Articles | Volume 18, issue 10
https://doi.org/10.5194/gmd-18-3017-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-3017-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie
CORRESPONDING AUTHOR
Institute of Simulation and Graphics, Otto von Guericke University, Magdeburg, Germany
Institute of Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany
Christian Lessig
Institute of Simulation and Graphics, Otto von Guericke University, Magdeburg, Germany
European Centre for Medium-Range Weather Forecasts, Bonn, Germany
Thomas Richter
Institute of Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany
Related authors
No articles found.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski
Geosci. Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023, https://doi.org/10.5194/gmd-16-3907-2023, 2023
Short summary
Short summary
Sea ice covers not only the pole regions but affects the weather and climate globally. For example, its white surface reflects more sunlight than land. The oceans around the poles are therefore kept cool, which affects the circulation in the oceans worldwide. Simulating the behavior and changes in sea ice on a computer is, however, very difficult. We propose a new computer simulation that better models how cracks in the ice change over time and show this by comparing to other simulations.
Cited articles
Alpay, A. and Heuveline, V.: One Pass to Bind Them: The First Single-Pass SYCL Compiler with Unified Code Representation Across Backends, in: International Workshop on OpenCL, ACM, https://doi.org/10.1145/3585341.3585351, 2023. a
Aoun, M. R. E., Tidjon, L. N., Rombaut, B., Khomh, F., and Hassan, A. E.: An Empirical Study of Library Usage and Dependency in Deep Learning Frameworks, arXiv, https://doi.org/10.48550/ARXIV.2211.15733, 28 November 2022. a
Banderier, H., Zeman, C., Leutwyler, D., Rüdisühli, S., and Schär, C.: Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification, Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, 2024. a
Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C., and Wedi, N. P.: The digital revolution of Earth-system science, Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-021-00023-0, 2021a. a
Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of Earth for the green transition, Nat. Clim. Change, 11, 80–83, https://doi.org/10.1038/s41558-021-00986-y, 2021b. a
Bedrunka, M. C., Wilde, D., Kliemank, M., Reith, D., Foysi, H., and Krämer, A.: Lettuce: PyTorch-Based Lattice Boltzmann Framework, 40–55, Springer International Publishing, ISBN 9783030905392, https://doi.org/10.1007/978-3-030-90539-2_3, 2021. a
Bolz, J., Farmer, I., Grinspun, E., and Schröder, P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid, ACM Trans. Graph., 22, 917–924, https://doi.org/10.1145/882262.882364, 2003. a
Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D., Garric, G., Lee, Y. J., Lemieux, J., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 1. Scaling and Statistical Properties of Sea‐Ice Deformation Fields, J. Geophys. Res.-Oceans, 127, e2021JC017667, https://doi.org/10.1029/2021jc017667, 2022. a
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic–viscous–plastic method revisited, Ocean Model., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. a, b
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q.: JAX: composable transformations of Python+NumPy programs, GitHub, http://github.com/google/jax (last access: 20 May 2025), 2018. a
Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan, P.: Brook for GPUs: stream computing on graphics hardware, ACM Trans. Graph., 23, 777–786, https://doi.org/10.1145/1015706.1015800, 2004. a
Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D., and Wang, L.: GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10), Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, 2023. a
Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell elasto-brittle rheology for sea ice modelling, The Cryosphere, 10, 1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016. a
Demeure, N., Kisner, T., Keskitalo, R., Thomas, R., Borrill, J., and Bhimji, W.: High-level GPU code: a case study examining JAX and OpenMP., in: Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, SC-W 2023, ACM, https://doi.org/10.1145/3624062.3624186, 2023. a
Denny, J. E., Lee, S., and Vetter, J. S.: CLACC: Translating OpenACC to OpenMP in Clang, in: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), IEEE, https://doi.org/10.1109/llvm-hpc.2018.8639349, 2018. a
Dublish, S., Nagarajan, V., and Topham, N.: Evaluating and mitigating bandwidth bottlenecks across the memory hierarchy in GPUs, in: 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), IEEE, https://doi.org/10.1109/ispass.2017.7975295, 2017. a
Đukić, J. and Mišić, M.: An Evaluation of Directive-Based Parallelization on the GPU Using a Parboil Benchmark, Electronics, 12, 4555, https://doi.org/10.3390/electronics12224555, 2023. a
Esau, I. N.: Amplification of turbulent exchange over wide Arctic leads: Large‐eddy simulation study, J. Geophys. Res.-Atmos., 112, D08109, https://doi.org/10.1029/2006jd007225, 2007. a
Feltham, D.: Sea Ice Rheology, Annu. Rev. Fluid Mech., 40, 91–112, https://doi.org/10.1146/annurev.fluid.40.111406.102151, 2008. a
Hatfield, S., Chantry, M., Düben, P., and Palmer, T.: Accelerating High-Resolution Weather Models with Deep-Learning Hardware, in: Proceedings of the Platform for Advanced Scientific Computing Conference, PASC '19, ACM, https://doi.org/10.1145/3324989.3325711, 2019. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model, J. Phys. Oceanogr., 9, 815–846, https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2, 1979. a, b
Hunke, E., Allard, R., Blain, P., Blockley, E., Feltham, D., Fichefet, T., Garric, G., Grumbine, R., Lemieux, J.-F., Rasmussen, T., Ribergaard, M., Roberts, A., Schweiger, A., Tietsche, S., Tremblay, B., Vancoppenolle, M., and Zhang, J.: Should Sea-Ice Modeling Tools Designed for Climate Research Be Used for Short-Term Forecasting?, Current Climate Change Reports, 6, 121–136, https://doi.org/10.1007/s40641-020-00162-y, 2020. a
Hutter, N., Zampieri, L., and Losch, M.: Leads and ridges in Arctic sea ice from RGPS data and a new tracking algorithm, The Cryosphere, 13, 627–645, https://doi.org/10.5194/tc-13-627-2019, 2019. a
Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J., Lemieux, J., Lique, C., Losch, M., Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experiment (SIREx): 2. Evaluating Linear Kinematic Features in High‐Resolution Sea Ice Simulations, J. Geophys. Res.-Oceans, 127, e2021JC017666, https://doi.org/10.1029/2021jc017666, 2022. a, b
Ikuyajolu, O. J., Van Roekel, L., Brus, S. R., Thomas, E. E., Deng, Y., and Sreepathi, S.: Porting the WAVEWATCH III (v6.07) wave action source terms to GPU, Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, 2023. a
Jakob, C., Gettelman, A., and Pitman, A.: The need to operationalize climate modelling, Nat. Clim. Change, 13, 1158–1160, https://doi.org/10.1038/s41558-023-01849-4, 2023. a
Jendersie, R. and Spain, T.: neXtSIM_DG input data for realistic case, Zenodo [data set], https://doi.org/10.5281/ZENODO.14673422, 2025. a
Jendersie, R., Richter, T., and Lessig, C.: neXtSIM_DG dynamical core GPU experiments, Zenodo [code], https://doi.org/10.5281/ZENODO.13711171, 2024. a
Jülich Supercomputing Centre: JUWELS Cluster and Booster: Exascale Pathfinder with Modular Supercomputing Architecture at Juelich Supercomputing Centre, Journal of large-scale research facilities, 7, A183, https://doi.org/10.17815/jlsrf-7-183, 2021. a
Kauker, F., Bertino, L., Bracher, A., Gabarró, C., Garric, G., Hughes, N., Kaminski, T., Lavergne, T., Malnes, E., Mustonen, T., Pedersen, L. T., Schauer, U., Scholze, M., Schyberg, H., Tietsche, S., Wagner, P., and Wilkinson, J.: A roadmap towards a European end-to-end operational system for monitoring and forecasting of the Polar Regions, KEPLER Deliverable Report, https://kepler380449468.files.wordpress.com/2021/08/kepler-deliverable-report-5.2-1.pdf (last access: 20 May 2025), 2021. a
Khronos Group: SYCL 2020 standard – language restrictions, https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#_language_restrictions_in_kernels (last access: 21 November 2023), 2023b. a
Kimmritz, M., Danilov, S., and Losch, M.: The adaptive EVP method for solving the sea ice momentum equation, Ocean Model., 101, 59–67, https://doi.org/10.1016/j.ocemod.2016.03.004, 2016. a
Kimpson, T., Paxton, E. A., Chantry, M., and Palmer, T.: Climate‐change modelling at reduced floating‐point precision with stochastic rounding, Q. J. Roy. Meteor. Soc., 149, 843–855, https://doi.org/10.1002/qj.4435, 2023. a
Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S.: Machine learning–accelerated computational fluid dynamics, P. Natl. Acad. Sci., 118, e2101784118, https://doi.org/10.1073/pnas.2101784118, 2021. a
Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben, P., Hatfield, S., Battaglia, P., Sanchez Gonzalez, A., Willson, M., Brenner, M. P., and Hoyer, S.: Neural general circulation models for weather and climate, Nature, 632, 1060–1066, https://doi.org/10.1038/s41586-024-07744-y, 2024. a
Krüger, J. and Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms, in: ACM SIGGRAPH 2005 Courses, SIGGRAPH '05, p. 234–es, Association for Computing Machinery, New York, NY, USA, ISBN 9781450378338, https://doi.org/10.1145/1198555.1198795, 2005. a
Kwok, R.: Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: a qualitative survey, Solid Mech. Appl., 94, 315–322, https://doi.org/10.1007/978-94-015-9735-7_26, 2001. a
Lang, S. T. K., Dawson, A., Diamantakis, M., Dueben, P., Hatfield, S., Leutbecher, M., Palmer, T., Prates, F., Roberts, C. D., Sandu, I., and Wedi, N.: More accuracy with less precision, Q. J. Roy. Meteor. Soc., 147, 4358–4370, https://doi.org/10.1002/qj.4181, 2021. a
Liu, J., Chen, Z., Hu, Y., Zhang, Y., Ding, Y., Cheng, X., Yang, Q., Nerger, L., Spreen, G., Horton, R., Inoue, J., Yang, C., Li, M., and Song, M.: Towards reliable Arctic sea ice prediction using multivariate data assimilation, Sci. Bull., 64, 63–72, https://doi.org/10.1016/j.scib.2018.11.018, 2019. a
Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012. a
Marsan, D., Stern, H., Lindsay, R., and Weiss, J.: Scale Dependence and Localization of the Deformation of Arctic Sea Ice, Phys. Rev. Lett., 93, 178501, https://doi.org/10.1103/physrevlett.93.178501, 2004. a
Mehlmann, C. and Richter, T.: A modified global Newton solver for viscous-plastic sea ice models, Ocean Model., 116, 96–107, https://doi.org/10.1016/j.ocemod.2017.06.001, 2017. a
Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter, N., Richter, T., Blain, P., Hunke, E. C., and Korn, P.: Simulating Linear Kinematic Features in Viscous‐Plastic Sea Ice Models on Quadrilateral and Triangular Grids With Different Variable Staggering, J. Adv. Model. Earth Sy., 13, e2021MS002523, https://doi.org/10.1029/2021ms002523, 2021. a, b, c
Meyer, J., Alpay, A., Hack, S., Fröning, H., and Heuveline, V.: Implementation Techniques for SPMD Kernels on CPUs, in: International Workshop on OpenCL, IWOCL '23, ACM, https://doi.org/10.1145/3585341.3585342, 2023. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems 32, edited by: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché Buc, F., Fox, E., and Garnett, R., 8024–8035, Curran Associates, Inc., http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 20 May 2025), 2019. a, b
Ólason, E., Rampal, P., and Dansereau, V.: On the statistical properties of sea-ice lead fraction and heat fluxes in the Arctic, The Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-2021, 2021. a, b
Ólason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T., Kimmritz, M., Dansereau, V., and Samaké, A.: A New Brittle Rheology and Numerical Framework for Large‐Scale Sea‐Ice Models, J. Adv. Model. Earth Sy., 14, e2021MS002685, https://doi.org/10.1029/2021ms002685, 2022. a, b
Paxton, E. A., Chantry, M., Klöwer, M., Saffin, L., and Palmer, T.: Climate Modeling in Low Precision: Effects of Both Deterministic and Stochastic Rounding, J. Climate, 35, 1215–1229, https://doi.org/10.1175/jcli-d-21-0343.1, 2022. a
PyTorch-devs: TorchInductor: a PyTorch-native Compiler with Define-by-Run IR and Symbolic Shapes, https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747 (last access: 13 May 2024), 2023. a
Rasmussen, T. A. S., Poulsen, J., Ribergaard, M. H., Sasanka, R., Craig, A. P., Hunke, E. C., and Rethmeier, S.: Refactoring the elastic–viscous–plastic solver from the sea ice model CICE v6.5.1 for improved performance, Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, 2024. a
Richter, T., Dansereau, V., Lessig, C., and Minakowski, P.: A snippet from neXtSIM_DG: next generation sea-ice model with DG, Zenodo, https://doi.org/10.5281/ZENODO.7688636, 2023b. a
Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic, Ocean Sci., 8, 633–656, https://doi.org/10.5194/os-8-633-2012, 2012. a
Sauer, J. A. and Muñoz-Esparza, D.: The FastEddy® Resident-GPU Accelerated Large-Eddy Simulation Framework: Model Formulation, Dynamical-Core Validation and Performance Benchmarks, J. Adv. Model. Earth Sy., 12, e2020MS002100, https://doi.org/10.1029/2020ms002100, 2020. a
Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.: Kilometer-Scale Climate Models: Prospects and Challenges, B. Am. Meteorol. Soc., 101, E567–E587, https://doi.org/10.1175/bams-d-18-0167.1, 2020. a
Servat, H., Rossi, G., Duran, A., and Narayanaswamy, R.: On the Migration of OpenACC-Based Applications into OpenMP 5+, in: OpenMP in a Modern World: From Multi-device Support to Meta Programming, pp. 127–141, Springer International Publishing, https://doi.org/10.1007/978-3-031-15922-0_9, 2022. a
Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N., and Zhou, L.: DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains, Prog. Earth Planet. Sc., 6, 61, https://doi.org/10.1186/s40645-019-0304-z, 2019. a
Sun, J., Dennis, J. M., Mickelson, S. A., Vanderwende, B., Gettelman, A., and Thayer-Calder, K.: Acceleration of the Parameterization of Unified Microphysics Across Scales (PUMAS) on the Graphics Processing Unit (GPU) With Directive-Based Methods, J. Adv. Model. Earth Sy., 15, e2022MS003515, https://doi.org/10.1029/2022ms003515, 2023. a
Tillet, P., Kung, H. T., and Cox, D.: Triton: an intermediate language and compiler for tiled neural network computations, in: Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, PLDI '19, ACM, https://doi.org/10.1145/3315508.3329973, 2019. a, b
Tintó Prims, O., Acosta, M. C., Moore, A. M., Castrillo, M., Serradell, K., Cortés, A., and Doblas-Reyes, F. J.: How to use mixed precision in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6, Geosci. Model Dev., 12, 3135–3148, https://doi.org/10.5194/gmd-12-3135-2019, 2019. a
Torch-TensorRT-devs: Torch-TensorRT: Ahead of Time (AOT) compiling for PyTorch JIT and FX, https://github.com/pytorch/TensorRT (last access: 20 May 2025), 2024. a
Trott, C. R., Lebrun-Grandie, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., and Wilke, J.: Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE T. Parall. Distr., 33, 805–817, https://doi.org/10.1109/tpds.2021.3097283, 2022. a, b
Usha, R., Pandey, P., and Mangala, N.: A Comprehensive Comparison and Analysis of OpenACC and OpenMP 4.5 for NVIDIA GPUs, in: 2020 IEEE High Performance Extreme Computing Conference (HPEC), IEEE, https://doi.org/10.1109/hpec43674.2020.9286203, 2020. a, b
Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov, P.: Quality assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991–2013, Ocean Sci., 13, 123–144, https://doi.org/10.5194/os-13-123-2017, 2017. a
XLA: An open-source machine learning compiler, GitHub, https://github.com/openxla/xla (last access: 28 November 2023), 2023. a
Short summary
Accurate computer simulations are critical to understanding how climate change will affect local communities. An important part of such simulations is sea ice, which affects even distant areas in the long term. In our work, we explore how GPUs (graphics processing units), computer chips originally designed for gaming allow for faster simulation of sea ice with a new software, the neXtSIM-DG dynamical core. We discuss multiple options and demonstrate that using GPUs makes more accurate simulations feasible.
Accurate computer simulations are critical to understanding how climate change will affect local...