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Abstract. AI models are criticized as being black boxes, po-
tentially subjecting climate science to greater uncertainty.
Explainable artificial intelligence (XAI) has been proposed
to probe AI models and increase trust. In this review and
perspective paper, we suggest that, in addition to using XAI
methods, AI researchers in climate science can learn from
past successes in the development of physics-based dynami-
cal climate models. Dynamical models are complex but have
gained trust because their successes and failures can some-
times be attributed to specific components or sub-models,
such as when model bias is explained by pointing to a par-
ticular parameterization. We propose three types of under-
standing as a basis to evaluate trust in dynamical and AI
models alike: (1) instrumental understanding, which is ob-
tained when a model has passed a functional test; (2) sta-
tistical understanding, obtained when researchers can make
sense of the modeling results using statistical techniques to
identify input–output relationships; and (3) component-level
understanding, which refers to modelers’ ability to point to
specific model components or parts in the model architec-
ture as the culprit for erratic model behaviors or as the cru-
cial reason why the model functions well. We demonstrate
how component-level understanding has been sought and
achieved via climate model intercomparison projects over
the past several decades. Such component-level understand-
ing routinely leads to model improvements and may also
serve as a template for thinking about AI-driven climate sci-

ence. Currently, XAI methods can help explain the behav-
iors of AI models by focusing on the mapping between in-
put and output, thereby increasing the statistical understand-
ing of AI models. Yet, to further increase our understand-
ing of AI models, we will have to build AI models that have
interpretable components amenable to component-level un-
derstanding. We give recent examples from the AI climate
science literature to highlight some recent, albeit limited,
successes in achieving component-level understanding and
thereby explaining model behavior. The merit of such inter-
pretable AI models is that they serve as a stronger basis for
trust in climate modeling and, by extension, downstream uses
of climate model data.

1 Introduction

Machine learning (ML) is becoming increasingly utilized in
climate science for tasks ranging from climate model emula-
tion (Beucler et al., 2019), to downscaling (McGinnis et al.,
2021), forecasting (Ham et al., 2019), and analyzing com-
plex and large datasets more generally (for an overview of
ML in climate science, see Reichstein et al., 2019; Molina et
al., 2023; de Burgh-Day and Leeuwenburg, 2023). Compared
with physics-based methods, ML, once trained, has a key ad-
vantage: computational expense reduced by orders of mag-
nitude. Along with the advantages of ML come challenges
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such as assessing ML trustworthiness. For example, scien-
tists often do not understand why a neural net (NN) gives the
output that it does because the NN is a “black box.”1

To build trust in ML, the field of explainable artificial in-
telligence (XAI) has become increasingly prominent in cli-
mate science (Bommer et al., 2023). Sometimes referred to
as “opening the black box,” XAI methods consist of addi-
tional models or algorithms intended to shed light on why the
ML model gives the output that it does. For example, Labe
and Barnes (2021) use an XAI method, layer-wise relevance
propagation2, and find that their NN heavily relies on data
points from the North Atlantic, Southern Ocean, and South-
east Asia to make its predictions.

While XAI methods can produce useful information about
ML model behaviors, these methods also face problems and
have been subjected to critique. As Barnes et al. (2022) note,
XAI methods “do not explain the actual decision-making
process of the network” (p. 1). Additionally, different XAI
methods applied to the same ML model prediction have been
shown to exhibit discordance, i.e., yielding different and even
incompatible “explanations” for the same ML model (Ma-
malakis et al., 2022b). Discordance in XAI is not unique to
climate science. Krishna et al. (2022) find that 84 % of their
interviewees (ML practitioners across fields who use XAI
methods) report experiencing discordance in their day-to-day
workflow, and when it comes to resolving discordance, 86 %
of their online user study responses indicate that ML practi-
tioners either employed arbitrary heuristics (e.g., choosing a
favorite method or result) or simply did not know what to do.

As Molina et al. (2023) note, “identifying potential fail-
ure modes of XAI, and uncertainty quantification pertaining
to different types of XAI methods, are both crucial to estab-
lish confidence levels in XAI output and determine whether
ML predictions are ‘right for the right reasons”’ (p. 8).
Rudin (2019) argues that, instead of attempting to use XAI to
explain ML models post hoc, scientists ought to build inter-
pretable models informed by domain expertise from the out-
set. Speaking about explainability in particular, Rudin writes,
“many of the [XAI] methods that claim to produce explana-
tions instead compute useful summary statistics of predic-
tions made by the original model. Rather than producing ex-
planations that are faithful to the original model, they show

1Note that computer scientists have proposed various concep-
tual approaches to articulate “transparency” (e.g., Lipton, 2016).
However, we aim to offer conceptual clarity for ML applications
specifically in climate science by comparing different types of un-
derstanding of ML and dynamical climate models.

2Layer-wise relevance propagation (LRP) is a method for inter-
preting neural networks by calculating how each neuron contributes
to the network’s output. It propagates relevance scores backward
from the output to the input layer, identifying which parts of the
input most significantly influence the output prediction. See, e.g.,
Gordon et al. (2021), Toms et al. (2021), Labe and Barnes (2021,
2022a, b), Rader et al. (2022), and Diffenbaugh and Barnes (2023).

trends in how predictions are related to the features” of the
model input Rudin (2019, p. 208).

Regardless, XAI methods will likely continue to be widely
applied due to ease of use and as benchmark metrics for
XAI methods are proposed and implemented (Hedström et
al., 2023; Bommer et al., 2023). In some cases, XAI methods
are applied with great success; e.g., Mamalakis et al. (2022b)
found that the input× gradient method fit their ground-truth
model with a high degree of accuracy. However, we believe
that more progress can be made in establishing trust in ML-
driven climate science, especially as an increasing number of
researchers start incorporating ML into climate research (see
Fig. 1).

In this review and perspective paper, we target readers with
expertise in traditional approaches for climate science (e.g.,
development, evaluation, and application of traditional Earth
system models) who are starting to utilize ML in their re-
search and who may see XAI as a tempting way to gain in-
sight into model behavior and to build confidence. From this
perspective, we draw from some ideas in the philosophy of
science to recommend that such researchers leverage the ex-
panding array of freely available ML resources to move be-
yond post hoc XAI methods and aim for component-level
understanding of ML models. By “component” we mean a
functional unit of the model’s architecture, such as a layer or
layers in a neural net. By “understanding” we mean knowl-
edge that could serve as a basis for an explanation about the
model. We distinguish between three levels of understanding.

– Instrumental understanding involves knowing that the
model performed well (or not), e.g., knowing its error
rate on a given test.

– Statistical understanding means being able to offer a
reason why we should trust a given ML model by ap-
pealing to input–output mappings. These mappings can
be retrieved by statistical techniques.

– Component-level understanding means being able to
point to specific model components or parts in the
model architecture as the cause of erratic model behav-
iors or as the crucial reason why the model functions
well.

These levels concern the degree to which complex models
are intelligible or graspable to scientists (De Regt and Dieks,
2005; Knüsel and Baumberger, 2020; De Regt, 2017). There-
fore, our proposal has a narrower but deeper focus than re-
cent philosophy of science accounts of understanding cli-
mate phenomena with or by using ML and dynamical climate
models (Jebeile et al., 2021; Knüsel and Baumberger, 2020).
We are concerned with understanding, diagnosing, and im-
proving model behavior to inform model development.

Instrumental understanding, while clearly necessary, is
fairly straightforward and is a prerequisite for any explana-
tion of model behavior. It involves knowing the degree to
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Figure 1. Trends of publications related to AI, ML, or XAI from three major journals (BAMS, GMD, JAMES) based on 178 references
acquired from the Web of Science on 17 October 2023. There are two notable results. Result 1: AI and ML publications are predominantly
“black box applications” (132 out of 178 records). Both XAI and interpretable AI emerged in 2020 and are in their infancy by comparison.
Result 2: black box AI applications are on the rise. (The dip in 2023 and 2024 can be explained by data collection methods. Note that this
is not intended as a systematic survey of AI in climate science. One key shortcoming is that the data excluded journals such as Artificial
Intelligence for Earth Systems (AIES) because the Web of Science did not include AIES at the time of data collection.) See the Supplement
for a full data description.

which a model fits some data (Lloyd, 2010; Baumberger et
al., 2017). It may also involve knowing whether the model
both fits some data and agrees with simpler models about a
prediction of interest or whether the model has performed
well on an out-of-sample test (e.g., Hausfather et al., 2020)
or according to other metrics (e.g., Gleckler et al., 2008).

However, in this review and perspective paper, we will
only focus on the other two types of understanding. Statisti-
cal understanding can be gained via traditional XAI methods
but does not require knowledge of the model’s inner work-
ings, i.e., its components and/or architecture (see Sect. 2 be-
low). In contrast, component-level understanding does in-
volve knowledge of the model’s inner workings. There-
fore, component-level understanding allows scientists to of-
fer causal explanations that attribute ML model behaviors
to its components. Scientists need to build and analyze their
models in such a way that they can understand how distinct
model components contribute to the model’s overall predic-
tive successes or failures rather than merely probing model
data to yield input–output mappings. The latter is emblem-
atic of traditional XAI methods.

Our recommendation to strive for component-level under-
standing is inspired by how dynamical climate models have
been built, tested, and improved, such as those in the Coupled
Model Intercomparison Project (CMIP). Therefore, a novel
contribution of this paper is the linking of existing climate
model development practices to practices that could be em-
ployed in ML model development.

In CMIP, when models agree on a particular result, scien-
tists sometimes infer that the governing equations and pre-
scribed forcings shared by the models are responsible for the

models’ similar results. As Baumberger et al. (2017) put it,
“robustness of model results (combined with their empiri-
cal accuracy) is often seen as making it likely, or at least
increasing our confidence, that the processes that determine
these results are encapsulated sufficiently well in the mod-
els” (p. 11; see also Hegerl et al., 2007; Kravitz et al., 2013;
Lloyd, 2015; Schmidt and Sherwood, 2015; O’Loughlin,
2021). Conversely, when climate models exhibit biases or er-
rors, scientists can often point to specific parameterizations
or sub-models as the likely cause (e.g., Gleckler et al., 1995;
Pitari et al., 2014; Gettelman et al., 2019; Zelinka et al., 2020;
O’Loughlin, 2023), although models can get the right answer
for the wrong reasons (see, e.g., Knutti, 2008).

To be clear, there are limits to how much component-level
understanding can be achieved in CMIP. Dynamical climate
models exhibit fuzzy (rather than sharp) modularity, mean-
ing that the behavior of a fully coupled model is “the com-
plex result of the interaction of the modules – not the in-
teraction of the results of the modules” (Lenhard and Wins-
berg, 2010, p. 256). Climate scientists are familiar with a re-
lated problem: the difficulty in explaining how climate mod-
els generate (or not) emergent phenomena like the Madden–
Julian oscillation (Lin et al., 2024). Despite these difficul-
ties, philosophers and other scholars of climate science have
documented successes in attributing model behavior to in-
dividual model components in the climate science literature
(Carrier and Lenhard, 2019; Frigg et al., 2015; Gettelman et
al., 2019; Hall and Qu, 2006; Hourdin et al., 2013; Mayernik,
2021; Notz et al., 2013; O’Loughlin, 2023; Oreopoulos et al.,
2012; Pincus et al., 2016; Touzé-Peiffer et al., 2020). These
successes do not imply anything like a “full” or “complete”
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understanding of all model behavior; rather, the component-
level understanding of climate model behavior comes in de-
grees (Jebeile et al., 2021).

Fortunately, we see component-level understanding ex-
emplified in ML-driven climate science to some extent al-
ready (Beucler et al., 2019; Kashinath et al., 2021; Bonev
et al., 2023; see Sect. 4 below). Indeed, the thinking be-
hind physics-informed machine learning, which incorporates
known physical relations into the models from the outset
(Kashinath et al., 2021; Wang et al., 2022; Cuomo et al.,
2022), often involves component-level understanding. Thus,
our proposal is an endorsement of these ongoing best prac-
tices, a recognition of the relationship between the evaluation
of dynamical models and data-driven models, and a warning
about the limits of statistical understanding. In addition, there
is a concurrent need to establish the trustworthiness of ML
models as ML-driven climate science potentially becomes
increasingly used to inform decision-makers (NSF AI Insti-
tute for Research on Trustworthy AI in Weather, Climate,
and Coastal Oceanography (AI2ES), 2024). While decision-
makers themselves do not need to understand exactly how a
model arrives at the answer it does, they may desire an ex-
planation of the model’s behavior that comes from a credible
expert. One way to establish credibility is to be able to ex-
plain ML model behavior by appealing to the inner workings
of the model, which requires component-level understanding
of the model. In this way, component-level understanding can
serve as a basis for trust in ML-driven climate science.

The remainder of the paper is structured as follows. In
Sect. 2, we give an overview of XAI in climate science and
explain the idea of statistical understanding and how XAI
can only give us statistical understanding. In Sect. 3, we de-
tail the notion of component-level understanding and demon-
strate it using examples from CMIP. In Sect. 4, we show
how component-level understanding is achievable in ML. In
Sect. 5, we conclude and make suggestions for ML-driven
climate science, including describing some resources that in-
terested readers might utilize to build the expertise in ML
model design necessary to probe, build, and adapt models in
a way that is amenable to component-level understanding.

2 Post hoc XAI in climate science and statistical
understanding

XAI methods are intended to shed light on the behavior of
complex opaque ML models. As Mamalakis et al. (2022a)
put it, XAI “methods aim at a post hoc attribution of the NN
prediction to specific features in the input domain (usually
referred to as attribution/relevance heatmaps3), thus identify-

3In this context, attribution/relevance heatmaps refer to arrays
(typically rendered as images) indicating the parts of an input
dataset that most contribute to the ML model output. In the context
of image classification, for a hypothetical example, an attribution
heatmap of an image with a human hand might highlight pixels as-

ing relationships between the input and the output that may
be interpreted physically by the scientists” (p. 316). XAI
methods are typically applied to ML models which are multi-
layer, convolutional, recurrent neural networks, and/or en-
sembles of decision trees (a common example of the latter
is random forests).

The general idea behind XAI methods is to attribute the
predictive success of the model’s output (i.e., the model’s
prediction or decision) to subsets of its input in supervised
ML. Broadly, there are two conceptual approaches to achieve
this.4 One approach is perturbing the input data to figure out
how the changes in input affect the output. The other ap-
proach studies the functional representation between input
and output.

For the approach of perturbing the input, Local Inter-
pretable Model-agonistic Explanation (LIME) is a method
that first perturbs an input data point to create surrogate data
near said data point. Then, after the trained ML model clas-
sifies the surrogate data, LIME fits a linear regression using
classified surrogate data and measures how model output can
be attributed to features of the surrogate data manifold. In
this way, LIME attributes the predictive success for the actual
data point to a subset of input features. Note that L stands for
“local” because LIME, as a method, perturbs classification
instances. For example, pixels, or clusters of pixels, of one
image may be perturbed to create a surrogate instance. Then
this surrogate instance is classified by the ML model in ques-
tion to see how the output changes. LIME does not deal with
all data points all at once.

Another commonly used method of the approach of per-
turbing input data is Shapley additive explanation (SHAP),
which is based on calculating the Shapley values of each in-
put feature. Shapley values are cooperative game theoretic
measures that distribute gains or costs to members of a coali-
tion. Roughly put, Shapley values are calculated by repeat-
edly randomly removing a member from the group to form a
new coalition, calculating the consequent gains, and then av-
eraging all marginal contributions to all possible coalitions.
In the XAI context, input features will have different Shapley
values, denoting their different contribution to the model’s
predictive success (see, e.g., Chakraborty et al., 2021; Cilli
et al., 2022; Clare et al., 2022; Felsche and Ludwig, 2021;
Grundner et al., 2022; Li et al., 2022; Xue et al., 2022).

The other approach relies on treating a trained black box
model as a function to understand how the input–output map-
ping relationship is represented by this function. For ex-

sociated with fingers as being particularly important for classifying
the image as a hand.

4Yuan et al. (2023) break down the various XAI methods into
four categories. They divide those related to manipulating input–
output into perturbation-based methods and surrogate-based meth-
ods (e.g., LIME). They divide the methods that rely on model
parameter values into gradient-based methods (e.g., gradient) and
decomposition-based methods (e.g., layer-wise relevance propaga-
tion).
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Figure 2. Scientists can obtain statistical understanding of models by seeking input–output mapping, e.g., via perturbation experiments.
To acquire component-level understanding, one needs to be able to pinpoint specific components to explain models’ erratic behaviors or
successes. This has been done in dynamic climate modeling, e.g., by analyzing cloud parameterizations as a means to improve modeling
outcomes. We offer three examples of component-level understanding in machine learning. In panel (a), Beucler et al. (2021) design layers of
neurons in their neural network to enforce energy conservation and improve model outcome. In panel (b), Bonev et al. (2023) use spherical
Fourier transformation to ensure that Fourier neural operators perform with climate data. In panel (c), Bau et al. (2018) use a method called
GAN dissection to identify which subsets of neurons control parts of images that correspond to semantics (e.g., trees or doors). See Sect. 4
below for a discussion of these three examples.

ample, vanilla gradient (also known as saliency) is an XAI
method that relies on calculating the gradient of probabilities
of output being in each possible category with respect to its
input and back-propagating the information to its input. In
this way, vanilla gradient quantifies the relative importance
of each element of the input vector with respect to the output,
thereby attributing the predictive success to subsets of input;
see, e.g., Balmaceda-Huarte et al. (2023), Liu et al. (2023),
and He et al. (2024).

Let us examine how XAI methods yield statistical under-
standing in a detailed example. González-Abad et al. (2023)
use the saliency method to examine input–output mappings
in three different convolutional neural nets (CNNs) which
were trained and used to downscale climate data. They com-
puted and produced accumulated saliency maps which ac-
count for “the overall importance of the different elements”
of the input data for the model’s prediction (p. 8). One of their
results is that, in one of the CNNs, air temperature (at 500,
700, 850, and 1000 hPa) accumulates the highest relevance
for predicting North American near-surface air temperature,

although different regions are apparently more relevant than
others to the models’ predictions (see their Fig. 6, p. 12). In
other words, it appeared that the CNN had correctly picked
up on a relationship between coarse-resolution temperature
at certain geopotential heights on the one hand and higher-
resolution near-surface air temperatures on the other hand.

In this way, XAI methods yield information that can be
helpful in making a model’s results intelligible. For exam-
ple, it puts a scientist in the position to say, “this model was
picking up on aspects A, B, and C of the input data. These
aspects contributed to prediction X, a prediction that seems
plausible.” This exemplifies what we call “statistical under-
standing”, i.e., being able to offer a reason why we should
trust a given ML model by appealing to statistical mappings
between input and output. Statistical techniques are often
used to obtain these mappings by relating variations in input
to variations in output. Post hoc XAI methods can typically
yield this type of understanding. Note that this is not the same
as explaining the inner workings of the model itself, or what
we call “component-level understanding”, because the expla-
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nation does not attribute the model behaviors to ML model
components but is rather focused on input–output mapping.

While XAI methods can give statistical understanding of
model behaviors, this type of understanding has limitations.
The general limitation is a familiar one, i.e., that “while XAI
can reveal correlations between input features and outputs,
the statistics adage states: ‘correlation does not imply cau-
sation”’ (Molina et al., 2023, p. 8)5. Even if genuine causal
relationships between input and output can be established,
we still do not know how the ML model produces a certain
output. To answer this question, ideally, we would like to
know the causal role played by (at least) some of the com-
ponents making up the model. We would like to know about
at least some processes, mechanisms, constraints, or struc-
tural dependencies inside of the model rather than merely
probing the ML model as a black box post hoc from the out-
side. While XAI methods can yield information that seems
plausible and physically meaningful, this information may
be irrelevant with respect to how the model actually arrived
at a given decision or prediction (Rudin, 2019; Baron, 2023).
This, in turn, can undermine our trust in the model for future
applications. In contrast, with component-level understand-
ing, the causal knowledge is more secure and can also in-
form future development and improvement of the model in
question and ML models in general.

3 Understanding and intelligibility in CMIP

Dynamical models are complex but have gained trust because
their successes and failures can sometimes be attributed to
specific components or sub-models, such as when model bias
is explained by pointing to a particular parameterization. In-
deed, the practice of diagnosing model errors pre-dates the
Atmospheric Model Intercomparison Project (AMIP; Gates,
1992). For example, differences in the representation of both
radiative processes and atmospheric stratification at the poles
were featured in an evaluation of why 1-D models diverged
from a general circulation model (GCM) in their estimate of
climate sensitivity (see Schneider, 1975).

Later, in one of the diagnostic subprojects following
AMIP, Gleckler et al. (1995) attributed incorrect calcula-
tions of ocean heat transport to the models’ representations
of cloud radiative effects. They first found that the models’
implied ocean heat transport was partially in the wrong direc-
tion – northward in the Southern Hemisphere. They inferred
that cloud radiative effects were the culprit, explicitly not-
ing that atmospheric GCMs at the time of their writing were
“known to disagree considerably in their simulations of the
effects of clouds on the Earth’s radiation budget (Cess et al.,
1989), and hence the effects of simulated cloud–radiation in-

5To be more precise, we interpret this quote as saying that cor-
relation does not (logically) entail causation. Correlation may be a
sign that there is a causal relation in play, and correlations between
events often lead us to try and relate events causally.

teractions on the implied meridional energy transports [were]
immediately suspect” (Gleckler et al., 1995, p. 793). They re-
calculated ocean heat transport using a hybrid of model data
and observational data. When they did this, they fixed the
error – ocean heat transport turned poleward. The observa-
tional data used to fix the error were on cloud radiative ef-
fects. In other words, they substituted the output data linked
to the problematic cloud parameterizations (a component of
the models) with observational data on cloud radiative ef-
fects. This substitution resulted in a better fit with observa-
tions of and physical background knowledge of ocean heat
transport.

One may argue that substituting model components
merely exemplifies statistical understanding because it con-
cerns the input and output data of the models, which, in
Glecker et al.’s case, are cloud–radiation interactions and
ocean heat transport. Yet, this would be misguided. Gleck-
ler et al. isolated the cloud components as the causal culprit
behind why the models produced biased ocean heat trans-
port data. There is also a physically intelligible link between
cloud radiative forcing and ocean surface heat, so the diagno-
sis made scientific sense. In this way, scientists can diagnose
and fix climate models.

Many more recent cases of error diagnosis also aim to
identify problematic parameterizations (see, e.g., Hall and
Qu, 2006; O’Brien et al., 2013; Pitari et al., 2014; Bukovsky
et al., 2017; Gettelman et al., 2019; but see Neelin et al.,
2023, for current challenges). In CMIP6 in particular, there
is an increased focus on process-level analysis (Eyring et al.,
2019; Maloney et al., 2019). In process-level analysis, sci-
entists examine bias in the simulation of particular processes
which are, in turn, linked to one or more parameterizations,
i.e., components within a whole GCM.6 Moreover, CMIP-
endorsed model intercomparison projects (MIPs) also center
on particular processes or parameterizations, such as cloud
feedback MIPs (Webb et al., 2017) and land surface, snow,
and soil moisture MIPs (van den Hurk et al., 2016).7

The practice of updating model parameterizations dur-
ing model development also demonstrates an interest (and
success) in achieving component-level understanding. We
provide two examples here: one associated with the radia-
tive transfer parameterization in the Community Atmosphere
Model and another associated with the physical representa-
tion of stratocumulus clouds in boundary layer parameteriza-
tions. With respect to the radiative transfer component (pa-

6Note that while processes and model components are linked,
neither is reducible to the other; e.g., a coupler is a component in a
GCM but it is not a real-world climate process. Conversely, there is
no cloud feedback parameterization but cloud feedbacks are a real-
world climate process.

7These examples are in stark contrast to the pessimism about un-
derstanding climate models that some philosophers of science have
emphasized (Lenhard and Winsberg, 2010) and others have rebutted
(Carrier and Lenhard, 2019; Easterbrook, 2023; Frigg et al., 2015;
O’Loughlin, 2023; Touzé-Peiffer et al., 2020).
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Figure 3. Changes in the distribution of estimated cloud radiative
forcing (CRF) across three generations of IPCC Assessment Re-
ports: 3 (TAR, published in 2001), 5 (AR5, 2014), and 6 (AR6,
2021). AR4 is omitted because data necessary to estimate CRF are
not readily available. Estimates of simulated CRF were acquired
by manual digitization of Fig. 7.2 of Stocker et al. (2001) and by
multiplying the equilibrium climate sensitivity and cloud feedback
columns from Tables S1 and S2 of Zelinka et al. (2020). As the dis-
tribution of estimated cloud radiative forcing shifts upwards from
TAR to AR5 to AR6, the figure shows that in AR5 and AR6, cloud
feedbacks are largely positive. Indeed, AR6 states with high confi-
dence that “future changes in clouds will, overall, cause additional
warming” (Forster et al., 2021, p. 1022), yet it was not clear in TAR
whether cloud feedbacks were positive. The increasing confidence
in positive cloud feedbacks is partially due to improved boundary
layer parameterization, which demonstrates modelers’ component-
level understanding.

rameterization), Collins et al. (2002) noted that, at the time
their paper was written, studies had “demonstrated that the
longwave cooling rates and thermodynamic state simulated
by GCMs are sensitive to the treatment of water vapor line
strengths.” Collins et al. used this knowledge – along with
updated information about absorption and emission of ther-
mal radiation by water vapor – to update the radiation pa-
rameterization in the Community Atmosphere Model. This
component-level improvement led to substantial improve-
ments in the models’ simulated climate.

Regarding stratocumulus cloud parameterization in cli-
mate models, targeted developments following the Third In-
tergovernmental Panel on Climate Change (IPCC) Assess-
ment Report reduced uncertainty in estimates of cloud feed-
backs to the extent that the Sixth IPCC Assessment Re-
port now states with high confidence that “future changes
in clouds will, overall, cause additional warming” (p. 1022).
This systematic change in cloud radiative forcing is demon-
strated in Fig. 3. It was not clear in the Third IPCC Assess-
ment Report (TAR) whether cloud feedbacks were positive
or negative, and the TAR noted in particular that the “diffi-
culty in simulation of observed boundary layer cloud prop-
erties is a clear testimony of the still inadequate representa-
tion of boundary-layer processes” (Stocker, 2001, p. 273).
Around this time, researchers developed improved bound-

ary layer parameterizations with the goal of improving the
representation of low boundary layer clouds. For instance,
Grenier and Bretherton (2001) built on a standard 1.5-order
boundary layer turbulence parameterization in which turbu-
lent mixing is treated as a diffusive process related to the
amount of turbulent kinetic energy (TKE) and in which TKE
is treated as a conservative, prognostic quantity. Their key ad-
ditions to the 1.5-order turbulence approach were (1) a more
accurate numerical treatment of diffusion in the vicinity of
step-function-like jumps in temperature and humidity (inver-
sions) and (2) the contribution of cloud-top radiative cooling
to the production of TKE. These two ingredients allow the
turbulence parameterization to emulate the physics that drive
stratocumulus clouds. Variations on the parameterization of
Grenier and Bretherton (2001) and other similarly sophisti-
cated boundary layer parameterizations have been included
in numerous weather and climate models, leading to im-
provements in the simulation of stratocumulus clouds specif-
ically and general improvements in model climatology.

In certain circumstances component-level responsibility
for particular model biases can be determined. As an exam-
ple, the Community Earth System Model 2 (CESM2) was
recognized as exhibiting a climate sensitivity that is too large
– one that did not appear in standard CMIP simulations.
This behavior was discovered in a surprising way. Zhu et
al. (2021) showed an instability in the simulation of the Last
Glacial Maximum, a much colder period than the present
day, using CESM2. This instability did not exist in CESM.
By reverting to the original component-level microphysics
scheme the model behaved as expected, and erroneous speci-
fications of microphysical particle concentrations were dis-
covered and remedied. More generally, the understanding
and observational constraint of ice microphysics is a chal-
lenge as demonstrated by the very large variations in ice wa-
ter path across CMIP models. Using perturbed parameter es-
timation (PPE; e.g., Eidhammer et al., 2024) can also reveal
component-level sensitivities and shortcomings.

We take the above cases from CMIP to indicate that cli-
mate scientists aim for component-level understanding of
their models, which relates to a standard that climate models
be at least somewhat intelligible. Adopting the idea of “intel-
ligibility” from philosopher of science De Regt (2017), we
can say that a complex model is intelligible for scientists if
they can recognize qualitatively characteristic consequences
of the model without performing exact calculations. Intelligi-
bility is facilitated by having models made up of components.
In dynamical models, these components typically represent
real-world processes, even in cases of empirically based pa-
rameterizations. More generally, knowing that a model com-
ponent plays a particular role in a climate simulation – either
representing the process as designed or a role later discov-
ered during model development – is invaluable for reasoning
about the behavior, successes, and biases of the GCM as a
whole.
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The climate modeling community has long strived for
component-level understanding and intelligibility. This is es-
pecially evident in the work on climate model hierarchies,
i.e., a group of models which spans a range of complexity and
comprehensiveness (Jeevanjee et al., 2017). Writing nearly
2 decades ago, Issac Held (2005) identified model hierarchies
as necessary if we wish to understand both the climate sys-
tem and complex climate models.

We need a model hierarchy on which to base
our understanding, describing how the dynamics
change as key sources of complexity are added or
subtracted (p. 1609)

. . . the construction of such hierarchies must, I be-
lieve, be a central goal of climate theory in the
twenty-first century. There are no alternatives if
we want to understand the climate system and our
comprehensive climate models. Our understand-
ing will be embedded within these hierarchies.
(p. 1610)

Along similar lines, and before the advent of CMIP,
Stephen Schneider (1979) wrote that

. . . the field of climate modeling needs to “fill in
the blanks” at each level in the hierarchy of cli-
mate models. For only when the effect of adding
one change at a time in models of different com-
plexity can be studied, will we have any real hope
of understanding cause and effect in the climatic
system. (p. 748)

These appeals to climate model hierarchies highlight how
component-level understanding is a long-standing goal in cli-
mate modeling (see also Katzav and Parker, 2015). This is
not to say that component-level understanding automatically
translates to understanding all model behaviors. Emergent
properties such as equilibrium climate sensitivity (ECS) may
elude explanation. Even when components such as cloud
parameterizations are appealed to as causally relevant for
higher ECS values (e.g., Zelinka et al., 2020), it must be
granted that these cloud parameterizations interact with other
components and pieces of the overall GCM. That is, GCMs
exhibit fuzzy modularity – sub-model behaviors do not add
up linearly or in an easy-to-understand way (Lenhard and
Winsberg, 2010). So, there may be a more complete explana-
tion detailing how, as a whole, the GCM simulates a higher
ECS. Producing a complete explanation may prove elusive,
however, to the extent that GCMs are epistemically opaque or
have such a high degree of complexity that human minds can-
not track all of the relevant information (Humphreys, 2009).8

8This complexity includes both the impossibility of fully know-
ing a climate model’s code in its entirety and the impossibility of
being able to follow the calculations as the model steps forward in
time. With today’s GCMs, humans can do neither of these things.

Therefore, we do not regard our three proposed types of un-
derstanding as exhaustive – perhaps a component interaction
or structural type of understanding ought to be theorized and
strived for as well.

However, the examples from earlier in this section show
how the goal of component-level understanding is regularly
achieved, overall model complexity notwithstanding. Hav-
ing achieved such understanding, scientists can be more con-
fident that their models have indeed captured some truths
about the target systems, and they are thereby justified to
increase their confidence in these complex models. In the
climate modeling literature, component-level understanding
routinely leads to model improvements.

We end this section with a brief discussion distinguish-
ing between component-level and statistical understanding.
Overall, our analysis is in the same spirit as that of Knüsel
and Baumberger (2020), who argue that data-driven mod-
els and dynamical models alike can be understood through
manipulating the model so that modelers can qualitatively
anticipate model behaviors. However, not all manipulations
are equal. Manipulating input data and seeing associated
changes in output data does not tell you how the model pro-
duces its output. The hierarchy of understanding we propose
– instrumental, statistical, and component-level – concerns
the degree to which and ways in which a model is intelligible
or graspable (Jebeile et al., 2021; Knüsel and Baumberger,
2020). Complex models are intelligible or graspable just in
the case that, and to the degree that, their behavior can be
qualitatively anticipated or explained (De Regt and Dieks,
2005; Lenhard, 2006). From our perspective, component-
level understanding puts scientists into a position to better
anticipate and better explain model behavior. In general, sta-
tistical understanding can help us answer questions such as
“do the input–output relations of the model make sense and,
if so, in what way do they make sense?” This is great for
finding out whether the model’s behavior is consistent with
expectations across a variety of cases. This may also in-
volve manipulating input and examining associated changes
in output to better anticipate future model behavior (Jebeile
et al., 2021; Knüsel and Baumberger, 2020). However, this
is distinct from learning why the model behaves the way
it does. To answer this distinct question, we need to know
how the model is working, which, in turn, involves know-
ing something about the pieces making up the model. Hence,
component-level understanding is called for. This is exactly
the type of understanding that we see aimed for, and often
grasped, in CMIP experiments.

Component-level understanding often involves a different
kind of knowledge related to model architecture and beyond
input–output relationships. On the one hand it can demon-
strate that you know what role the component is playing in
the model – this shows some knowledge of model building. It
may also be helpful for answering a wider range of what-if-
things-had-been-different questions. Finally, and potentially
the clearest benefit of component-level understanding, it can
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tell one what needs to be fixed in cases of error. This should
produce additional trust in the modeling enterprise more gen-
erally.9

4 Lessons learned: examples of component-level
understanding in ML

Component-level understanding is not the privilege solely of
dynamic climate modeling. ML models can be built with
intelligible components as well, although their components
look very different from those in dynamic models. In this
section, we offer three examples in which ML researchers
are able to acquire component-level understanding of model
behaviors by intentionally designing or discovering model
components that are interpretable and intelligible.

4.1 Attributing model success with physics-informed
machine learning

Our first example involves physics-informed machine learn-
ing, i.e., machine learning incorporated with domain knowl-
edge and physical principles (Kashinath et al., 2021). Model
success can be attributed to a specific component in a neu-
ral net if it is known that said component in the neural net
is performing a physically relevant role for a given modeling
task.

Beucler et al. (2019, 2021) augment a neural net’s ar-
chitecture via layers which enforce conservation laws that
are important for emulating convection (see Fig. 2, panel
a). These laws include enthalpy conservation, column-
integrated water conservation, and both longwave and short-
wave radiation conservation. The conservation laws are en-
forced “to machine precision” (Beucler et al., 2021). Follow-
ing Beucler et al. (2019) and because this neural net has
a physics-informed architecture, we will use the acronym
NNA. NNA is trained on aqua-planet simulation data from
the Super-Parameterized Community Atmosphere Model
3.0. NNA’s results are compared with those of two other neu-
ral nets: one unconstrained by physics (NNU) and another
“softly” constrained through a penalization term in the loss
function (NNL; see Beucler et al., 2019, for further discus-
sion).

All three NNs are evaluated based on the mean squared
errors (MSEs) of their predictions and based on whether
their output violates physics conservation laws (physical con-
straint penalty P , given in units of W2 m−4). While NNU
has the highest performance in a baseline climate – i.e., a
climate well-represented by the training data – NNA and

9This is not to say that component-level understanding is nec-
essarily superior to statistical understanding. For example, knowing
about a robustly detected statistical relationship could be more valu-
able than knowing how a single model component functions, espe-
cially since many important model behaviors arise from interactions
between multiple model components.

NNL each outperform NNU in a 4 K warmer climate (see
Beucler et al., 2019, Table 1), which is impressive since
generalizing into warmer climates is particularly challeng-
ing for ML models (Rasp et al., 2018; Li, 2023). These re-
sults may indicate that NNU performed better in the base-
line climate for the “wrong” reasons. Indeed, NNU heavily
violated the physical constraints in both the baseline (P =
458± 5× 102 W2 m−4) and the 4 K warmer climate cases
(P = 3× 105

± 1× 106 W2 m−4). Compare these to the
NNA case (baseline: P = 7× 10−10

± 1× 10−9 W2 m−4;
4 K warmer: P = 2× 10−9

± 5× 10−9 W2 m−4).
Beucler et al. (2021) further show that NNA predicts

the total thermodynamic tendency in the enthalpy conser-
vation equation more accurately than the other NNs – “by
an amount closely related to how much each NN violates
enthalpy conservation” (p. 5). The particular layer in NNA
responsible for enthalpy conservation is obviously the ex-
planation for this result. This case therefore exemplifies
component-level understanding, which was straightforward
because of Beucler et al.’s choice of model design.

It should be noted that both NNA and NNL perform well
in the 4 K warmer climate and, more generally, “[e]nforcing
constraints, whether in the architecture or the loss function,
can systematically reduce the error of variables that appear
in the constraints” (Beucler et al., 2021, p. 5). This sug-
gests that, when thinking purely about model performance,
physical constraints do not necessarily need to be imple-
mented in the model’s architecture. However, compared with
NNL, Beucler et al.’s use of NNA facilitates straightforward
component-level understanding. The component-level under-
standing is straightforward because we know that, by virtue
of the physics knowledge built into the model’s architecture,
NNA obeys conservation laws as it is trained and as it is
tested. We can draw an analogy with dynamical climate mod-
els. NNL is to NNA as bias-corrected GCM simulations are
to ones which capture relevant physical processes with high
fidelity to begin with. Knowing that a model produces a phys-
ically consistent answer for physical reasons is a stronger ba-
sis for trust than merely knowing that a model produces phys-
ically consistent answers due to post hoc bias correction.

4.2 Explaining model error in a case of Fourier neural
operators

Another example involves a recent development in using
machine learning to solve partial differential equations: the
Fourier neural operator (FNO) pioneered by Li et al. (2021).
The innovation of FNO is the application of Fourier trans-
forms to enable CNN-based layers that learn “solution op-
erators” to partial differential equations in a scale-invariant
way. Building on Li et al. (2021), Pathak et al. (2022) demon-
strated that training an FNO network on output from a nu-
merical weather prediction (NWP) model produced a ma-
chine learning model that emulates NWP models with high
fidelity and efficiency. A key challenge noted by Pathak et
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al. (2022), however, was a numerical instability that limited
application of the FNO model to forecasts of lengths less than
10 d.

Analysis of the instability ultimately led the group to hy-
pothesize that the instability was due to a specific compo-
nent of the FNO model: the Fourier transform itself. The
problem they identified was that the sine and cosine func-
tions employed in Fourier transforms are the eigenfunctions
of the Laplace operator on a doubly periodic, Euclidean ge-
ometry, whereas the desired problem (i.e., NWP) is intrin-
sic to an approximately spherical geometry. In essence, the
Earth’s poles represent a singularity that Fourier transforms
on a latitude–longitude grid are not well-equipped to handle.
Bonev et al. (2023) adapt the FNO approach to spherical ge-
ometry by utilizing spherical harmonic transforms with the
Laplace-operator eigenfunctions for spherical geometries as
basis functions in lieu of Fourier transforms. These eigen-
functions, the spherical harmonic functions, smoothly han-
dle the poles as a natural part of their formulation. Bonev et
al. (2023) report that the application of spherical harmonic
transforms, rather than Fourier transforms, results in a model
that is numerically stable up to 1 year.

The application of spherical transformations stabilizes the
FNO model. Bonev et al. were able to fix the FNO because
they could pinpoint the Fourier transformations, a component
of the FNO model, demonstrating scientists’ component-
level understanding.10

4.3 GAN dissect for future applications in ML-driven
climate science

The final example comes from generative adversarial net-
works (GANs) in computer vision. Bau et al. (2018) iden-
tify particular units (i.e., sets of neurons and/or layers) in a
neural net as causally relevant to the generation of particu-
lar classes within images such as doors on churches. They
demonstrate that these units are actually causally relevant by
showing what happens when said units are ablated (essen-
tially setting them to 0).

The example demonstrates component-level understand-
ing because the units in question are manipulated. Compo-
nents within the architecture of the model are turned on and
off and the resultant effects are observed.11 This puts us in
a position to say, for example, that “these neurons are re-
sponsible for generating images of trees, and we know this
because turning more of these neurons on yields an image
with more trees (or bigger trees) and vice versa. Moreover,
the other aspects of the image are unchanged no matter what

10Fourier transformations turn out to be useful in other contexts
of ML-driven climate science because scientists can use them to
understand neural network behaviors as combinations of filters; see,
e.g., Subel et al. (2023).

11As a reminder to the reader, by “component” we mean a func-
tional unit of the model’s architecture, which includes the “units”
described by Bau et al. (2018).

we do to these neurons”. Bau et al. (2018) also show that vi-
sual artifacts are causally linked to particular units and can
be removed using this causal knowledge.

This case is analogous to the study from Gleckler et
al. (1995) as described in Sect. 3 above. Recall that the cloud
radiative effects from the GCMs were “turned off” (substi-
tuted out and replaced with observational data) and the cal-
culations of ocean heat transport improved. Scientists could
make sense of model error because they knew that a certain
deficiency in GCMs, at the time, involved components of
the GCMs responsible for representing clouds. In the same
way, Bau et al. (2018) are able to intervene on generations
of images by linking units in their model to particular types
of image classes and examining what happens to the over-
all image when these units are manipulated. Note that this is
distinct from the closely related method of ablating specific
subsets of input data, which is more closely aligned with XAI
and can therefore yield statistical understanding (see, e.g.,
Brenowitz et al., 2020; Park et al., 2022).

While GAN dissect is not typically used in climate sci-
ence research, GANs are beginning to be adopted for some
climate applications (Beroche, 2021; Besombes et al., 2021).
Additionally, there are potential future applications such as
in atmospheric river detection (Mahesh et al., 2024). In any
case, this example demonstrates yet again how component-
level understanding is achievable with ML.

5 Discussion and recommendations for practice

In this review and perspective paper we have argued that
component-level understanding ought to be strived for in
ML-driven climate science. The value of component-level
understanding is especially evident in the FNO problem de-
scribed previously (Sect. 4.2 above). Instrumental under-
standing allowed the group to identify a performance issue
(numerical “issues” in the polar regions) that led to numer-
ical instability. While the group did not employ any XAI –
statistical understanding – approaches, it is clear that they
would have been of limited value in identifying the under-
lying cause of the numerical instability, since XAI methods
only probe input–output mappings. Ultimately the problem
was identified and later solved by applying component-level
understanding of the FNO network: knowledge that a com-
ponent of the network implicitly (and incorrectly) assumed a
Euclidean geometry for a problem on a spherical domain.

However, a potential objection is that component-level un-
derstanding is unnecessary because XAI methods can simply
be evaluated against benchmark metrics. For example, Bom-
mer et al. (2023) propose five metrics to assess XAI methods,
focusing especially on the methods’ output data (referred to
as “explanations”). These include the following.

– Robustness of the explanation is determined given small
perturbations to input.
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– Faithfulness is determined by comparing the predictions
of perturbed input and those of unperturbed input to
determine if a feature deemed important by the XAI
method does in fact change the network prediction.

– Randomization measures how the explanation changes
by perturbing the network weights; similar to the robust-
ness metric, the thinking is that “the explanation of an
input x should change if the model changes or if a dif-
ferent class is explained” (Bommer et al., 2023, p. 8).

– Localization measures agreement between the explana-
tion and a user-defined region of interest.

– Complexity is a measure of how concise the highlighted
features in an explanation are and assumes that “that an
explanation should consist of a few strong features” to
aid interpretability (Bommer et al., 2023, p. 10).

Insofar as the metrics are deemed desirable, we agree that
such an approach could help establish trust in XAI. How-
ever, we view such benchmarks as complementary to, rather
than a substitute for, component-level understanding. This is
because benchmarks yield a sort of second-order statistical
understanding. That is, such metrics are largely focused on
aspects of input and output data produced by a given XAI
method. They are, in a sense, an XXAI method, an input–
output mapping to help make sense of another input–output
mapping.

Therefore, our recommendation is that ML-driven climate
science strive for component-level understanding. This will
aid in evaluating the credibility of model results, in diagnos-
ing model error, and in model development. The clearest path
to component-level understanding in ML-driven climate sci-
ence would likely involve climate scientists building, or help-
ing build, the ML models that are used for their research and
implementing physics-based and other background knowl-
edge to whatever extent feasible (Kashinath et al., 2021;
Cuomo et al., 2022). Clear standards could also be developed
for documenting ML architecture, training procedures, and
past analyses, including error diagnoses (O’Loughlin, 2023).
Perhaps a model intercomparison project could be developed
to systematically evaluate ML behavior across diverse groups
of researchers. Lastly, with component-level understanding
as a goal to strive for, scientists can better develop hybrid
models where both ML and dynamic modeling components
are employed.

An increasing range of free or low-cost, high-quality re-
sources are now available to enable researchers who are not
(yet) experts in ML to gain a deep and practical level of un-
derstanding of modern ML model designs and applications.
Some examples of free, high-quality resources include the
following.12

– Practical Deep Learning for Coders – 1: Getting started
(fast.ai): https://course.fast.ai/Lessons/lesson1.html

12All links last accessed 16 December 2024.

– Related: GitHub – fastai/fastbook: The fastai book, pub-
lished as Jupyter Notebooks: https://github.com/fastai/
fastbook

– Introduction – Hugging Face NLP Course: https://
huggingface.co/learn/nlp-course/chapter1/1

– How Diffusion Models Work – DeepLearn-
ing.AI: https://www.deeplearning.ai/short-courses/
how-diffusion-models-work/

Back in 2005, Held wrote that climate modeling “must pro-
ceed more systematically toward the creation of a hierarchy
of lasting value, providing a solid framework within which
our understanding of the climate system, and that of future
generations, is embedded” (p. 1614). We think there is a par-
allel need in ML-driven climate science: i.e., to develop sys-
tematic standards for the use and evaluation of ML models
that aid in our understanding of the climate system. Striving
for component-level understanding of ML models is one way
to help achieve this.
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