Articles | Volume 18, issue 15
https://doi.org/10.5194/gmd-18-4759-2025
https://doi.org/10.5194/gmd-18-4759-2025
Model description paper
 | Highlight paper
 | 
01 Aug 2025
Model description paper | Highlight paper |  | 01 Aug 2025

A Bayesian framework for inferring regional and global change from stratigraphic proxy records (StratMC v1.0)

Stacey Edmonsond and Blake Dyer

Related subject area

Solid Earth
SubsurfaceBreaks v. 1.0: a supervised detection of fault-related structures on triangulated models of subsurface homoclinal interfaces
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025,https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Empirical modeling of tropospheric delays with uncertainty
Jungang Wang, Junping Chen, and Yize Zhang
Geosci. Model Dev., 18, 1487–1504, https://doi.org/10.5194/gmd-18-1487-2025,https://doi.org/10.5194/gmd-18-1487-2025, 2025
Short summary
CitcomSVE-3.0: a three-dimensional finite-element software package for modeling load-induced deformation and glacial isostatic adjustment for an Earth with a viscoelastic and compressible mantle
Tao Yuan, Shijie Zhong, and Geruo A
Geosci. Model Dev., 18, 1445–1461, https://doi.org/10.5194/gmd-18-1445-2025,https://doi.org/10.5194/gmd-18-1445-2025, 2025
Short summary
NSOAS24: a new global marine gravity model derived from multi-satellite sea surface slopes
Shengjun Zhang, Xu Chen, Runsheng Zhou, and Yongjun Jia
Geosci. Model Dev., 18, 1221–1239, https://doi.org/10.5194/gmd-18-1221-2025,https://doi.org/10.5194/gmd-18-1221-2025, 2025
Short summary
GEOMAPLEARN 1.2: detecting structures from geological maps with machine learning – the case of geological folds
David Oakley, Christelle Loiselet, Thierry Coowar, Vincent Labbe, and Jean-Paul Callot
Geosci. Model Dev., 18, 939–960, https://doi.org/10.5194/gmd-18-939-2025,https://doi.org/10.5194/gmd-18-939-2025, 2025
Short summary

Cited articles

Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar, R., Lao, J., Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T., and Zinkov, R.: PyMC: A Modern and Comprehensive Probabilistic Programming Framework in Python, PeerJ Computer Science, 9, e1516, https://doi.org/10.7717/peerj-cs.1516, 2023. a, b
Ahm, A.-S. C., Bjerrum, C. J., Blättler, C. L., Swart, P. K., and Higgins, J. A.: Quantifying early marine diagenesis in shallow-water carbonate sediments, Geochim. Cosmochim. Ac., 236, 140–159, https://doi.org/10.1016/j.gca.2018.02.042, 2018.  a, b
Ahm, A.-S. C., Maloof, A. C., Macdonald, F. A., Hoffman, P. F., Bjerrum, C. J., Bold, U., Rose, C. V., Strauss, J. V., and Higgins, J. A.: An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”, Earth Pl. Sc. Lett., 506, 292–307, https://doi.org/10.1016/j.epsl.2018.10.046, 2019. a
Ahn, S., Khider, D., Lisiecki, L. E., and Lawrence, C. E.: A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model, Dynamics and Statistics of the Climate System, 2, dzx002, https://doi.org/10.1093/climsys/dzx002, 2017. a
Ajayi, S., Kump, L. R., Ridgwell, A., Kirtland Turner, S., Hay, C. C., and Bralower, T. J.: Evaluation of Paleocene-Eocene Thermal Maximum Carbon Isotope Record Completeness—An Illustration of the Potential of Dynamic Time Warping in Aligning Paleo-Proxy Records, Geochem. Geophy. Geosy., 21, e2019GC008620, https://doi.org/10.1029/2019GC008620, 2020. a, b
Download
Executive editor
This paper represents a major step forward in understanding Earth history proxy records and how to model and correlate records, as illustrated by examples in the paper. The work presented here should have direct implications in the field of reconstructing Earth history from paleo proxy records but also beyond with a wide range of possible applications.
Short summary
The chemistry of sedimentary rocks is used to reconstruct past changes in Earth's climate and biogeochemical cycles. Reconstructing global change requires merging stratigraphic proxy records from many locations, each of which may be incomplete, time-uncertain, and influenced by both global and local processes. StratMC uses Bayesian modeling to see through this complexity, building more accurate and testable reconstructions of global change from stratigraphic data.
Share