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Abstract. The chemistry of ancient sedimentary rocks en-
codes information about past climate, element cycling, and
biological innovations. Records of large-scale Earth sys-
tem change are constructed by piecing together geochem-
ical proxy data from many different stratigraphic sections,
each of which may be incomplete, time-uncertain, biased
by local processes, and diagenetically altered. Accurately
reconstructing past Earth system change thus requires cor-
rectly correlating sections from different locations, distin-
guishing between global and local changes in proxy values,
and converting stratigraphic height to absolute time. Incom-
plete consideration of the uncertainties associated with each
of these challenging tasks can lead to biased and inaccurate
estimates of the magnitude, duration, and rate of past Earth
system change. Here, we address this shortcoming by de-
veloping a Bayesian statistical framework for inferring the
common proxy signal recorded by multiple stratigraphic sec-
tions. Using the principle of stratigraphic superposition and
both absolute and relative age constraints, the model simul-
taneously correlates all stratigraphic sections, builds an age
model for each section, and untangles global and local sig-
nals for one or more proxies. Synthetic experiments confirm
that the model can correctly recover proxy signals from in-
complete, noisy, and biased stratigraphic observations. Fu-
ture applications of the model to the geologic record will en-
able geoscientists to more accurately pose and test hypothe-
ses for the drivers of past proxy perturbations, generating
new insights into Earth’s history. The model is available as
an open-source Python package (StratMC), which provides
a flexible and user-friendly framework for studying different
times and proxies recorded in sediments.

1 Introduction

Sedimentary rocks host fragments of information about the
long-term co-evolution of Earth’s surface environments, bio-
sphere, and lithosphere. Much of this information is encoded
by geochemical proxies that are used to make inferences
about past changes in one or more Earth systems. For ex-
ample, the sulfur isotopic composition of sulfate and sul-
fide minerals tracks Earth’s redox evolution (Farquhar et al.,
2000), while measurements of the carbon isotopic compo-
sition of carbonate sediments have been used to identify
past perturbations to Earth’s surface carbon cycle (Kump
and Arthur, 1999). Since most deep-sea sediments older
than ∼ 200 Ma have been subducted at continental margins,
reconstructions of Earth system change prior to the mid-
Mesozoic rely primarily on observations from sediments de-
posited in marginal shallow-water environments that escape
subduction.

Records of average large-scale change are constructed by
placing proxy data from many different locations in the same
chronostratigraphic reference frame. In practice, this place-
ment typically is achieved by considering both relative and
absolute age constraints. Relative age models are constructed
using some combination of bio-, litho-, and chemostratigra-
phy, where fossil occurrences, marker beds, and geochemi-
cal trends are correlated among stratigraphic sections. Where
available, correlation is guided by geochronological age con-
straints (e.g., radiometrically dated ash beds or detrital min-
erals). Once all observations have been placed in the same
relative reference frame, geochronological ages are used to
construct an absolute age model, where each observation is
mapped to time. The timing, duration, rate, and environmen-
tal context of large-scale proxy change can then be evaluated
using the combined data from all locations.
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It is often exceedingly challenging to construct accurate
age models – and, consequently, accurate estimates of proxy
change over time – owing to three fundamental features of
the shallow-water stratigraphic record. First, the stratigraphic
record is incomplete: sedimentary sequences are punctu-
ated by hiatuses (surfaces that represent non-deposition or
erosion), and any single location may preserve only a few
disjoint fragments of geologic time (Sadler, 1981). Con-
sequently, the relationship between time and stratigraphic
height is often complex and irregular. Second, materials
amenable to geochronological dating are rare in ancient sed-
imentary strata, limiting the resolution of absolute age mod-
els. Third, many geochemical proxies can be influenced by
local and post-depositional processes. For example, the δ13C
of shallow-water carbonate sediments, which is frequently
used for correlation of unfossiliferous Precambrian sedi-
ments (Knoll et al., 1986; Halverson et al., 2005; Xiao et al.,
2016; Bowyer et al., 2022; Halverson et al., 2022; Topper
et al., 2022), is commonly at least partly decoupled from the
δ13C of contemporaneous global-mean seawater dissolved
inorganic carbon (DIC) due to both primary processes (e.g.,
local biological activity; Patterson and Walter, 1994; Swart,
2008; Geyman and Maloof, 2019; Trower et al., 2024) and
diagenesis (Allan and Matthews, 1982; Higgins et al., 2018).
In addition to complicating correlation among sections, these
local processes may obscure the true nature of proxy change
over time by driving stratigraphic changes in proxy values
that are unrelated to large-scale biogeochemical cycling.

Many stratigraphers have recognized the challenges asso-
ciated with constructing both relative and absolute age mod-
els, and a host of quantitative tools designed to treat un-
knowns in a more explicit and reproducible way has emerged
in response (e.g., Hagen, 2024). These tools include both
classical approaches, which rely only on observed data (e.g.,
geochronological ages with uncertainties), and Bayesian ap-
proaches, which also explicitly consider a priori knowl-
edge about the system of interest (e.g., superposition con-
straints). In the realm of absolute age model construction,
the widespread adoption of Bayesian methods has led to
more conservative estimates of uncertainty in the ages of
undated stratigraphic horizons (e.g., Johnstone et al., 2019;
Trayler et al., 2020; Halverson et al., 2022; Zhang et al.,
2023). Meanwhile, dynamic time warping – a deterministic
algorithm for finding the optimal least-squares alignment be-
tween two sequences – has been used for stratigraphic cor-
relation of carbonate δ13C (Hay et al., 2019; Ajayi et al.,
2020; Hagen and Creveling, 2024), paleomagnetic (Hagen
et al., 2020; Peti et al., 2020; Reilly et al., 2023), ice core
(Hagen and Harper, 2023), and borehole well data (Bav-
ille et al., 2022; Sylvester, 2023). Various correlation algo-
rithms also have been developed by the deep-sea sediment
core community for application to more continuous Ceno-
zoic δ13C and δ18O records (e.g., Lisiecki and Lisiecki, 2002;
Lin et al., 2014; Ahn et al., 2017; Lee et al., 2023). No-
tably, the Bayesian approach of Lee et al. (2023) improves

on previous algorithms by enforcing radiometric age con-
straints during the alignment step and iteratively aligning all
records to a composite proxy “stack” rather than to a single
target record. However, that approach relies on a prior model
for sedimentation rate that is only appropriate for deep-sea
sediment cores. Most recently, Bloem and Curtis (2024) de-
veloped a Bayesian approach to intrabasinal chemostrati-
graphic correlation underpinned by computational simula-
tions of sediment accumulation. This model quantifies un-
certainty in the alignment among sections but can only be
used to correlate sections within a single basin and does not
consider local influences on proxy values.

Together, all of the methods described above constitute
an important step toward an objective and reproducible ap-
proach to correlation. However, none are well-equipped to
handle observations from ancient shallow-water environ-
ments where age constraints are sparse and proxy data
may be locally biased, diagenetically altered, and incom-
plete. Furthermore, no existing chemostratigraphy algorithm
is specifically optimized for reconstructing past changes
in global biogeochemical cycling. Instead, correlation is
the main objective, while proxy change over time is re-
constructed subsequently, typically by stacking the aligned
proxy observations (e.g., Lisiecki and Raymo, 2005; Ha-
gen and Creveling, 2024). In the context of reconstructing
past Earth system change, this focus on correlation neglects
that the observed proxy values may have been influenced by
many processes other than global biogeochemical cycling.

Here, we address this gap by developing a new Bayesian
framework for inferring the common proxy signal recorded
by multiple stratigraphic sections using only age constraints
and the principle of stratigraphic superposition. This model
(1) explicitly attempts to deconvolve global and local signals,
(2) simultaneously correlates all stratigraphic sections using
both relative and absolute age constraints, (3) constructs a
distribution of age models for each section during the correla-
tion step, and (4) can simultaneously infer global changes in
multiple proxies. Importantly, this modeling approach does
not replace the need for geologists to carefully consider the
geology and broader context of the systems they are recon-
structing. It does, however, provide a quantitative framework
for testing hypotheses and instilling geologic wisdom into
the proxy signal reconstruction process. We demonstrate the
method using synthetic carbonate δ13C data and then lever-
age simple experiments to explore the broader implications
for reconstructing the history of past Earth systems using
stratigraphic proxy records.

2 Bayesian inference model

2.1 Overview

In the following subsections, we develop a Bayesian statisti-
cal framework to find the proxy history that can best describe
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Figure 1. Overview of the inference model workflow. Stratigraphic proxy observations and age constraints are input to the model. Using
these input data, the model simultaneously infers the common proxy signal and an age model for each section (the outputs). Key aspects of
the internal model structure are illustrated in Figs. 3 and 4.

a given set of stratigraphic observations (Fig. 1). Details of
the model structure are given in Sect. 2.3 to 2.6. In Sect. 2.7
and 2.8, we provide additional practical guidance for us-
ing the model; more extensive instructions are provided in
the supplementary user manual and package documentation
(https://stratmc.readthedocs.io/, last access: 1 March 2025).

Here, we briefly summarize key aspects of the model
structure. The model requires two inputs: proxy observations
from multiple stratigraphic sections and age constraints (at
least a minimum and maximum age for each input section,
reported with uncertainties). The model-derived age of each
proxy observation obeys age constraints and respects super-
position with all other observations from the same section.
Given these constraints, the model extracts the shared com-
ponent of the proxy signal recorded by all stratigraphic sec-
tions. The form and timing of this shared component are
learned from the data. Throughout the text, we often refer
to this shared component as the “global signal”. However, it
may describe common change at any scale (e.g., intrabasi-
nal, regional, or global), depending on the geographic distri-
bution of the observations. The model also infers the degree
to which individual sections are influenced by localized pro-
cesses (e.g., diagenesis).

2.2 Bayes’ theorem

Bayesian models seek to infer the value of unknown param-
eters of interest (θ ) – for example, the age of a sample or the
value of a proxy signal over time – by conditioning a pri-
ori knowledge about these parameters on observed data (D).
The posterior probability of the parameters conditioned on

the data, P(θ |D), is described by Bayes’ theorem:

P(θ |D)=
P(D|θ)P (θ)

P (D)
. (1)

The model prior, P(θ), is a probabilistic representation
of our existing knowledge about the parameters. For ex-
ample, the prior age for a geologic sample may be con-
strained by overlying and underlying geochronological age
constraints via the principle of stratigraphic superposition.
The likelihood, P(D|θ), is the probability of observing the
data, D, given this prior knowledge. Finally, the evidence
or marginal likelihood, P(D), is the average probability of
the data with respect to the prior. The P(D) term is constant
for a given model and is generally ignored because it is in-
tractable to compute. Instead, we use Markov chain Monte
Carlo (MCMC) methods (Sect. 2.7) to draw random samples
from the posterior, which is proportional to the product of the
likelihood and the prior.

2.3 Model inputs

The model requires two inputs (Fig. 1): proxy observations
from multiple stratigraphic sections and age constraints (at
least a minimum and maximum age for each input section).
Uncertainties associated with the input data are propagated
through all subsequent calculations.

2.4 Modeling age constraints

Two types of absolute age constraint can be incorporated
in the model: depositional ages (e.g., radiometrically dated
ash beds), which directly date the deposition of a particular
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Figure 2. Types of age constraints that can be incorporated in the
inference model. Depositional ages (a) directly constrain the age
of strata at the dated horizon, while limiting ages (b, c) indirectly
constrain the age of overlying (detrital age) or underlying (intrusive
age) strata. Correlative features (d), such as sequence boundaries
or marker beds, constrain the alignment between sections. Correl-
ative features may be undated or linked to a depositional/limiting
geochronological age. In this example, an undated sequence bound-
ary is modeled as a uniform distribution bounded by the mean re-
ported ages of over- and underlying depositional age constraints.

stratigraphic horizon (Fig. 2a), and limiting ages, which indi-
rectly constrain the age of deposition. Examples of limiting
age constraints include ages for detrital minerals (i.e., min-
erals derived from the erosion of pre-existing rocks), which
provide a maximum age constraint at the level sampled and
above (Fig. 2b), and ages for intrusive dikes and sills, which
provide a minimum age constraint at the level of intrusion
and below (Fig. 2c).

Age constraints are modeled using probability distribu-
tions that most accurately reflect their reported value and any
associated uncertainties. By default, age constraints are mod-
eled as normal distributions with mean and standard devia-
tion equal to the reported age and its uncertainty (Fig. 2a–
b). However, custom prior distributions can be specified to
model non-Gaussian uncertainties. For example, a biozone
boundary that has not been dated directly but that has a
known minimum and maximum age could be modeled as a
uniform distribution.

Correlative features are distinct stratigraphic horizons –
such as marker beds, biozone boundaries, or sequence
boundaries – that are present in multiple sections. Cor-
relative features are modeled such that overlying samples
must be younger than the feature everywhere and under-
lying samples must be older than the feature everywhere.
In other words, superposition with respect to the feature
is universally enforced, even though the feature itself may
span a slightly different interval of time in different loca-
tions (e.g., a time-transgressive sequence boundary). Both
dated and undated correlative features add information by
constraining the alignment between sections. For example,
a sequence boundary that has been identified in two sections
from the same basin, where both sections only have mini-
mum and maximum depositional age constraints of 75± 2
and 150± 3 Ma, can be modeled as a uniform distribution
bounded by 75− 2 and 150+ 3 Ma (Fig. 2c). On the other
hand, a correlative feature that has been dated directly is
modeled in the same way as any other geochronological age
(Fig. 2a and b), with the additional condition that it must have
the same age in all sections.

2.5 Modeling sample ages

The inference model assumes there is a common component
to the signal (proxy value over time) recorded by all strati-
graphic sections. The proxy values recorded by any given
stratigraphic section may reflect the convolution of this com-
mon, or global, signal and various non-global signals (e.g.,
local biogeochemical cycling and diagenesis) that are not
shared by all sections. Using this assumption and all avail-
able age constraints (Sect. 2.4), it simultaneously infers an
age model for each section and the common proxy signal.

In order to infer the common proxy signal, each section
must have a prior age model. We construct these prior age
models with the goal of imposing no limits on sedimentation
rate between age constraints, meaning that the possible depo-
sitional histories for each section range from highly episodic
to uniform (Fig. 3c). The prior likelihood of different de-
positional histories should also reflect our knowledge about
how sediment accumulates in nature: namely that extremely
large and rapid depositional events are rare compared to more
gradual sedimentation (Sadler, 1981). To achieve this, we
construct prior distributions for the age of each proxy ob-
servation, or sample, by assuming only that age decreases
with height in each section (stratigraphic superposition). Un-
der the superposition assumption, the age of each sample is
limited by its bounding age constraints (underlying age T1
and overlying age T2; Fig. 3b). For a given realization, the
interval of time spanned by the samples (the gray-shaded re-
gion in Fig. 3b) is controlled by the scale and shift param-
eters. The scale parameter controls the fraction of the total
available time (T1–T2) spanned by the samples (the width of
the box in Fig. 3b; T3–T4), while the shift parameter slides
this window forward and backward in time. We place uni-
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Figure 3. (a) δ13C observations and age constraints (model inputs) for a hypothetical stratigraphic section. (b) Procedure for constructing
a prior age model for the section in (a); see full explanation in Sect. 2.5 of the main text. (c) Prior section age model resulting from the
procedure illustrated in (b). The 95 % envelope marks the 2.5th and 97.5th percentiles of the posterior age distribution for each sample, while
the 66 % envelope marks the 17th and 83rd percentiles. The example realization is the same as in (b). The lower panel shows the probability
distribution of apparent sedimentation rates (calculated between pairs of adjacent samples) resulting from this prior age model.

form prior distributions on the scale and shift parameters.
Sample age priors are constructed using sorted draws from
uniform distributions bounded by T4 and T3, where sorting
ensures that sample ages decrease upsection (Fig. 3c). The
resulting prior age models encompass all possible deposi-
tional histories but assign lower prior probabilities to solu-
tions that are geologically unlikely. For example, extremely
rapid deposition of the entire section (the far-right tail of the
prior sedimentation rate distribution; Fig. 3c) is less likely
than more gradual deposition. The prior age models are also
consistent with Sadler’s (1981) empirical model of how time
is distributed in stratigraphy: sedimentation rates are approx-
imately log-normally distributed (Fig. 3c), and each section’s
age model exhibits a power-law scaling between time span
and apparent sedimentation rate (i.e., the Sadler effect). The
posterior age models are computed by merging these prior
expectations with evidence in the data (Eq. 1).

Limiting age constraints located in the middle of a section
must be enforced in a different way to ensure that superpo-
sition is respected. For example, consider a section that is
bounded by two dated ash beds (T1 and T2) and that also
has an intermediate detrital zircon age (T1.5). This detrital
age provides a maximum age for all overlying samples but
does not constrain the age of underlying samples (Fig. 2b).
Therefore, age priors for samples below the detrital con-
straint would be bounded by T1 and T2, while age priors
for samples above the detrital constraint would be bounded
by T1.5 and T2. As a result, superposition between samples
would not be strictly enforced. To circumvent this issue, we
instead construct sample age priors using only depositional
age constraints (or limiting age constraints that apply to the
entire section), and we enforce intermediate limiting age con-
straints by explicitly penalizing the model likelihood when
a limiting age constraint is violated. This penalty is large

enough that the posterior will never include age models that
violate limiting age constraints.

In some cases, different sections may have a known strati-
graphic relationship (based on, e.g., regional mapping of ge-
ological formations) that is not reflected by the available age
constraints. To explicitly enforce known superposition rela-
tionships between such sections, the uppermost (youngest)
sample from the older section is used as the maximum age
constraint for the younger section (T1 in Fig. 3b).

2.6 Modeling proxy signals

2.6.1 Gaussian process regression

Using the prior age of each sample, the relationship be-
tween time, t , and the common proxy signal, f (t), is mod-
eled as a Gaussian process. A Gaussian process (GP) de-
fines a distribution of random functions that are described
by their mean,m(t), and covariance, k(t, t ′) (Rasmussen and
Williams, 2005) (Eq. 2).

f (t)∼GP(m(t),k(t, t ′)) (2)

We specify the GP prior such that before any data are con-
sidered, the common proxy signal can take any functional
form (from, e.g., uncorrelated noise to linear) (Fig. 4a). The
magnitude of variance and length scale of covariance are in-
ferred directly from the data. To accomplish this, we set the
GP covariance function to the sum of a radial basis function
(RBF) kernel and a white noise kernel with variance equal
to 0.1. We define the GP mean function as a constant and
set the prior for this constant to a normal distribution with µ
and σ chosen to encompass the full range of observed proxy
values.

The prior for the RBF kernel length scale and variance
should be tuned based on the timescale of interest and
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Figure 4. (a) Prior distribution for the δ13C signal over time before the data are considered. The 95 % envelope marks the 2.5th and
97.5th percentiles of the prior δ13C distribution at each age, the 66 % envelope marks the 17th and 83rd percentiles, and the 33 % envelope
marks the 33.5th and 66.5th percentiles. The prior includes a wide range of signals with different shapes and frequencies. The lower panel
shows the associated priors for the Gaussian process mean function (m(t)), the RBF kernel variance (σ ), and the RBF kernel length scale (`).
(b) The posterior distribution for the δ13C signal over time is calculated by conditioning the prior on the data (proxy observations and age
models). The lower panel shows the posterior distributions for the Gaussian process parameters; prior distributions (as in a) are plotted for
comparison.

the magnitude of observed variability in the proxy data
(see Sect. 4.4.1 for extended guidance). For example, in
Fig. 4a, the prior for the RBF kernel variance is a half-
normal (positive-only) distribution with σ = 3, while the
length scale prior is a Wald distribution with µ= 25 and λ=
25. This length scale prior ignores high-frequency “noise”
that may be superimposed on the long-term signal, while the
variance prior excludes changes in δ13C that are much larger
than the observed range in the data.

For data sets that include two or more proxies, each proxy
signal is modeled as a separate GP with a unique prior. The
GP prior for each proxy signal should be specified based on
its observed variance and relevant geologic context (e.g., the
proxy residence time or characteristic timescale for a process
of interest).

2.6.2 Incorporating local variations in proxy records

We assume that each section may be influenced by “geologic
noise” from processes unrelated to the common signal (e.g.,
local water column processes and diagenesis) and that the
proxy value recorded by each sample may be shifted relative
to the common signal. To encode this assumption, the proxy
value for each sample (ysample) is modeled as a normal distri-
bution with a mean equal to the sum of the Gaussian process
evaluated at the sample age (Eq. 2) and an offset term (φ)
and a standard deviation equal to the sum of measurement
uncertainty (σsample) and a per-section geologic noise term
(ηsection) (Eq. 3). The following two paragraphs further de-
scribe the offset and noise terms, respectively.

ysample ∼ Normal(f (t)+φ,σsample+ ηsection) (3)

The offset term (φ) ensures that sections which covary
with the common signal but that have different absolute
proxy values are still correctly aligned. In general, we rec-
ommend using a per-section offset term, which encodes the
assumption that the offset within each section is constant
over time. However, alternative offset parameterizations may
be appropriate in cases where (1) offset should be excluded
(i.e., φ = 0) because local offsets from the common sig-
nal are strictly not expected for the proxy of interest (e.g.,
87Sr/86Sr) or (2) the geologic context supports alternative off-
set groupings. For example, because carbonate δ13C often
varies among different depositional environments, we might
parameterize offset such that all samples from the same envi-
ronment and basin share an offset term (as in Sect. 3.2.3). The
choice of offset groupings is further discussed in Sect. 4.3.4.
The default offset prior is a Laplace distribution with µ= 0
and b = 2, which assigns the highest prior probability to so-
lutions with no offset (φ = 0) and has fat tails (high kurtosis)
that allow for a wide range of offset values. This prior can be
modified based on the range of reasonable offset values for
different proxies.

The per-section geologic noise term, ηsection, accounts for
deviations from the common signal that are not captured
by the offset term. For example, diagenesis could either ho-
mogenize or increase the variance of proxy values within a
given section. The default prior for ηsection is a half-Cauchy
(positive-only) distribution with β = 1, which gives the high-
est prior probability to solutions without local geologic noise
(ηsection = 0) but has a fat tail (high kurtosis) that allows for
high noise values.
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2.7 Sampling the posterior

2.7.1 Markov chain Monte Carlo sampling

The posterior distributions of all model parameters are sam-
pled using the No-U-Turn Sampler (Hoffman and Gelman,
2014), which is an MCMC method. For each experiment in
Sect. 3, the posterior is sampled by 100 independent Markov
chains. Each simulation is run for 2000 steps, and the first
1000 samples (which are used to tune the sampler during
the “burn-in” period) are discarded. Rare outlier chains with
extremely low posterior likelihoods (indicative of poor tun-
ing) were discarded. All model and sampling code is im-
plemented in the Python probabilistic programming package
PyMC (Abril-Pla et al., 2023).

2.7.2 Assessing convergence

An MCMC sampling algorithm has converged when each
Markov chain stabilizes to the same posterior distribution
(Fig. A1b). MCMC algorithms can struggle to converge
when sampling complex and multimodal posterior distribu-
tions (e.g., proxy observations with multiple possible ages)
because each Markov chain gets “stuck” in a single mode,
resulting in incomplete exploration of the parameter space
(Fig. A1a). Consequently, different chains sometimes do not
converge on the same posterior proxy signal. While various
algorithms for improving exploration of multimodal posteri-
ors have been developed (e.g., parallel tempering; Earl and
Deem, 2005), they are often computationally expensive and
difficult to tune.

Here, we mitigate convergence issues for models with
complex posterior distributions by running many Markov
chain simulations (each of which may explore a different
mode of the posterior) in parallel. When the model poste-
rior has stabilized – meaning that incorporating additional
chains does not affect the results – we consider the posterior
to be sufficiently well-explored. In Appendix A, we develop
specific tests for evaluating whether the posterior is stable.
While stability should always be assessed before interpreting
the results, running 20 chains in parallel is adequate for most
models.

2.8 Working with large data sets

The computational complexity of exact Gaussian process in-
ference scales as O(n3), where n is the number of obser-
vations (Rasmussen and Williams, 2005). As a result, infer-
ence quickly becomes intractable for more than several hun-
dred proxy observations. In brief, we propose two possible
approaches for working with large data sets. The first ap-
proach – “data downscaling” – is to reduce the number of
proxy observations included in the inference in a way that
does not significantly influence the results (e.g., removing
sections that are redundant or that have poor age constraints).
Alternatively, the proxy signal can be modeled using an ap-

proximate Gaussian process (e.g., Riutort-Mayol et al., 2022)
instead of an exact GP. We elaborate on the GP approxima-
tion approach in Appendix B.

3 Case studies

We apply the inference model to computer-generated proxy
data and age constraints. In each experiment, posteriors gen-
erated using synthetic stratigraphic data are compared to a
known proxy signal encoded in the data. The similarity be-
tween the inferred and known proxy signal measures how ac-
curately the model can reconstruct proxy signals from strati-
graphic data with different prescribed characteristics (e.g.,
local biases or complex age models).

Experiments are conducted following the methodology
outlined in Sect. 3.1. First, we run simple tests to verify that
the inference model can successfully recover one or more
known proxy signals using only stratigraphic observations
(Sect. 3.2). Then, we demonstrate how the model performs
when applied to different types of incomplete and locally
biased data that may appear in the rock record (Sect. 3.3).
More generally, these experiments highlight both the utility
and the challenges of using chemostratigraphic data to recon-
struct past Earth system change.

3.1 Methodology

3.1.1 Generating synthetic data for experiments

In Sect. 3.2, we conduct basic tests of the inference model
using synthetic data that are generated in two steps (Fig. 5).
First, we define an imaginary proxy signal over time
(Fig. 5a). In this example, the proxy signal is the δ13C of
global-mean seawater DIC from 450 to 400 Ma. Second,
we translate this synthetic signal to the rock record using
a range of computer-generated age models (Fig. 5b). In to-
tal, the synthetic data set includes 171 δ13C observations dis-
tributed among six stratigraphic sections. The δ13C obser-
vations are assigned measurement uncertainties (σsample in
Eq. 3) of 0.1 ‰. All sections are bounded by the same max-
imum (450± 2.4 Ma, 2σ ) and minimum (400± 2.1 Ma, 2σ )
depositional age constraints.

For each experiment, we modify these synthetic data in
two ways. First, we add Gaussian noise to the δ13C observa-
tions in order to simulate random natural variability and/or
specific geologic processes (e.g., local carbon cycling and
diagenesis) that can partially decouple the δ13C of carbonate
rocks from that of contemporaneous global-mean seawater
DIC. Second, we modify the age constraints and lithostratig-
raphy for each section. The lithostratigraphy is modified ei-
ther to support new age constraints (e.g., inserting correlative
marker beds; Sect. 3.2.1) or to aid in simulating environment-
dependent geochemical variability (Sect. 3.2.3).

In Sect. 3.3, we conduct a second set of experiments
that aim to quantify the effect of noise on the accuracy
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Figure 5. Procedure for generating the synthetic proxy data used in Sect. 3.2. A synthetic proxy signal (a) is translated to the stratigraphic
record (b) using six computer-generated age–height models. While all synthetic sections share the same maximum and minimum age con-
straints, each section has a unique depositional history.

Figure 6. Procedure for generating the synthetic proxy data used in Sect. 3.3. The synthetic δ13C signal in (a) is translated to the stratigraphic
record by modeling the temporal (1t) and stratigraphic (1h) spacing between samples as gamma distributions (b). The shape parameter, k,
of the 1t distribution controls whether sedimentation is episodic (samples unevenly spaced in time; low k) or continuous (samples evenly
spaced in time; high k). Regular stratigraphic spacing is modeled using a 1h distribution with k = 100. The gamma distribution scale
parameter is fixed to θ = 1. The example sections in (c) were generated by modeling 1t as a gamma distribution with k = 0.5 (left) or k = 5
(right).

of proxy signal reconstructions. We simulate both “proxy
noise”, which emulates local processes that increase the vari-
ance of preserved proxy values, and “temporal noise”, where
non-uniform depositional histories produce irregular age–
height relationships. For each experiment, we measure the
effect of noise amplitude on proxy signal recovery.

Depositional histories ranging from continuous to episodic
are simulated following the procedure in Fig. 6. First, we de-
fine a synthetic δ13C signal from 130 to 100 Ma (Fig. 6a).
Then, we translate this signal to four stratigraphic sections
(each with 30 samples) by modeling the time elapsed be-
tween samples, 1t , and the stratigraphic height between

samples, 1h, as gamma distributions (Fig. 6b). This pa-
rameterization is a modification of the compound Poisson–
Gamma chronology model (Haslett and Parnell, 2008). The
shape parameter, k, of the gamma distribution controls
whether the samples are unevenly (low k) or uniformly
(high k) spaced. Different depositional histories are modeled
by varying k for the 1t distribution between 0.1 and 10;
stratigraphic completeness (i.e., the proportion of time pre-
served in the strata; Sadler, 1981) increases with k. To sim-
ulate regular stratigraphic spacing between samples, 1h is
modeled with k = 100 (Fig. 6c). The gamma distribution
scale parameter is fixed to θ = 1 in all simulations. The age–
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height models are scaled to span the total time elapsed and
total stratigraphic thickness of each section.

To isolate the effects of noisy proxy data on signal recov-
ery, the proxy noise experiments are conducted using uni-
form depositional histories (k = 100 for both 1t and 1h).
Natural proxy variance and diagenesis are simulated by
adding random Gaussian (white) noise to the δ13C observa-
tions for each section. White noise is generated using a nor-
mal distribution withµ= 0 and σ between 0.5 (the low-noise
endmember) and 5.0 (the high-noise endmember).

3.1.2 Model parameters for experiments

Table 1 specifies the model parameter priors used for each
synthetic experiment performed in Sect. 3.2 and 3.3. In all
cases, the Gaussian process prior is specified such that it in-
cludes all geologically reasonable proxy signals given the
age constraints and observed variance in the data. All experi-
ments use the default priors for the per-section geologic noise
(ηsection) and offset (φ) terms, which favor solutions with no
local deviations from the common signal (Sect. 2.6.2).

3.1.3 Quantifying model performance

In the most basic sense, an inference is “successful” if the
synthetic proxy signal (i.e., the true proxy value during
each time step) is captured by the posterior. Intuitively, we
also know that inferences which capture the synthetic sig-
nal within narrow probability envelopes are superior to those
that capture the synthetic signal within very wide probabil-
ity envelopes. In other words, the quality of an inference is
a function of both accuracy and precision. To capture this
intuition, we evaluate model performance by calculating the
average (across all time steps t= {t1, t2, . . .tN }) likelihood of
the synthetic proxy signal, g(t), conditioned on the posterior
distribution for the proxy value over time, θf (t):

Pθf (t)(g(t))=
1
N

N∑
n=1

Pθf (tn)(g(tn)). (4)

For a given time step, the conditional likelihood of the syn-
thetic proxy signal is high when the posterior proxy distribu-
tion is narrow and centered on the true proxy value (Fig. 7a).
A low conditional likelihood indicates either that the pos-
terior proxy distribution is wide or that the posterior proxy
distribution is narrow but assigns low probability to the true
value (Fig. 7b). The mean signal likelihood for a model,
Pθf (t)(g(t)), is the average of the conditional likelihoods for
all N time steps. The mean signal likelihood can be used to
compare performance among a group of candidate models
associated with the same synthetic proxy signal.

Figure 7. Calculating the conditional likelihood of the synthetic
proxy signal during a single time step. In (a), the conditional likeli-
hood is high because the posterior proxy distribution is both narrow
and centered on the true proxy value. In (b), the conditional likeli-
hood is low either because the posterior proxy distribution is wide
(gray) or because it is narrow but offset from the true proxy value
(green).

3.2 Experiments: testing the inference model

3.2.1 Single-proxy inference

Our inference model is capable of accurately recovering sig-
nals recorded in synthetically generated stratigraphic data.
We demonstrate this by applying the model to a slightly mod-
ified version of the observations in Fig. 5b. To simulate nat-
ural geochemical variability, zero-centered Gaussian noise
with a standard deviation of 3.0 (section 1), 0.75 (sections 2,
3, 4, and 6), or 0.25 (section 5) is added to the δ13C ob-
servations. To show how the model handles different types
of age constraints, we assign additional depositional ages to
sections 3 and 4 and a detrital age to section 1. Sections 3,
4, and 5 also host an unconformity-bounded glacial diamic-
tite unit that serves as a correlative age constraint. Detri-
tal zircons from the base of this diamictite unit have been
dated at one location, providing a maximum age for over-
lying samples in all diamictite-bearing sections. The age for
the top of the diamictite must be younger than the detrital zir-
con age and older than the oldest overlying depositional age
constraint in all diamictite-bearing sections; this age range is
modeled as a uniform distribution. When we apply our model
to these synthetic data (Fig. 8a), the synthetic δ13C signal
is captured fully by the 95 % envelope of the inference and
mostly (80 % of the time) falls within the 66 % envelope of
the inference (Fig. 8b). The true sample ages also typically
fall within the 95 % envelopes of the posterior section age
models (Fig. 8c).
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Table 1. Prior distributions used for the model parameters in each experiment. RBF – radial basis function kernel, GP – Gaussian process.

Experiment RBF length scale RBF variance GP mean function Geologic noise
(ηsection)

Offset (φ)

Single proxy
(Sect. 3.2.1)

Wald(µ= 10,λ= 25)+ 3 HalfNormal(σ = 10) Normal(µ= µdata,σ = 2σdata) HalfCauchy(β = 1) Per section,
Laplace(µ= 0,b = 2)

Multiproxy
(Sect. 3.2.2)

Wald(µ= 10,λ= 25)+ 3 HalfNormal(σ = 10) Normal(µ= µdata,σ = 2σdata) HalfCauchy(β = 1) Per section,
Laplace(µ= 0,b = 2)

Local bias,
Experiment 1
(Sect. 3.2.3)

Wald(µ= 10,λ= 25)+ 3 HalfNormal(σ = 10) Normal(µ= µdata,σ = 2σdata) HalfCauchy(β = 1) Per environment,
Laplace(µ= 0,b = 2)

Local bias,
Experiment 2
(Sect. 3.2.3)

Wald(µ= 10,λ= 25)+ 3 HalfNormal(σ = 10) Normal(µ= µdata,σ = 2σdata) HalfCauchy(β = 1) Per section,
Laplace(µ= 0,b = 2)

Proxy noise
(Sect. 3.3.1)

Wald(µ= 4,λ= 15)+ 2 HalfNormal(σ = 10) Normal(µ= µdata,σ = 2σdata) HalfCauchy(β = 1) Per section,
Laplace(µ= 0,b = 2)

Temporal noise
(Sect. 3.3.2)

Wald(µ= 4,λ= 15)+ 2 HalfNormal(σ = 10) Normal(µ= µdata,σ = 2σdata) HalfCauchy(β = 1) Per section,
Laplace(µ= 0,b = 2)

Figure 8. Testing the inference model using synthetic data. (a) Stratigraphic sections with age constraints and δ13C observations. (b) δ13C
signal inference using the age constraints and δ13C observations in (a), with the synthetic δ13C signal plotted for comparison. The 95 % en-
velope marks the 2.5th and 97.5th percentiles of the posterior δ13C distribution for each time step, the 66 % envelope marks the 17th and
83rd percentiles, and the 33 % envelope marks the 33.5th and 66.5th percentiles. (c) Posterior age model for section 3, with samples plotted
by their true age.
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Figure 9. Synthetic example of multiproxy inference. (a) Synthetic proxy signals for δ13C (as in Fig. 5a), δ18O, and δ34S. (b) Proxy signals
in (a) mapped to each stratigraphic section. Sample heights are marked on lithostratigraphic columns; the additional geologic noise added to
the proxy observations is not illustrated. (c) Inferred δ34S signal for models that include one, two, or three proxies. The two-proxy inference
is plotted using the combined posteriors for the δ34S–δ13C and δ34S–δ18O inferences. The inferred timing and magnitude of each excursion
more closely match the synthetic signal as additional proxies are considered. (d) Mean δ34S signal recovery (Eq. 4) for the one-, two-, and
three-proxy models, where the two-proxy signal likelihoods are calculated using the combined posteriors for the δ34S–δ13C and δ34S–δ18O
inferences. Note the logarithmic scale of the y axis. Recovery of the synthetic proxy signal improves as the number of proxies increases.

3.2.2 Multiproxy inference

Next, we demonstrate how simultaneously inferring signals
for multiple proxies (“multiproxy inference”) can improve
signal recovery. To build a multiproxy data set, we first gen-
erate synthetic δ18O and δ34S signals that span the same time
interval as the synthetic δ13C signal (Fig. 9a). Then, we trans-
late these synthetic signals to the stratigraphic record follow-
ing the same procedure used to produce the δ13C observa-
tions (Fig. 5). Figure 9b illustrates how all three proxy sig-
nals are mapped to the synthetic stratigraphic sections. White
noise with an amplitude of 0.75 ‰, 0.75 ‰, and 1.5 ‰ is
added to the δ13C, δ18O, and δ34S observations, respectively.
All proxy observations are modeled with measurement un-
certainties of 0.1 ‰. To isolate the effects of additional proxy
data on the signal inference, only minimum and maximum
depositional age constraints are assigned to each section.

Reconstruction accuracy improves for all metrics as the
inference model considers additional proxies. Each added
proxy contributes new information for the model to learn
from, which can help to better constrain age models for sec-
tions where other proxy records are relatively uninformative.
Considering more proxies in concert will, on average, create
more accurate and well-constrained age models, which leads
to better signal recovery (assuming the proxy data are not
significantly biased). To demonstrate, Fig. 9c shows the in-
ferred δ34S signal for one-, two-, and three-proxy inferences.
As additional proxies are considered, the 33 % envelope of
the inference more accurately approximates the synthetic sig-
nal. For instance, the largest positive δ34S excursion has a
peak value of 35.8 ‰ at 428 Ma. The single-proxy inference
underestimates the peak value and timing of the excursion,
with a most likely maximum of 32.8 ‰ occurring at 424 Ma.
Both of these estimates improve when two proxies are con-

https://doi.org/10.5194/gmd-18-4759-2025 Geosci. Model Dev., 18, 4759–4788, 2025



4770 S. Edmonsond and B. Dyer: StratMC v1.0

sidered, with a most likely excursion maximum of 33.3 ‰
occurring at 427 Ma. The three-proxy inference yields the
most accurate reconstruction of the excursion, with a most
likely peak δ34S value of 34.4 ‰ at 428 Ma. Quantified signal
recovery (Eq. 4) for these experiments confirms that model
performance improves as additional proxies are considered
(Fig. 9d); for the δ34S inferences in Fig. 9c, the mean sig-
nal likelihoods for models that include one, two, and three
proxies are 0.10, 0.14, and 0.18, respectively.

3.2.3 Local environmental bias

Carbonate sediments formed in different depositional envi-
ronments may have average δ13C values that are depleted or
elevated with respect to contemporaneous open-ocean DIC
(e.g., Patterson and Walter, 1994; Geyman and Maloof, 2021;
Pederson et al., 2021; Trower et al., 2024). To test how the
inference model handles the local environmental bias that
can exist in real data, we alter the synthetic data (Fig. 5b)
in two ways. First, we construct a new lithostratigraphic col-
umn for each section by taking a cross-section through a syn-
thetic carbonate platform (Fig. 10a). At each section loca-
tion, stratigraphic changes in environment represent the lat-
eral migration of adjacent depositional environments. Using
these new lithostratigraphies, we then modify the proxy data
such that the δ13C of samples from each depositional envi-
ronment is variably offset from the global signal (Fig. 10b
and c). The offset for each depositional environment is mod-
eled as a normal distribution centered on the average dif-
ference between local and global δ13CDIC (Fig. 10b). These
offsets, while schematic, are broadly consistent with modern
observations. For example, subtidal/lagoonal sediments often
have slightly elevated δ13C due to photosynthetic activity in
restricted banktop waters (Geyman and Maloof, 2019), while
terrestrially influenced environments (e.g., mangrove ponds)
can have depleted δ13C due to input of groundwater charged
with DIC derived from remineralized organic matter (Patter-
son and Walter, 1994). The modified stratigraphic sections
and proxy observations are in Fig. 11a.

When we build geological context into the model by as-
signing a unique offset term to samples from each environ-
ment (i.e., all subtidal samples are shifted by φsubtidal rela-
tive to the common signal), the synthetic signal is captured
by the 95 % envelope of the δ13C inference (Fig. 11b). The
model also correctly infers the relative offsets between each
depositional environment (Fig. 11c). However, the inferred
proxy signal is elevated by a mean value of 1.4 ‰ (averaged
across all time step) relative to the synthetic signal, while the
mean value of each offset term is underestimated. Specifi-
cally, the mean offsets for open-marine, subtidal, terrestrially
influenced, and sabkha environments are underestimated by
1.2 ‰, 1.8 ‰, 1.4 ‰, and 2.0 ‰, respectively. Both of these
deviations occur because the δ13C observations have an over-
all positive bias relative to the synthetic signal.

If we lacked the geologic information required to group
samples by depositional environment, we instead might as-
sume that each location represents a unique environment and
assign a unique offset term to each section (i.e., all sam-
ples in section 1 are shifted by φ1 relative to the common
signal). As a result of this less informed modeling choice,
the δ13C signal inference must have wider probability en-
velopes in order to capture all of the observations (Fig. 11d).
While the synthetic signal still falls within the 95 % enve-
lope of the inference, using per-section offset terms leads,
on average, to a 3.3 ‰ overestimation of δ13C. To quantify
the value added by considering paleoenvironmental context,
we calculate that the mean signal likelihood (Eq. 4) for the
model with environment-dependent offsets is 0.14, compared
to 0.06 for the model with per-section offsets (Fig. 11e). This
experiment demonstrates that the accuracy of signal recon-
structions may be improved by conducting careful geologic
work to categorize samples by depositional environment.

3.3 Experiments: recovering signals from noisy data

Real data are almost always influenced by geologic noise that
can hinder recovery of primary geochemical signals. We con-
sider two general categories of geologic noise: proxy noise,
which changes proxy values relative to the common signal,
and temporal noise, which refers to irregularity in the rela-
tionship between stratigraphic height and time resulting from
episodic sedimentation. Here, we leverage synthetic experi-
ments to (1) evaluate the effects of geologic noise on proxy
signal recovery and (2) consider how different types of geo-
logic noise might be recognized in the rock record using our
modeling framework.

3.3.1 Noise in proxy data

We simulate diagenesis and natural proxy variance by adding
random (white) noise with an amplitude (σnoise) between 0.5
and 5.0 to the proxy data (Sect. 3.1.1). For each experiment,
we apply the inference model to four sections with added
proxy noise generated using the same σnoise value. To ensure
that our findings are generalizable, the reported results for
each experiment represent the average of three trials, where
each trial is executed using different randomly generated
noise. Example proxy observations are shown in Fig. 12a.

As the amplitude of added white noise increases, the
model is only able to resolve higher-amplitude and longer-
term (lower-frequency) features of the proxy signal. The
confidence envelopes of the signal inference become wider
and smoother with increasing σnoise, effectively “blurring”
the signal as progressively larger isotopic excursions are ob-
scured (Fig. 12b). In this example, signal recovery initially
declines as σnoise increases and stabilizes above σnoise = 2
(Fig. 12d). These experiments suggest that signal recovery
deteriorates dramatically when the amplitude (2σ ) of random
noise meets or exceeds the amplitude of the common proxy
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Figure 10. Modifying the synthetic data to simulate local environmental bias. (a) Synthetic carbonate platform and lithostratigraphic
columns. (b) Distribution of δ13C offsets for each depositional environment. Subtidal and sabkha environments are elevated with respect
to open-ocean δ13CDIC, while terrestrially influenced environments are depleted. (c) The δ13C value for each sample is offset from the
synthetic signal by a value drawn from the appropriate probability distribution in (b).

signal. In general, however, the model’s resolving power is
sensitive to both the amplitude of added noise and the density
of geochronological age constraints, where more age con-
straints may help to combat the blurring effect of proxy noise.

The resolving power of the model can sometimes be im-
proved by removing particularly noisy sections from the in-
ference. Noisy sections can be identified using the poste-
rior distributions for the per-section geologic noise terms
(ηsection; Sect. 2.6.2), which accurately capture the amplitude
of added white noise in our experiments. For example, the
median inferred ηsection value is 0.4, 1.5, and 4.7 (averaged
across all sections and trials) for data generated with σnoise
values of 0.5, 1.5, and 5.0, respectively (Fig. 12c).

3.3.2 Non-uniform depositional histories

Deep-water environments with relatively constant sedimen-
tation rates are classically considered to be the most reli-
able archives of past proxy change. However, since a large
fraction of deep-sea sediments older than∼ 200 Ma has been
subducted at continental margins, reconstructions of marine
proxy signals prior to the mid-Mesozoic instead rely primar-
ily on sediments deposited in shallow-water environments,
where more episodic deposition leads to low stratigraphic
completeness. Here, we use our model to consider how these
shallow-water reconstructions may stack up to those based
on more complete deep-sea records. We build stratigraphic

sections with depositional histories ranging from episodic
(k = 0.1) to uniform (k = 10) following the procedure de-
tailed in Sect. 3.1.1. For each experiment, we apply our in-
ference model to between 4 and 10 sections generated using
the same k value.

Our model validates the intuition that continuous deep-
sea records are preferable to less complete shallow-water
records. For a fixed number of stratigraphic sections, sig-
nal recovery generally improves as k increases (i.e., as sed-
imentation becomes less episodic, increasing completeness)
(Fig. 13c). For each k value, signal recovery also improves as
additional sections are considered. Still, all hope is not lost
for stratigraphers working in ancient shallow-water strata:
signal recovery for models that include a large number of
highly incomplete (low k) sections is comparable to signal
recovery for models with a lower number of complete (high
k) sections (Fig. 13b). In other words, quantity can compen-
sate for quality. For example, the mean signal likelihood for
the 2-section model with k = 10 is 0.20, compared to 0.14
for the 2-section model with k = 0.5 and 0.21 for the 10-
section model with k = 0.5. As deposition becomes increas-
ingly episodic (lower k), a greater number of sections is re-
quired to achieve comparable performance.
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Figure 11. Data and results for local bias experiments. (a) Synthetic stratigraphic sections and δ13C observations. Environment-dependent
offsets have been added to the δ13C data as described in Fig. 10. (b) δ13C signal inference when all samples from a given depositional
environment share an offset term in the model; the synthetic signal is plotted for comparison. (c) Inferred offsets for each environment, with
the true offsets (as in Fig. 10b) plotted for comparison. (d) δ13C signal inference when all samples from the same section share an offset
term. (e) Mean signal likelihoods (Eq. 4) for the δ13C inferences in (b) (Experiment 1) versus (d) (Experiment 2). Note the logarithmic scale
of the y axis.

4 Discussion

4.1 Diagnosing non-global signals

The case studies in Sect. 3 collectively illustrate that our in-
ference model can reconstruct proxy signals over time using
time-uncertain, biased, noisy, and incomplete stratigraphic
data. However, real-world data are particularly complex, and

it is important to carefully examine the inference results be-
fore interpreting the reconstructed proxy signal. In this sec-
tion, we discuss how to analyze the posterior to better under-
stand the range of global and non-global processes influenc-
ing the results.
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Figure 12. Data and results for proxy noise experiments. (a) Example of a synthetic stratigraphic section with noisy proxy observations. The
proxy observations in each panel were produced by adding white noise generated from a zero-centered normal distribution with standard
deviation σnoise (see probability distributions plotted on the x axes). (b) δ13C signal inferences for experiments run with four stratigraphic
sections and σnoise values of 0.5, 1.5, and 5.0; each inference is plotted using the combined posteriors for three trials. (c) Inferred per-section
geologic noise terms (ηsection) corresponding to the δ13C signal inferences in b. Each distribution reflects the combined posteriors for all
sections and trials. For comparison, the amplitude of white noise added to the proxy observations (σnoise) for each experiment is plotted as
a vertical dashed line. (d) Mean signal likelihoods (Eq. 4) for models run using proxy observations generated with different σnoise values.
Note the logarithmic scale of the y axis. Higher mean signal likelihoods correspond to better recovery of the synthetic proxy signal.

4.1.1 Reconstructing local environmental bias

A number of marine geochemical proxies are sensitive to lo-
cal processes that can increase or decrease proxy values rel-
ative to the global average. For example, carbonate δ13C is
influenced by local biological activity (Geyman and Maloof,
2019; Pederson et al., 2021), groundwater discharge (Patter-
son and Walter, 1994), and the abundance of different grain
types with distinct geochemical fingerprints (Gischler et al.,
2009; Geyman and Maloof, 2021). Similarly, carbonate δ18O
is a complex function of temperature (Romanek et al., 1992),
local hydrology (LeGrande and Schmidt, 2006), and global
ice volume (Shackleton, 1967). Considering other types of
sediments, recent work indicates that pyrite δ34S is sensitive
to sedimentation rate (Pasquier et al., 2021; Li et al., 2024),

which varies dramatically between shallow- and deep-water
environments, while spatial patterns in sedimentary δ15N re-
flect gradients in nutrient availability and redox conditions
(Mollier-Vogel et al., 2012; Motomura et al., 2024).

When the direction and/or magnitude of local bias varies
among different depositional environments in the same basin,
the lateral migration of adjacent environments as sediment
accumulates can generate stratigraphic changes in proxy val-
ues that are potentially unrelated to large-scale biogeochem-
ical cycling (e.g., Holmden et al., 1998; Geyman and Mal-
oof, 2021). These spurious environment-driven signals both
complicate correlation among sections and obscure the true
nature of proxy change over time. We can use the inference
model to distinguish between local bias and temporal proxy
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Figure 13. Results of temporal noise experiments. (a) Example δ13C signal inferences for models that include 2 sections with k = 10 (left),
2 sections with k = 0.5 (center), and 10 sections with k = 0.5 (right). (b) Mean signal likelihoods (Eq. 4) for the signal inferences in (a).
(c) Mean signal likelihoods for models run with four sections and different k values. Note the logarithmic y-axis scale in (b) and (c).

perturbations by assigning a unique offset (φ) term to sam-
ples from different environments (for guidance on choos-
ing an appropriate offset parameterization, see Sect. 4.3.4).
Learning from the proxy observations, the model simultane-
ously isolates the common signal recorded by all sections and
estimates the magnitude and direction of the bias character-
izing each environment. While reconstructing global proxy
change over time is often our main objective, these quanti-
tative estimates of local bias encode independently valuable
information about local paleoenvironment.

The inferred offsets for different environments can be used
to pose testable hypotheses about the local processes influ-
encing proxy values within a given basin. To demonstrate,
let us consider how the results of Experiment 1 in Sect. 3.2.3
(Fig. 11b and c) might be interpreted in the real world. Re-
call that the model infers non-zero offsets because the strati-
graphic proxy trends in all sections covary (i.e., each sec-
tion is influenced by the same global signal), but the absolute
proxy values within each environment are shifted. In our ex-
ample, non-zero offsets indicate that local influences on δ13C
outpace the processes by which shallow waters chemically
equilibrate with the global ocean (physical mixing and air–

sea gas exchange), which suggests that communication be-
tween platform-top waters and the open ocean is physically
restricted. The magnitude and direction of the offsets provide
clues about which processes operate in each environment.
For example, terrestrially influenced samples are depleted
by 3.1± 1.2 ‰ relative to open-marine samples, which in-
dicates the DIC pool is dominated by isotopically light car-
bon derived from an outside source (e.g., groundwater carry-
ing soil-derived carbon; Patterson and Walter, 1994). Con-
versely, the 14.2± 1.6 ‰ elevation in δ13C in evaporative
sabkha environments is consistent either with extreme pho-
tosynthetic enrichment of δ13C in restricted waters (which
requires high sedimentary organic matter content) or more
likely with active methanogenesis (e.g., Cadeau et al., 2020),
which strongly fractionates carbon by preferentially seques-
tering 12C in methane (CH4).

The above analysis serves as a guide for interpreting anal-
ogous observations from the rock record. For example, many
previous studies have interpreted differences in δ13C pro-
files within and between basins as evidence of persistent
δ13CDIC gradients in Earth’s ancient oceans. In the Precam-
brian record, Prave et al. (2022) suggest that the Paleo-
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proterozoic Lomagundi–Jatuli excursion – canonically inter-
preted as reflecting global carbon cycling during the Great
Oxidation Event (e.g., Karhu and Holland, 1996) – instead
may largely be an artifact of local environmental conditions.
During the Paleozoic, Schiffbauer et al. (2017) propose that
the Cambrian Steptoean positive carbon isotope excursion
(SPICE) is most parsimoniously explained as the migration
of a water-depth δ13CDIC gradient during sea level rise, while
Yang et al. (2024) similarly postulate that the Ordovician
Hirnantian carbon isotope excursion (HICE) partly reflects
δ13CDIC stratification during sea level fall associated with
glaciation. Our modeling framework can be used to directly
test these hypotheses and to quantify the probable magni-
tude and structure of ancient δ13CDIC (and other geochem-
ical proxy) gradients. By considering many reconstructions
in tandem, we can also gain more general insight into how
the operation of different biogeochemical cycles and sedi-
mentary systems has co-evolved with life and climate over
Earth’s history.

4.1.2 Fingerprinting sources of geologic noise

In the previous section, we described how consistent biases
between preserved proxy values and the common signal are
captured by the offset term (φ) in the model. Any misfits that
cannot be modeled as constant offsets must instead be ac-
counted for by the inferred per-section geologic noise term
(ηsection). This geologic noise term encapsulates non-global
processes, such as local biogeochemical cycling and diagen-
esis, which act to decouple preserved proxy values from the
global average. Here, we discuss how the model posterior
can be used to diagnose which processes are responsible for
this decoupling in sections with high inferred ηsection terms.
In Sect. 4.3.3, we provide advice on how these high-noise
sections should be handled.

Stratigraphic patterns in the residuals between the proxy
observations for each section and the inferred proxy signal
can help to fingerprint the source of geologic noise. For in-
stance, the extent to which proxy values are altered during
meteoric diagenesis is predicted to increase with proximity to
upsection subaerial exposure surfaces (Allan and Matthews,
1982; Dyer et al., 2017). Therefore, meteoric diagenesis may
be indicated if the residuals increase as an exposure surface
is approached. On the other hand, unstructured (i.e., ran-
domly distributed) residuals are potentially consistent with
burial diagenesis or mixing between primary and authigenic
phases, which could either increase the variance of or ho-
mogenize proxy values (Frauenstein et al., 2009; Metzger
and Fike, 2013; Martindale et al., 2015; Ahm et al., 2019).
This scenario is analogous to our white noise experiments
(Sect. 3.3.1). However, diagenesis cannot be definitively di-
agnosed based on patterns in the residuals alone because pri-
mary geochemical variability can confer similar trends. For
instance, in modern environments, bulk carbonate δ13C ex-
hibits spatial variability of up to ∼ 5 ‰ (Weber, 1967; We-

ber and Woodhead, 1969; Gischler et al., 2009; Swart et al.,
2009; Geyman and Maloof, 2021), while the δ13C of differ-
ent grain types can vary by∼ 10 ‰ (Lowenstam and Epstein,
1957; Geyman and Maloof, 2021). This variability may ap-
pear as random noise (unstructured residuals) but could also
impart stratigraphic trends in the residuals if proxy values
covary with sedimentary facies (i.e., the type and size dis-
tribution of constituent grains). To more definitively distin-
guish between primary variability and diagenesis, we suggest
checking for correlations between the residuals and indepen-
dent diagenetic indicators (e.g., trace element concentrations;
Brand and Veizer, 1980).

Multiproxy inference may provide additional insight into
both the processes responsible for high posterior geologic
noise and whether the inferred proxy signal might be biased
by non-global processes. If a given section has high posterior
geologic noise terms for multiple proxies that are suscepti-
ble to diagenetic alteration (e.g., δ13C, δ18O, and δ44/40Ca),
then diagenesis is the likely culprit. However, if only one
proxy is noisy, while other proxies that are similarly (or
more) susceptible to diagenesis are not, then primary vari-
ability within the depositional environment may be the more
likely cause. In addition, synchronous inferred changes in
proxy systems with disparate residence times, or in systems
that are not expected to exhibit secular change (e.g., some
trace element concentrations), may indicate that the common
signal has been biased by diagenesis. For example, globally
synchronous meteoric alteration associated with eustatic sea
level fall might impart similar stratigraphic trends and co-
variance in carbonate δ13C, δ18O, δ44/40Ca, and Sr/Ca in
many different locations. Consequently, the model may spu-
riously infer coincident temporal changes in the proxy val-
ues for each system that are unrelated to temporal changes
in seawater chemistry. We elaborate on possible non-global
influences on the common proxy signal in Sect. 4.5.

4.2 Comparison with alternative approaches

Most existing chemostratigraphy algorithms aim to objec-
tively and reproducibly correlate stratigraphic sections; com-
posite records of proxy change over time are then constructed
only after the correlation step is complete. In contrast, our
model explicitly seeks to reconstruct past changes in large-
scale biogeochemical cycling by inferring the common but
potentially unobserved or “hidden” (i.e., not directly pre-
served at any location) proxy signal recorded by all strati-
graphic sections. Correlation and age model construction
are integral parts of the signal reconstruction process but
are not the main objective. This distinction is important be-
cause by explicitly inferring the common proxy signal, rather
than simply optimizing the alignment among sections, our
model distinguishes between observed stratigraphic changes
in proxy values – which may be influenced by a host of non-
global processes – and temporal changes in global proxy val-
ues. Aside from this big-picture distinction, there are several
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more subtle but significant differences between our model
and other chemostratigraphy algorithms; we expand on these
differences in the following paragraphs.

The majority of existing quantitative algorithms for strati-
graphic correlation rely on dynamic time warping, which is
a deterministic least-squares approach for finding the opti-
mal alignment between two sections (Lisiecki and Lisiecki,
2002; Hay et al., 2019; Hagen et al., 2024). Compared to
more subjective manual approaches, these algorithms con-
stitute a significant step toward a more objective and repro-
ducible approach to correlation. Recent applications of dy-
namic time warping have yielded important insights into Edi-
acaran, Cambrian, and Paleogene δ13C records (Hay et al.,
2019; Ajayi et al., 2020; Hagen and Creveling, 2024), as well
as many other times and proxy systems (Peti et al., 2020; Ha-
gen and Harper, 2023; Reilly et al., 2023; Lilkendey et al.,
2025). Our model builds on these previous efforts by ad-
dressing several inherent shortcomings of least-squares algo-
rithms that limit their effectiveness when considering ancient
shallow-water strata.

Our model has three significant advantages over least-
squares correlation algorithms. First, existing algorithms aim
only to find the optimal alignment of proxy data between
sections and generally consider geochronological, biostrati-
graphic, and lithostratigraphic age constraints only after cor-
relations have been made (Hay et al., 2019; Hagen and Crev-
eling, 2024). Absolute age models are then constructed us-
ing independent modeling tools (e.g., Johnstone et al., 2019;
Trayler et al., 2020; Zhang et al., 2023). Our model integrates
correlation and age model construction by enforcing absolute
and relative age constraints during the alignment step. The
resulting age model for each section incorporates both un-
certainty that results from interpolating between geochrono-
logical ages (typical for Bayesian age models) and uncer-
tainty in the alignment among sections. Excepting the algo-
rithm developed by Bloem and Curtis (2024), which lever-
ages a computational model of sediment accumulation to
correlate sections within a single basin, other existing algo-
rithms do not explicitly quantify alignment uncertainty. Al-
though dynamic time warping can be leveraged to explore
different plausible alignments between pairs of sections, typ-
ically only the “best” alignment is used to construct compos-
ite proxy records (Hagen and Creveling, 2024), likely due to
the computational expense of accounting for all alignment
permutations when considering more than a few sections.
Second, most algorithms require the user to choose one sec-
tion to act as the “backbone” for correlation (Lisiecki and
Lisiecki, 2002; Hay et al., 2019; Hagen et al., 2024). This
choice may bias inferences about the true nature of proxy
change over time, especially if the chosen backbone is in-
complete (e.g., shallow-water sections where deposition is
episodic) or locally biased. In contrast, our model simulta-
neously aligns all sections while accounting for both local
offsets (Fig. 11) and random proxy noise related to diagene-
sis or local variability (Fig. 12). Third, no existing algorithm

allows for simultaneous correlation of stratigraphic data for
multiple geochemical proxies, which can improve signal re-
constructions by narrowing the range of plausible alignments
among sections (Fig. 9). While our experiments focus on cor-
relation of geochemical proxies, our model can be applied
to any quantitative stratigraphic data (e.g., relative grain size
measurements, paleomagnetic data, gamma ray logs).

Although our model is generally better equipped to deal
with observations from ancient shallow-water environments,
these improvements come at the expense of speed and com-
putational complexity (Sect. 4.4). For problems involving
relatively continuous sections that are unlikely to be locally
biased, a least-squares approach may be preferable. Dynamic
time warping also provides a fast and visually simple means
of exploring different plausible alignments between sections.
While our model also catalogues different plausible align-
ments, visualizing these possibilities requires more targeted
interrogation of the posterior age models for each section.
As such, dynamic time warping may provide a more ac-
cessible first-order exploration of different solutions. How-
ever, quantifying and propagating the uncertainties stemming
from these different solutions (when, e.g., constructing com-
posite proxy records) are more challenging in a least-squares
framework.

Currently, the only comparable Bayesian chemostratigra-
phy algorithm is the BIGMACS model developed by Lee
et al. (2023). BIGMACS is similar to StratMC in that it both
correlates geochemical proxy profiles and constructs section
age models. However, unlike StratMC, its age modeling ap-
proach relies on prior information about sedimentation rates
in deep-sea cores that generally is not available for more
ancient and incomplete shallow-water stratigraphies. BIG-
MACS also does not allow for simultaneous correlation of
multiple geochemical proxies (e.g., δ18O and δ13C). BIG-
MACS does include per-section proxy offsets, and it uses
Gaussian process regression to construct a composite proxy
stack. Importantly, the stack construction and correlation/age
modeling steps are performed iteratively rather than simul-
taneously, meaning that sections are aligned to the current
stack – essentially the mean and variance of the data over
time, excluding outliers – rather than to a common hidden
proxy signal. BIGMACS also requires the user to provide an
initial alignment target, necessitating some prior knowledge
of the signal to be reconstructed.

4.3 Improving signal recovery

Proxy signal recovery can be improved by collecting addi-
tional data or discarding low-quality data with proper jus-
tification. The following subsections describe how to ana-
lyze the posterior results to guide real-world data collection
efforts and determine which existing data should be more
closely scrutinized before including them in future analyses.
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Figure 14. Workflow for using the model outputs to identify gaps in the proxy data. (a) Inferred temporal density of δ13C observations
in 0.5 Myr bins. The blue-shaded region from 215 to 207.5 Ma has a below-average number of observations per time bin, suggesting it is
relatively undersampled. (b) To improve the signal reconstruction, additional new samples (yellow) are collected from the undersampled
interval in (a), which is mapped back to each stratigraphic section using the posterior age models. The original samples (red) were collected
at regular 1 m stratigraphic sampling intervals.

4.3.1 Identifying “gaps” in the proxy data

A straightforward strategy for improving the proxy signal in-
ference is collecting additional proxy data. The model out-
puts can be used to identify time intervals where the proxy
signal may be poorly constrained because observations are
sparse or absent. These “gaps” in the proxy data are prime
targets for future data acquisition efforts. The temporal den-
sity of proxy observations, defined as the number of observa-
tions within different user-defined time bins (averaged across
all posterior draws), serves as a guide for identifying under-
sampled time intervals (Fig. 14a). Intervals that contain an
average of one or fewer data points are particularly poorly
constrained, and future data acquisition efforts should aim to
fill these gaps. Intervals that contain a below-average number
of data points also represent useful targets for future sam-
pling, depending on the severity of the disparity.

With respect to the stratigraphic observations, temporal
gaps in the data represent either hiatuses or undersampled
parts of the stratigraphy. Undersampling often occurs when
samples are collected at regular stratigraphic intervals (e.g.,
every 1 m) in the field, but the mapping of time to strati-
graphic height is irregular. As a result, intervals of time that
are stratigraphically condensed (i.e., intervals with low sed-
imentation rate) may be sampled at a low temporal resolu-
tion or missed entirely. In cases where a gap in the data is
caused by undersampling, the gap may be filled via targeted
higher-resolution sampling of existing stratigraphic sections.
Gaps that are caused by hiatuses can only be amended by
collecting data from new locations with different sediment
accumulation histories.

A workflow for identifying temporal gaps in the data,
mapping these gaps to existing stratigraphic sections using
their posterior age models, and conducting targeted sam-
pling to fill these gaps is illustrated in Fig. 14. In this ex-
ample, three synthetic sections record carbonate δ13C from
215 to 200 Ma. Each section experiences relatively slow sed-
iment accumulation from ∼ 212 to 208 Ma, coincident with
a +7 ‰ δ13C excursion. Because samples are collected at
regular 1 m intervals in the field, the condensed excursion
interval is only sampled twice in section 1 and once in sec-
tion 2 and is missed entirely in section 3 (Fig. 14b). Without
prior knowledge of the age model for each section, we can
detect this gap in the data by observing that the density of
proxy observations from 215 to 207.5 Ma is relatively low,
with two 0.5 Myr intervals averaging less than one observa-
tion (Fig. 14a). By mapping this undersampled time interval
back to each section, we identify target stratigraphic intervals
for higher-resolution sampling (Fig. 14b).

4.3.2 Measuring multiple proxies

In addition to collecting additional data for existing prox-
ies, the inference can be improved by considering data for
new proxy systems. In the inference model, the proxy obser-
vations provide information about the age and alignment of
stratigraphic sections. Incorporating data for multiple proxies
that may record global signals offers additional constraints
on the section age models and should lead to more accu-
rate proxy signal reconstructions. In Sect. 3.2.2, for example,
each additional proxy results in more accurate estimates of
excursion timings and magnitudes, narrower 66 % and 33 %
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probability envelopes for the inferred proxy signals, and bet-
ter synthetic proxy signal recovery (Fig. 9c and d). In some
cases, multiproxy inference can also be leveraged to screen
for diagenesis (see discussion in Sect. 4.1.2).

To use additional proxy systems to improve the accuracy
of the inference, multiple proxies must have some strati-
graphic overlap in at least one stratigraphic section. These
overlapping segments allow information from other sections,
which may or may not include observations for all of the
proxies, to be included in the analysis. In the most basic
sense, this addition of data provides more information about
the real world to the model and should lead to more accurate
results. For example, imagine that a stratigrapher is recon-
structing carbonate δ13C over time using observations from
six stratigraphic sections (as in Sect. 3.2). Three of these sec-
tions are from mixed carbonate–siliciclastic basins and also
have data for the carbon isotopic composition of organic mat-
ter, δ13Corg. The stratigrapher adds these δ13Corg data to the
model, along with two new δ13Corg profiles from purely sili-
ciclastic basins. The three sections with both carbonate δ13C
and δ13Corg observations provide a critical link between the
two proxy records: through the correlation process, the age
models for all sections – not just those with observations for
both proxies – will be informed by the new δ13Corg data. This
link is particularly valuable when it allows us to incorporate
geochronological age constraints that otherwise could not be
considered. For instance, a shale Re–Os age from one of the
siliciclastic basins now could help to calibrate the reconstruc-
tion of carbonate δ13C over time.

4.3.3 Removing noisy sections and diagenetically
altered samples

Sections with high inferred geologic noise terms (ηsection)
have likely been significantly influenced by non-global pro-
cesses. These non-global processes can be fingerprinted
by interrogating the model posterior in the context of
other available geological and geochemical observations
(Sect. 4.1.2). In general, the accuracy of the inferred common
signal should not be degraded by noisy sections because the
model has inferred that these sections are decoupled from the
common proxy signal. However, if all or most sections have
high geologic noise, then the model may be unable to recover
information about past biogeochemical cycling because the
primary signal has been entirely obscured. In addition, mod-
els that include many noisy sections (e.g., high-noise sections
outnumber low-noise sections) may lead to proxy signal in-
ferences that are positively or negatively biased. For exam-
ple, if diagenesis has lowered proxy values in all of the noisy
sections, then these negatively biased data may “drag” the
inferred proxy signal toward lower values in order to mini-
mize the values of ηsection and φ required to explain the ob-
servations (Eq. 3). While inferred relative changes in proxy
values over time (i.e., the shape of the proxy signal) should
be unaffected, the inferred signal may be shifted up or down.

In cases where the absolute proxy values are important, we
recommend re-running the inference without very high noise
sections as a precaution.

Even if noisy sections do not degrade or bias the proxy sig-
nal reconstruction, sections with an average posterior ηsection
term that is equal to or greater than the amplitude of the
inferred proxy signal do not help to constrain the com-
mon proxy signal (as in the synthetic experiments where
high-amplitude white noise was added to the proxy data;
Sect. 3.3.1). Therefore, high-noise sections can be excluded
from future analyses without losing any information. This
removal will shorten sampling time for future model runs
and/or liberate computational resources so that potentially
more informative sections can be included in the inference
(in cases where a large data set has been downscaled to make
the inference tractable; Sect. 2.8).

In cases where diagenesis is responsible for high inferred
geologic noise (Sect. 4.1.2), it is possible that only a subset of
samples has been severely altered, while the remaining sam-
ples encode valuable information about proxy change over
time. However, the model may be unable to use this infor-
mation because any coherent stratigraphic trends have been
masked by the altered samples. For data-limited problems,
we therefore suggest screening samples from noisy sections
for diagenesis using independent geochemical, petrographic,
and textural criteria. For carbonates, coupled changes in dif-
ferent stable isotope values (δ13C, δ44/40Ca, δ53Cr, δ7Li,
δ26Mg, δ18O, δ34S, δ238U) and trace element concentrations
(I, Mg, Mn, Sr, U) can be used to evaluate whether pre-
served proxy values reflect the chemistry of primary sea-
water or secondary fluids (e.g., Fantle and Higgins, 2014;
Ahm et al., 2018; Fantle et al., 2020; Lau and Hardisty, 2022;
Murphy et al., 2022). Within our modeling framework, cor-
related changes in these diagenetic indicators and the resid-
uals between observed proxy values and the inferred proxy
signal can be used to recognize diagenesis (as discussed in
Sect. 4.1.2). Samples that are found to be severely altered
should be excluded from the inference, while relatively well-
preserved samples can be retained.

4.3.4 Considering sedimentological observations

Information about paleoenvironment – typically derived
from detailed sedimentological observations – can some-
times be leveraged to improve proxy signal reconstructions.
For example, in Sect. 3.2.3 we consider synthetic δ13C pro-
files from a carbonate platform where different depositional
environments impart distinct biases on proxy values. Before
documenting the sedimentology of each section, we might
naively assume that each location represents a different en-
vironment and choose to use per-section offset terms in the
model (recall that the offset term, φ, captures local shifts rel-
ative to the common signal). Because the depositional envi-
ronment within each section – and thus its local bias – is ac-
tually not constant over time, the model is unable to capture

Geosci. Model Dev., 18, 4759–4788, 2025 https://doi.org/10.5194/gmd-18-4759-2025



S. Edmonsond and B. Dyer: StratMC v1.0 4779

the true offset between each sample and the common signal.
Consequently, the inferred common signal may be biased. In
our experiment, for example, δ13C is broadly overestimated
and the δ13C signal inference has wide probability envelopes
(Fig. 11d). When we instead use the sedimentology to group
samples by depositional environment, the signal inference is
more accurate and less uncertain (Fig. 11b) because our off-
set parameterization is consistent with the natural system, en-
abling the model to infer the correct offset for each environ-
ment (Fig. 11c).

We recommend grouping samples within a given basin
by depositional environment wherever the requisite strati-
graphic observations are available. Because the model learns
from the data, this added context will not bias the results;
if there are no environment-dependent offsets in the data,
then the inferred offset for each environment will be zero. In
this case, one might consider alternative (e.g., per-section or
per-basin) offset groupings based on prior knowledge or hy-
potheses about the local processes that may influence a given
proxy. In general, the model that best approximates the nat-
ural system will produce (1) non-zero inferred offsets with
comparatively low posterior variance and (2) proxy signal
inferences with comparatively low variance (i.e., narrower
probability envelopes). If different candidate models yield
similar results, then the choice of offset parameterization is
likely unimportant.

While environmental offset groupings can lead to more ac-
curate signal reconstructions (if environmental biases exist in
the data), they do not guarantee that the inferred proxy signal
will be entirely free of environmental biases. Importantly, bi-
ases in the geographic or environmental composition of the
entire data set can degrade the accuracy of the proxy signal
reconstruction. For example, if the environmental distribu-
tion of the proxy observations changes over time (e.g., all
samples older than 200 Ma come from shallow-water car-
bonate platforms, while all samples younger than 200 Ma
come from deep-ocean basins), then the model will be un-
able to distinguish between environmental biases and tem-
poral changes in global proxy values. To minimize environ-
mental bias in the reconstructed proxy signal, the inference
should include observations from many different basins and
paleoenvironments whenever possible.

Detailed stratigraphic work may also lead to the recogni-
tion of correlative features that directly constrain the align-
ment among sections. For example, distinct stratigraphic pat-
terns and surfaces that can be traced between or indepen-
dently recognized in different sections may be used to con-
struct a sequence stratigraphic framework for a basin. Within
this framework, chronostratigraphic markers that are present
in multiple stratigraphic sections, such as sequence and
parasequence boundaries, provide relative age constraints.
Similarly, confidently identified marker beds (e.g., diamic-
tites associated with regional or global glaciation; Hoffman
and Li, 2009) may inform the alignment of sections within
and/or between basins. Both dated and undated correlative

features can be encoded as age constraints in the model, as
described in Sect. 2.4.

4.3.5 Number and depositional environment of sections

In Sect. 3.3.2, we demonstrate that the quality of proxy sig-
nal reconstructions depends on both the completeness and
the number of stratigraphic sections included in the model.
For a fixed number of sections, signal recovery generally im-
proves as deposition becomes more constant (i.e., sections
with high k in Fig. 13b). This result matches the conventional
wisdom that data from low-energy environments where sedi-
mentation is relatively continuous, such as deep open-marine
basins, are the most informative. As such, we recommend
that data from such environments (e.g., deep-sea sediment
cores) should be considered wherever possible. However,
deep-sea records are more rare in the geologic record than
marginal sediments and are more costly to obtain if drilling is
required. As such, in practice it is often necessary to consider
data from environments with more complex depositional his-
tories.

While deep-sea records have simpler age–height relation-
ships than shallow-water sediments, our experiments sug-
gest that shallow-water records still preserve much of the
same information. The model developed in this paper can
be used to see through the more complex depositional his-
tories of shallow-water sections in order to access this infor-
mation. In our synthetic experiments, the quality of signal
reconstructions that incorporate many sections with episodic
depositional histories (low k) rivals that of reconstructions
that include fewer continuous (high-k) sections (Fig. 13b).
In all cases, reconstruction accuracy increases with both the
number of sections considered and the continuity of the de-
positional histories (Fig. 13c). These results reflect the in-
herent limitations of reconstructing signals from the sedi-
mentary record: only those features (e.g., proxy excursions)
that are preserved in at least one section can be recovered,
and only sections with some temporal overlap can be cor-
related. When individual stratigraphic sections are relatively
incomplete (low k), considering a larger number of sections
with unique depositional histories increases the likelihood
that both of these conditions will be met. Therefore, in cases
where observations are limited to shallow-water environ-
ments, we suggest maximizing the number and geographic
diversity of stratigraphic sections.

4.4 Modeling challenges

4.4.1 Sensitivity to model priors

Most model parameter priors are weakly informative, mean-
ing that their influence on the posterior is minimal. However,
the proxy signal inference is sensitive to two user-specified
model components that should be selected carefully based on
prior knowledge about the geology and the processes influ-
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encing the proxy of interest: the choice of which samples
share an offset term (φ), which is covered in Sect. 4.3.4,
and the prior distribution for the Gaussian process covariance
kernel length scale, which we discuss in this section.

The length scale of covariance controls the smoothness
of the inferred proxy signal, where larger length scales cor-
respond to lower-frequency, smoother signals and higher
length scales correspond to more “wiggly”, high-frequency
signals. When choosing a length scale prior for a partic-
ular problem, the expected timescale of variation for the
proxy of interest should be considered. For example, resolv-
ing changes in seawater δ18O during Pleistocene glacial cy-
cles requires considerably shorter length scales (correspond-
ing to < 100 kyr timescales) than resolving secular changes
in seawater δ44/40Ca, which occur on timescales longer than
the ∼ 1 Myr oceanic residence time of calcium.

We recommend specifying the length scale prior such that
very low length scales are not allowed (the appropriate lower
bound depends on the proxy and timescale of interest, as dis-
cussed above). If the length scale is shorter than the spacing
between proxy observations (i.e., the signal contains multi-
ple “wiggles” between adjacent data points), then two prob-
lems can arise (as described by the Stan Development Team,
2024). First, the model will overfit the data because the GP
perfectly captures all of the proxy observations with zero
variance. As a result, unrealistic high-frequency solutions –
possibly resembling random noise – will have inflated poste-
rior probabilities. Second, different high-frequency solutions
will have equal likelihoods because all of them can perfectly
explain the proxy observations. This “likelihood plateau” is
problematic for MCMC sampling algorithms that use like-
lihood gradients to explore the posterior, including the No-
U-Turn Sampler (Hoffman and Gelman, 2014). Conversely,
if only very long length scales are allowed (relative to the
timescale of interest), then the signal will be forcibly flat-
tened, obscuring and blurring proxy changes. This flattening
also produces a likelihood plateau because all solutions with
a long length scale have equally poor explanatory power. For
a given problem, the length scale prior must be carefully con-
strained such that it captures the full range of geologically
reasonable solutions while avoiding these pitfalls. In prac-
tice, we find that a Wald distribution (as in Fig. 4a) is of-
ten a good choice of prior because it is positively skewed,
which means that its hyperparameters can be specified such
that the mode is centered around some reasonable interme-
diate length scale, the probability of very short length scales
approaches zero, and longer length scales are still allowed.
To explicitly force a specific minimum length scale, the prior
distribution can be manually translated by a fixed value.

4.4.2 Scalability of the inference model

To a first order, the computational complexity of the model
is controlled by the O(n3) scaling of exact Gaussian process
inference, where n is the number of proxy observations (Ras-

mussen and Williams, 2005). For a given model, sampling
time scales linearly with the number of steps taken during
each Markov chain simulation (Sect. 2.7.1). Due to the diffi-
culty of exploring potentially multimodal posterior distribu-
tions (Sect. 2.7.2), we find that it is generally more advan-
tageous to run many independent Markov chains than to run
individual simulations for longer; the recommended default
is 2000 steps (with the first 1000 discarded for sampler burn-
in). Different Markov chains can be run in parallel, where one
core is allocated to each chain. Depending on computational
resources, the inference may prove intractable for more than
several hundred observations; in Appendix B, we describe
a Gaussian process approximation method that reduces the
computational complexity such that it scales linearly with n.

4.5 Limitations of chemostratigraphy

The modeling framework developed in this paper offers an
objective and reproducible way to reconstruct past changes in
regional or global biogeochemical cycling from stratigraphic
observations. However, the accuracy of the inference hinges
on the validity of the assumptions encoded in the model prior
and on the quality of the observations (see, for example, our
discussion of biased data sets in Sect. 4.3.4). Importantly,
the model itself does not elucidate the nature of the inferred
proxy signal; it only isolates the trends in proxy values that
are common to all stratigraphic sections. While this common
signal may represent large-scale biogeochemical cycling, it
could also reflect a number of unrelated processes that are
capable of imparting similarly coherent stratigraphic trends
in proxy values. In this section, we provide a few examples
of such alternative processes and consider how we might test
different hypotheses for the processes driving proxy change.

Observations from the rock record offer a warning that,
in some cases, the common proxy signal recovered by the
inference model might represent diagenetic or primary pro-
cesses that occur simultaneously in all or many locations
but that are unrelated to large-scale biogeochemical cycling.
For instance, Pleistocene carbonates from deep-water envi-
ronments adjacent to carbonate platforms commonly record
high-frequency, 3 ‰–4 ‰ δ13C excursions that reflect glob-
ally synchronous changes in shallow-water sediment produc-
tion and transport during glacial cycles while global-mean
seawater δ13CDIC remains nearly constant (Swart, 2008; Ed-
monsond et al., 2024). In adjacent shallow-water environ-
ments, glacioeustatic sea level fall facilitates widespread me-
teoric alteration of exposed carbonate platforms, creating
similar stratigraphic δ13C profiles in many locations (Allan
and Matthews, 1982; Melim et al., 2001; Swart and Eberli,
2005). Analogous episodes of widespread platform exposure
and alteration have been inferred during the late Paleozoic
ice age (Bishop et al., 2009; Dyer et al., 2015). More contro-
versially, some studies have proposed a meteoric or burial
diagenesis origin for the Neoproterozoic Shuram negative
carbon isotope anomaly (Knauth and Kennedy, 2009; Derry,
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2010). In each of these examples, the reconstructed proxy
signal does not reflect primary seawater chemistry, but it
does still encode information about synchronous, large-scale
Earth system change. However, it is important to note that
if age control is poor, then non-synchronous local processes
that produce similar proxy profiles – for example, different
episodes of meteoric alteration related to local uplift – can
potentially lead to spurious correlations and incorrect proxy
signal reconstructions (Smith and Swart, 2022).

Determining whether a reconstructed signal represents
large-scale biogeochemical cycling often requires measuring
multiple geochemical proxies (e.g., carbonate δ13C, δ18O,
δ44/40Ca, and trace element concentrations) that can be used
to fingerprint different processes. While recognition of dia-
genesis is aided by a host of quantitative models (Fantle and
Higgins, 2014; Ahm et al., 2018; Fantle et al., 2020; Lau and
Hardisty, 2022; Murphy et al., 2022), determining whether
a proxy signal represents large-scale biogeochemical cycling
or unrelated syndepositional conditions remains challenging.
In some cases, linking sedimentological observations to the
model outputs may help to distinguish between different hy-
potheses. For example, the distribution of depositional envi-
ronments over time may give insight into whether an excur-
sion could be driven by synchronous stratigraphic changes
in depositional environment (e.g., during sea level change)
rather than secular changes in seawater chemistry.

4.6 Implications for reconstructing past Earth system
change

The specific magnitude, duration, and rate of geochemical
proxy change can directly test various hypotheses about past
biogeochemical cycling. For example, estimates of durations
and rates can aid in evaluating different hypotheses for the
cause of events such as mass extinctions (Schobben et al.,
2019; Song et al., 2021), episodes of global warming or cool-
ing (Zachos et al., 2010; Finnegan et al., 2011), and oxygena-
tion of the oceans and atmosphere (Kah et al., 2004; Algeo
et al., 2015). However, durations and rates are sometimes re-
ported without uncertainties, which hampers hypothesis test-
ing when investigating ancient events with limited absolute
age control. In addition, disparate approaches to age model
construction (e.g., classical versus Bayesian methods) can
hinder or introduce bias into comparisons between differ-
ent events. For instance, Reershemius and Planavsky (2021)
compare the durations of Mesozoic and Paleozoic ocean
anoxic events (OAEs) using previously published age mod-
els that are largely derived from cyclostratigraphy during the
Mesozoic and from a host of different approaches (e.g., lin-
ear interpolation between radiometric ages, chemostratigra-
phy, sedimentation rate estimates) during the Paleozoic. As a
result, it is difficult to distinguish between real differences in
rates of Earth system change and potentially specious differ-
ences stemming from incongruent age modeling approaches.
The model developed in this paper is the first tool that can

objectively and reproducibly estimate the magnitude, dura-
tion, and rate of past proxy perturbations. Furthermore, mul-
tiproxy correlation can be leveraged to place different proxy
records (e.g., δ13C, δ18O, and δ34S) in the same temporal
framework, which alleviates issues that arise when compar-
ing proxy records that were constructed separately.

Our model also provides a new framework for detecting
and reconstructing spatial gradients in past seawater chem-
istry and deconvolving these patterns from global proxy ex-
cursions (Sect. 4.1.1). For example, it has been proposed that
Cambrian (Schiffbauer et al., 2017) and Ordovician (Yang
et al., 2024) δ13C excursions may be modulated or caused
by water depth δ13CDIC stratification. Explicitly deconvolv-
ing the spatial and temporal components of these excursions
can improve reconstructions of past pO2 and pCO2 levels
that are calibrated using marine δ13C records (Berner, 2006;
Saltzman and Edwards, 2017; Krause et al., 2018). Similarly,
reconstructing gradients in paleotemperature proxies, such as
δ18O, Mg/Ca, and 147, could improve reconstructions of
past ice volume, vertical temperature profiles, and sea sur-
face temperature patterns (Finnegan et al., 2011; Jones and
Eichenseer, 2021; Grossman and Joachimski, 2022).

Finally, our model is particularly well-suited for recon-
structing proxy change during intervals of Earth history
where individual records are incomplete, variably altered,
and potentially locally biased. For example, the timing, mag-
nitude, and structure of the Paleoproterozoic Lomagundi–
Jatuli carbon isotope excursion remain poorly understood
(Hodgskiss et al., 2023), due in large part to the difficulty of
merging incomplete, sparsely dated, and heterogeneous δ13C
records from different locations. A quantitative reconstruc-
tion of δ13C over time (with uncertainty) could help to dis-
tinguish between competing hypotheses for the excursion’s
cause, global versus local nature, and relationship with the
rise of atmospheric oxygen.

5 Conclusions

In this paper, we developed a Bayesian inference model for
reconstructing past changes in global biogeochemical cycles
that are recorded as geochemical proxies in ancient sedi-
mentary rocks. This model improves on previous approaches
by explicitly untangling global and local signals, coupling
chemostratigraphic correlation with age model construction,
tracking uncertainty in all model parameters, and simultane-
ously inferring global changes in multiple proxies. Synthetic
case studies confirm that our model can accurately recon-
struct proxy change over time even when age constraints are
sparse, proxy records have been biased by local processes
or overprinted by diagenesis, and the relationship between
stratigraphic height and time is highly irregular. However,
the real explanatory power of the model comes from situ-
ating the inference results in their geologic and paleoenvi-
ronmental context as part of the scientific process. Future ap-
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plications of the model to observations from ancient shallow-
water environments will yield highly testable reconstructions
of past Earth system change that more accurately capture the
intrinsic uncertainties associated with reading a fragmented
and noisy sedimentary record.

Appendix A: Evaluating posterior stability

In Sect. 2.7.2 of the main text, we describe how Markov
chain Monte Carlo (MCMC) samplers can struggle to con-
verge when sampling complex and multimodal posterior dis-
tributions. Here, we provide a practical workflow for (1) rec-
ognizing inferences with multimodal posterior distributions
and (2) assessing whether multimodal posterior distributions
have been thoroughly explored during sampling (i.e., the in-
ference has stabilized).

In all cases, we recommend sampling the model posterior
with at least eight independent Markov chains to ensure that
posterior multimodality, if present, can be detected. This rec-
ommendation is based on empirical tests that suggest infer-
ences with fewer than eight chains are more likely to be un-
reliable; however, if additional computational resources are
available, then running more chains can only improve ex-
ploration. For a given inference, multimodal posterior dis-
tributions can then be identified by visually inspecting trace
plots – which show the evolution of parameter values dur-
ing each Markov chain simulation – for key model parame-
ters. In practice, the posterior distribution for the RBF kernel
length scale hyperparameter is often particularly informative
because different length scale modes correspond to proxy
signals with different frequencies (Sect. 4.4.1). In Fig. A1a,
trace plots for the length scale hyperparameter reveal that
while each Markov chain is stationary, or stable, the different
chains have not mixed, meaning that each chain has explored
a different part of the posterior. Poor mixing indicates that
the posterior distributions are multimodal, and each chain is
“stuck” in a different mode. Note that in cases where indi-
vidual chains “jump” between modes during sampling, the
chains may also not be stationary. In contrast, the chains in
Fig. A1b are both stationary and mixed, indicating that they
have converged to the same unimodal posterior distribution.

For models with multimodal posterior distributions, we
recommend running at least 20 Markov chains in parallel to
ensure that the posterior parameter space is thoroughly ex-
plored. To check that the inference is stable – meaning that
considering additional chains does not affect the results – key
“stability metrics” should then be evaluated. Recommended
metrics can be calculated and visualized using functions pro-
vided in the inference and plotting submodules; refer
to the package API in the user manual and the online docu-
mentation. The first metric is the standard deviation of the in-
ferred RBF kernel length scale hyperparameter, which stabi-
lizes once all significant posterior modes have been sampled.
In Fig. A1c, for example, the standard deviation increases

Figure A1. Recognizing posterior multimodality and assessing the
stability of the inference for models with multimodal posterior dis-
tributions. (a, b) Posterior draws for the covariance kernel length
scale hyperparameter. In (a), each chain has explored a different
mode of the posterior distribution (each chain is stationary, but
the chains have not mixed); in (b), both chains have converged to
the same posterior distribution (the chains are both stationary and
mixed). (c) Posterior standard deviation of the covariance kernel
length scale hyperparameter when 1 to 100 chains are considered;
each chain contains 1000 draws. (d) Sum of residuals between the
median posterior proxy value (evaluated at each age) for 100 chains
versus 1 to 99 chains.

rapidly between 0 and 10 chains – indicating that each addi-
tional chain explores a new part of the parameter space – and
stabilizes after 15–20 chains have been considered, which in-
dicates that new modes are no longer being discovered. The
second metric is the stability of the proxy signal inference.
To evaluate whether the proxy signal posterior has been ade-
quately explored, we calculate the sum of residuals between
the median posterior proxy value (evaluated at each age) for
all N chains versus 1 to N−1 chains. Put simply, this metric
measures “how different” the proxy signal inference is when
a subset of n chains is considered versus when all N chains
are considered. If considering additional chains does not sig-
nificantly change the proxy signal inference, then the resid-
uals will approach zero and stabilize. In Fig. A1d, the in-
ference has largely stabilized after approximately 20 chains
have been considered and more definitively stabilized after
50 chains have been considered. For real problems, addi-
tional chains should be run if the inference has not stabilized
after the initial chains have been considered.
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Appendix B: Working with large data sets: Gaussian
process approximations

Figure B1. Inferred δ13C signals using (a) the unapproximated Gaussian process model, (b) the Hilbert space approximation with m= 137
and c = 12.3 (the recommended parameters based on the range of the RBF kernel length scale prior), and (c) the Hilbert space approximation
withm= 15 and c = 1.3 (the recommended parameters based on the range of the RBF kernel length scale posterior from the unapproximated
inference in a). Stratigraphic proxy observations and age constraints are as in Fig. 9b.

In Sects. 2.8 and 4.4.2 of the main text, we state that infer-
ence can become intractable for data sets that include more
than several hundred proxy observations due to the compu-
tational complexity of exact Gaussian process (GP) regres-
sion. A number of GP approximations have been developed
to make GP regression tractable for large data sets (Ras-
mussen and Williams, 2005). One of these methods is the
reduced-rank Hilbert space Gaussian process (HSGP) ap-
proximation, which approximates the GP as a linear model
defined by m basis functions (Solin and Särkkä, 2020). The
computational complexity of the HSGP approximation scales
as O(mn+m) (Riutort-Mayol et al., 2022); as a result, the
HSGP approximation can handle larger data sets than an un-
approximated GP, which scales poorly with computational
complexity O(n3). For an extended theoretical explanation
of the HSGP approximation, see Solin and Särkkä (2020).

We find that proxy signal inferences that use the HSGP
approximation are indistinguishable from those that use an
unapproximated GP (Fig. B1). However, the accuracy of
the approximation depends on two user-specified parame-
ters: m, the number of basis functions used to approximate
the proxy signal, and c, which controls the interval over
which the approximation is valid (Solin and Särkkä, 2020).
Functions with shorter length scales (i.e., more “wiggly” or
high-frequency proxy signals) require more basis functions
(highm), while functions with longer length scales can be ac-
curately approximated with fewer basis functions (lower m).
In practice, m and c must increase in tandem to maintain the
fidelity of the approximation (Riutort-Mayol et al., 2022).
Due to the O(mn+m) scaling of the HSGP approximation,

the reduction in computational complexity (compared to an
unapproximated GP) will be more significant for lower m.
As a result, ifm is sufficiently large, then the HSGP approxi-
mation may be less efficient than the unapproximated GP for
small data sets.

The pymc.gp.hsgp_approx module in PyMC (ver-
sion 5.16.2; Abril-Pla et al., 2023) has the method
approx_hsgp_hyperparams, which uses formulas de-
veloped in Riutort-Mayol et al. (2022) to estimate optimal
values for the m and c parameters given the total time span
of the proxy signal and the range of possible RBF kernel
length scales. In the package documentation (https://stratmc.
readthedocs.io/, last access: 1 March 2025), we provide ex-
ample code for using the HSGP approximation, including
tuning the m and c parameters. Note that high values of m
and c are required to ensure the approximation is valid for
a wide range of possible length scales. As a result, sam-
pling efficiency may be improved by more tightly constrain-
ing the range of probable RBF kernel length scales (by, e.g.,
running an unapproximated inference using a downsampled
version of the data). For example, in Fig. B1, sampling the
HSGP model with m= 137 and c = 12.3 (recommended pa-
rameters based on the full range of the length scale prior)
is 1.7 times faster than sampling the unapproximated GP
model, while the model with m= 15 and c = 1.3 (recom-
mended parameters based on the posterior length scale range
from the unapproximated inference) produces identical re-
sults and samples 10.5 times faster than the unapproximated
GP model. For more comprehensive guidance on tuning the
HSGP parameters, refer to Riutort-Mayol et al. (2022).
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Code and data availability. Code for the version of
StratMC developed in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.15171706; Edmonsond, 2025a),
along with a supplementary user manual. The model outputs
for all synthetic experiments are archived in a separate Zenodo
repository (https://doi.org/10.5281/zenodo.13119724; Edmonsond,
2024), along with the code required to reproduce our results. The
current version of the model is available on both GitHub (https:
//github.com/sedmonsond/stratmc, last access: 1 March 2025) and
Zenodo (https://doi.org/10.5281/zenodo.13281935; Edmonsond,
2025b), and associated package documentation is available at
https://stratmc.readthedocs.io/, last access: 1 March 2025.
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