intercomparison and Sensitivity Studies, edited by: Gates, W. L., World Meteorological Organization, Global Atmospheric Research Program, GARP Publications Series no. 22, Vol. 2, 728–751, 1979.
Stocker, T. F.: Working Group 1: 7.2.2.3 Boundary-layer mixing and cloudiness from the IPCC's Third Assessment Report (TAR), https://archive.ipcc.ch/ipccreports/tar/wg1/273.htm (last access: 26 October 2023), 2001.
Stocker, T. F., et al.: Physical climate processes and feedbacks, IPCC, Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change, Cambridge University Press, 417–470, 2001.
Subel, A., Guan, Y., Chattopadhyay, A., and Hassanzadeh, P.: Explaining the physics of transfer learning in data-driven turbulence modeling, PNAS Nexus, 2, pgad015, https://doi.org/10.1093/pnasnexus/pgad015, 2023.
Toms, B. A., Barnes, E. A., and Hurrell, J. W.: Assessing Decadal Predictability in an Earth-System Model Using Explainable Neural Networks, Geophys. Res. Lett., 48, e2021GL093842, https://doi.org/10.1029/2021GL093842, 2021.
Touzé-Peiffer, L., Barberousse, A., and Treut, H. L.: The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research, WIREs Clim. Change, 11, e648, https://doi.org/10.1002/wcc.648, 2020.
van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S., Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, 2016.
Wang, S., Sankaran, S., and Perdikaris, P.: Respecting causality is all you need for training physics-informed neural networks, arXiv [preprint], https://doi.org/10.48550/arXiv.2203.07404, 14 March 2022.
Webb, M. J., Andrews, T., Bodas-Salcedo, A., Bony, S., Bretherton, C. S., Chadwick, R., Chepfer, H., Douville, H., Good, P., Kay, J. E., Klein, S. A., Marchand, R., Medeiros, B., Siebesma, A. P., Skinner, C. B., Stevens, B., Tselioudis, G., Tsushima, Y., and Watanabe, M.: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6, Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, 2017.
Xue, P., Wagh, A., Ma, G., Wang, Y., Yang, Y., Liu, T., and Huang, C.: Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast, Remote Sens., 14, 2640, https://doi.org/10.3390/rs14112640, 2022.
Yuan, H., Yu, H., Gui, S., and Ji, S.: Explainability in Graph Neural Networks: A Taxonomic Survey, IEEE Trans. Pattern Anal. Mach. Intell., 45, 5782–5799, https://doi.org/10.1109/TPAMI.2022.3204236, 2023.
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., and Taylor, K. E.: Causes of Higher Climate Sensitivity in CMIP6 Models, Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782, 2020.
Zhu, J., Otto-Bliesner, B. L., Brady, E. C., Poulsen, C. J., Tierney, J. E., Lofverstrom, M., and DiNezio, P.: Assessment of Equilibrium Climate Sensitivity of the Community Earth System Model Version 2 Through Simulation of the Last Glacial Maximum, Geophys. Res. Lett., 48, e2020GL091220, https://doi.org/10.1029/2020GL091220, 2021.
Executive editor
This perspective paper examines in detail the concept of explicability in a climate model, whether conventional physics-based dynamical models, or those incorporating components based on machine learning. Everyone with an interest in climate models or their outputs would benefit from understanding the processes by which we can understand the importance and accuracy of these models and the methods by which it is possible to make sense of those outputs. This paper is a major contribution to that understanding. It is also very well written and should be widely read in the field.
This perspective paper examines in detail the concept of explicability in a climate model,...
Short summary
We draw from traditional climate modeling practices to make recommendations for machine-learning (ML)-driven climate science. Our intended audience is climate modelers who are relatively new to ML. We show how component-level understanding – obtained when scientists can link model behavior to parts within the overall model – should guide the development and evaluation of ML models. Better understanding yields a stronger basis for trust in the models. We highlight several examples to demonstrate.
We draw from traditional climate modeling practices to make recommendations for machine-learning...