
Geosci. Model Dev., 18, 3017–3040, 2025
https://doi.org/10.5194/gmd-18-3017-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie1,2, Christian Lessig1,3, and Thomas Richter2

1Institute of Simulation and Graphics, Otto von Guericke University, Magdeburg, Germany
2Institute of Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany
3European Centre for Medium-Range Weather Forecasts, Bonn, Germany

Correspondence: Robert Jendersie (robert.jendersie@ovgu.de)

Received: 12 August 2024 – Discussion started: 25 September 2024
Revised: 20 January 2025 – Accepted: 3 March 2025 – Published: 26 May 2025

Abstract. The cryosphere plays a crucial role in the Earth’s
climate system, making accurate sea-ice simulation essen-
tial for improving climate projections. To achieve higher-
resolution simulations, graphics processing units (GPUs)
have become increasingly appealing due to their higher
floating-point peak performance compared to central pro-
cessing units (CPUs). However, harnessing the full theoret-
ical performance of GPUs often requires significant effort
in redesigning algorithms and careful implementation. Re-
cently, several frameworks have emerged that aim to simplify
general-purpose GPU programming. In this study, we eval-
uate multiple such frameworks, including CUDA, SYCL,
Kokkos, and PyTorch, for the parallelization of neXtSIM-
DG, a finite-element-based dynamical core for sea ice. Based
on our assessment of usability and performance, CUDA
demonstrates the best performance while Kokkos is a suit-
able option for its robust heterogeneous computing capabil-
ities. Our complete implementation of the momentum equa-
tion using Kokkos achieves a 6-fold speedup on the GPU
compared to our OpenMP-based CPU code, while maintain-
ing competitiveness when run on the CPU. Additionally, we
explore the use of lower-precision floating-point types on the
GPU, showing that switching to single precision can further
accelerate sea-ice codes.

1 Introduction

Simulations are essential for understanding the effects of cli-
mate change and enabling stakeholders to mitigate its im-
pact on societies and individuals (Jakob et al., 2023). The
cryosphere is a key component of the Earth’s climate sys-
tem, and it has a particular impact on long-term processes.

neXtSIM-DG is a novel sea-ice code that is designed as
part of the Scale-Aware Sea-Ice Project (SASIP; https://
sasip-climate.github.io, last access: 19 May 2025) meant to
improve both the representation of physical processes and the
efficiency and accuracy of numerical implementation.

A crucial factor for the fidelity and reliability of cli-
mate simulations is horizontal resolution, with kilometer-
scale simulations, which, e.g., explicitly resolve not only
convection but also many other processes in the Earth’s
system, making it the target for the next generation of
models (Stevens et al., 2019; Bauer et al., 2021b). These
computations require exascale high-performance comput-
ing (HPC) systems with substantial GPU-based accelera-
tors (Schär et al., 2020; Bauer et al., 2021a). As a result, sig-
nificant efforts have been dedicated to porting components
of existing climate models to GPUs (Ikuyajolu et al., 2023;
Sauer and Muñoz-Esparza, 2020; Cao et al., 2023; Sun et al.,
2023).

In line with these developments, SASIP aims to substan-
tially increase the numerical accuracy of the sea-ice com-
ponent of coupled climate models using modern higher-
order discretizations of the governing equations. Kilometer-
scale sea-ice simulations are also of substantial theoreti-
cal interest as initial investigations show a marked change
in the behavior of the commonly used viscous–plastic
sea-ice model when approaching kilometer-scale resolu-
tions (Bouchat et al., 2022; Hutter et al., 2022). Computation-
ally much more efficient models are needed for the detailed
investigations of this behavior, its relationship with known
statistical and physical principles (Marsan et al., 2004), and
the role of possible alternative models (Dansereau et al.,
2016; Ólason et al., 2022). Kilometer-scale or even higher-
resolution sea-ice forecasts are also in high demand among

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://sasip-climate.github.io
https://sasip-climate.github.io


3018 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

sea-ice forecast users (e.g., Kauker et al., 2021) even though
it is unclear how current systems should be used at such res-
olutions (Hunke et al., 2020). The role of small-scale sea-
ice features, such as ridges and leads, in atmosphere–ocean–
ice interactions in weather and climate models can also only
be speculated on with current 10 km scale resolution mod-
els (Esau, 2007; Marcq and Weiss, 2012; Ólason et al., 2021).
Highly efficient kilometer-scale sea-ice models, either stand-
alone or in fully coupled climate models, are needed to ad-
dress these questions.

So far, the GPU parallelization of sea-ice models has re-
ceived limited attention. The usage of GPUs for the finite-
difference-based dynamical core of CICE, the Los Alamos
sea-ice model, was investigated by Rasmussen et al. (2024).

The neXtSIM-DG dynamical core is a flexible framework
used to model sea ice using a discretization with a higher-
order discontinuous/continuous Galerkin method (Richter
et al., 2023a). The algorithmic structure is such that differ-
ent rheologies can be used. At the core of the implementa-
tion is a module that encapsulates the non-linear stress up-
date locally (on each element). Different rheologies, e.g.,
viscous–plastic (Hibler, 1979) or brittle mechanics (Ólason
et al., 2022), can be easily realized with it. The outer code
is a pseudo-time stepping iteration that corresponds to the
modified elastic–viscous–plastic (mEVP) iteration (Bouillon
et al., 2013), which is frequently used to approximate the Hi-
bler model and which is essentially identical in all rheologies
we consider. To focus on the GPU implementation, we only
discuss the viscous–plastic model with the mEVP solver in
this paper without loss of generality. At the heart of the nu-
merical implementation is a large number of identical oper-
ations to be carried out on each mesh element. GPUs, which
are based on a data parallel processing model, are well suited
for these kinds of computations.

Besides performance, other factors are also important for
the implementation of the neXtSIM-DG dynamical core: the
code must be adaptable to future hardware, a long-term sup-
port of the software must be guaranteed, and it should be easy
to use. Such considerations are vital for the model’s adoption
and sustained use. With these aspects in mind, we examine
the current landscape of general-purpose GPU programming
frameworks and compare prototype implementations for the
parallelization of finite-element/finite-volume codes such as
neXtSIM-DG.

The de facto standard for general-purpose GPU program-
ming is CUDA (NVIDIA, 2023a), though it only supports
NVIDIA hardware. Additionally, it often necessitates a ded-
icated GPU implementation, requiring significant effort for
development and performance tuning. As a result, various
alternatives have emerged offering greater flexibility and us-
ability. A focus on the ease of use and minimal effort for
porting to GPUs is found in frameworks like OpenMP and
OpenACC. These, however, offer less control and fewer per-
formance optimization options compared to CUDA.

SYCL (Khronos Group, 2023a) and Kokkos (Trott et al.,
2022) are frameworks designed for heterogeneous comput-
ing enabling one to target different compute hardware. A
major challenge with these frameworks is achieving near-
optimal performance across diverse hardware platforms, par-
ticularly to efficiently leverage GPU-specific features, such
as shared memory or tensor cores.

Another recent alternative is the use of libraries such as
jax (Bradbury et al., 2018) and PyTorch (Paszke et al., 2019),
which were primarily developed for machine learning. Their
backends are built upon high-performance linear algebra li-
braries that support various hardware architectures and in-
clude compilers that efficiently map computations onto these
platforms. Examples of such backends include XLA (XLA,
2023), Triton (Tillet et al., 2019), and TensorRT (NVIDIA,
2023b).

With machine learning being a driving force in the devel-
opment of new accelerator hardware, significant resources
are invested in lower-precision floating-point support. Since
these types offer throughput orders of magnitude higher than
double precision, which is commonly used in scientific com-
puting, the use of lower-precision data types is a promising
direction for further speedups. For weather simulations, ex-
periments with a reduced-precision emulator indicates that
the precision can be reduced for most variables, in some
cases down to half precision, without degrading results (Hat-
field et al., 2019; Tintó Prims et al., 2019). For example,
the Integrated Forecasting System (IFS) of the European
Centre for Medium-Range Weather Forecasts has success-
fully switched to single precision without requiring major
code changes (Lang et al., 2021). Climate simulations with a
reduced-precision emulator suggest that single precision can
be equally accurate even for long-term runs (Paxton et al.,
2022; Kimpson et al., 2023; Banderier et al., 2024).

To compare the GPU programming frameworks and to in-
vestigate the potential speedup of an optimized GPU imple-
mentation, we use the different frameworks to port an im-
portant part of the neXtSIM-DG dynamical core to the GPU.
Our results show that SYCL is still immature, suffering from
an unreliable toolchain. Dedicated CUDA remains the best
option for speed, while Kokkos provides comparable perfor-
mance but greater flexibility. PyTorch is currently not a vi-
able alternative to handwritten C++ code, but the new com-
piler TorchInductor shows promise. We also find that single
precision is a strong option to further accelerate our sea-
ice simulation. Based on our evaluation, we use Kokkos to
implement the complete momentum equation on GPU, for
which we achieve a speedup by a factor of 6 compared to a
multi-core CPU implementation.

The structure of the paper is as follows. We start in Sect. 2
with an overview of the neXtSIM-DG dynamical core. The
different GPU implementations of it are detailed in Sect. 3.
In the subsequent Sect. 4, their performance is compared and
the impact of mixed precision as well as higher-order dis-
cretizations is analyzed. In Sect. 5, the Kokkos implementa-

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3019

tion is extended, and practical results are presented. Finally,
directions for future work and a summary are provided in
Sect. 6.

2 Model description

For simplicity of the presentation, we restrict ourselves to the
viscous–plastic sea-ice model introduced by Hibler (1979).
For a discussion of different material laws, we refer to the
literature (Feltham, 2008). Full details on the model and its
discretization in neXtSIM-DG are given by Richter et al.
(2023a).

The model consists of advection equations for the ice
height H and ice concentration A:

∂tH + div (vH)= SH , ∂tA+ div (vA)= SA, (1)

where the right-hand-side terms SH and SA are describing
thermodynamics. In addition, the 2D velocity field v is gov-
erned by the momentum equation

ρiceH∂tv = divσ (v,A,H)+F , (2)

where ρice is the ice density and σ the stress tensor. In F , we
collect all external forcings that come from wind and ocean
currents. Implicit solvers for the Hibler model suffer from
the strong non-linearities, are costly, and require advanced
numerical solution strategies (Mehlmann and Richter, 2017).
Hence, explicit iterations in the sense of a pseudo-time step-
ping are used often – in our case, the mEVP solver (Bouillon
et al., 2013). This introduces a subcycling index p and the
implicit rheology is approximated by iterating the following
system consisting of a momentum equation and stress up-
date:

σ (p) =
α

1+α
σ (p−1)

+
1

1+α
σ vp(v

(p−1),A,H),

σ vp(v,A,H)= η(∇v+∇v
T )+ ζdiv(v)I−

P

2
I,

(1+β)ρiceHv
(p)
= ρiceH

(
vn−1+βv

(p−1))
+1t · div(σ (p))+1tF . (3)

Here, vn−1 is the velocity from the previous macro time step.
The viscosities η and ζ depend on velocity v, ice height H ,
and ice concentration A, while the ice strength P depends
only on H and A. The parameters α,β > 0 control the sta-
bility and the speed of convergence. For an infinite number
of subcyling steps (p→∞), the mEVP iteration converges
to the implicit VP limit. In practice, 100 to 200 subcyling
steps are usually performed (see Kimmritz et al., 2016, for a
discussion).

This approach is also the basis of the neXtSIM-DG imple-
mentation. While the advection problems (Eq. 1) are solved
using a large time step, the momentum (Eq. 2) and the mEVP
iteration (Eq. 3) are subcycled with a smaller step size. More

than 100 sub-steps are often required in each advection step,
and the main effort lies in the repeated evaluation of the non-
linear material law (see σ (v,A,H) in Eq. 3). To use rheolo-
gies other than the viscous–plastic model, essentially only
the local calculation of the stress σ (p)vp needs to be modified.

Discretization

We briefly sketch the discretization of the model in the
neXtSIM-DG dynamical core. Equations (1) to (3) are dis-
cretized on quadrilateral meshes in spherical coordinates.
This mesh is topologically fully structured, consisting of
Nx ×Ny quadrilateral elements. Each element is mapped
from a uniform reference element onto the computational
element using a bi-linear transformation to allow for better
alignment with coastlines and a more equal mesh spacing in
the ocean and ice-covered regions. Hence, the computational
mesh consists of general quadrilaterals in lat and long coor-
dinates. The curvature is accounted for exactly by weight-
ing all integrals (of the dG formulation) with the functional
determinant of the spherical coordinate system. For the ad-
vection equations, higher-order discontinuous Galerkin up-
wind methods and high-order explicit Runge–Kutta schemes
are used. The velocity v is discretized using a continuous
Galerkin approach. As the velocity stress coupling has the
form of a mixed formulation, a discontinuous Galerkin space
is used to represent the stresses. This space must include the
gradient of the velocity space for stability.

3 Implementation

Starting point for the GPU implementation of neXtSIM-DG
dynamical core is the C++ CPU implementation that is de-
scribed in Richter et al. (2023a). This OpenMP parallelized
CPU code also serves as the baseline for the performance
evaluation. The CPU implementation leverages the linear
algebra library Eigen (Guennebaud et al., 2010), which is
highly optimized and, e.g., exploits CPU vector units. Due to
the explicit character of the discretization and the parametric
finite-element setup, most computations are matrix–vector or
matrix–matrix products with small matrices and vectors, e.g.,
vectors with four elements. As several vectors and matrices
are already available at compile time, i.e., all quantities that
refer to the reference element, neXtSIM-DG greatly benefits
from Eigen’s template-based design. These fixed-size ma-
trices do not require dynamic memory allocation, and op-
erations involving such matrices can be fully loop-unrolled.
Also, the use of expression templates in Eigen eliminates un-
necessary temporary variables in expressions involving mul-
tiple operations.

Table 1 indicates computational times for the different
parts of the dynamical core in a typical sea-ice dynamics
simulation. As a numerical test case for all computations, we
used the Mehlmann benchmark problem (Mehlmann et al.,

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3020 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Table 1. Runtime of 120 time steps of the simulation with 2.6×105

elements on an Intel i9-10900X (10 cores at 3.7 GHz). Except for
the advection, all major computations are part of the mEVP iteration
which performs 100 sub-steps in each time step. Remaining opera-
tions, e.g., input/output (I/O) and external forcing, are summarized
as other. For OpenMP, simultaneous multithreading is beneficial, as
running with 20 threads is 24 % faster than 10. Bold values mark
the maximum among the different parts for each column.

Serial [s] OpenMP (20 threads) [s] Speedup

Advection 188.32 34.34 5.48

Boundary 38.30 11.25 3.40
Strain 918.84 185.28 4.96
Stress 1741.43 206.36 8.44
Divergence 1023.07 170.81 5.99
Velocity 728.80 85.73 8.50

Other 14.42 5.98 2.41

Total 4653.2 699.75 6.65

2021), which has been tested in various sea-ice frameworks
since its introduction. It models the impact of a cyclone on
a dense ice cover and the formation of linear kinematic fea-
tures. The square domain is 512× 512 km in size, and the
simulation typically runs for 4 d. The mEVP iteration (mid-
dle lines of Table 1, from Boundary to Velocity) takes most
of the time, and the stress update is the single most expen-
sive part. These computations are local on each mesh ele-
ment and hence scale well with more cores. They are fur-
ther well suited as computational unit for the evaluation of
the different GPU programming frameworks. A pseudocode
overview of the stress update computations is shown in List-
ing 1. The original C++ code is documented in Listing B1
in Appendix B. Unless otherwise stated, all numerical test
cases use double precision. The code, however, is generic in
this respect, and Sect. 4.2 studies the effect of using lower-
or mixed-precision arithmetics.

For readers unfamiliar with the GPU architecture and the
specifics of GPU programming, we provide a brief introduc-
tion in Appendix A to complement the following text.

3.1 CUDA

The standard for general-purpose GPU programming is
CUDA (NVIDIA, 2023a), a platform developed by NVIDIA.
The primary interface is a C-based language and API with
extensive compiler support for C++. CUDA has a mature
ecosystem and gives low-level access to the GPU, which al-
lows one to develop highly optimized code. However, CUDA
is limited to NVIDIA hardware, and the development effort
to obtain code with a high utilization of the available com-
pute resources can be considerable.

Since version 3.3, Eigen has had limited support for
CUDA and allows one to use fixed-size matrices in CUDA

kernels. Through this feat, we can use the code from
Listing 1 in largely unchanged form. Eigen’s manually
vectorized code paths need to be disabled to have the code
run on the GPU, but we still benefit from Eigen’s other
features, such as expression templates and optimizations,
when a size is known at compile time. For the use of CUDA
with Eigen, we have to ensure that the required data are in
GPU memory. For dynamic buffers such as S11 in Listing 1,
we allocate memory manually and copy data as needed
before and after the kernel invocation. Inside the CUDA
kernel, an Eigen::Map is constructed with

This provides the same interface as the original matrix.
For compile-time matrices such as PSI we use the GPU’s
constant memory. Advantages of constant memory are that
no manual memory management is required, memory access
is faster through a dedicated cache, and further compiler
optimizations are possible since the values are available at
compile time. In the original C++ CPU code, the constant
matrices are defined as static class members with explicit
template specialization to enable selection of the proper ma-
trix for the specified dG degree at compile time. Since static
member variables are not supported in CUDA, we instead
declare separate variables and utilize if constexpr to
achieve the same flexibility:

Another important modification for the use of Eigen on the
GPU is the use of 32-bit integers as index type, since the
default 64-bit integers are only emulated on the GPU.

We tried a number of optimizations to speed up the Eigen
CUDA code, the results of which are shown in Table 2. The
bottleneck on the GPU is often memory access. One remedy
is the manual use of the L1 cache, called shared memory in
CUDA. Shared between all threads in a thread block, it can
significantly speed up reads of data that are needed multi-
ple times and by multiple threads or when scattered mem-
ory reads/writes are necessary. In Listing 1, the only data
that are used multiple times and by multiple threads are the
PSI matrices. Only minor changes to the code are needed to
load the PSI matrices into shared memory before use. How-
ever, we see no benefit from this change (cf. Table 2) since
constant cache is just as fast for the compile-time matrices.
Shared memory would therefore only be worthwhile if we
expect to run out of constant memory. However, the size of
the compile-time matrices depends only on the local degrees
of freedom of the discretization. If we consider all of the im-
plemented discretization orders together, roughly 26 kB of

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3021

Listing 1. Implementation of the mEVP iteration (Eq. 3). Stress and strain tensor components S11,S12,S22,E11,E12,E22
∈ RN×nS are

stored as matrices where N is the number of elements and nS the number of local DOFs in the stress space. Ice height and concentration
are denoted as H,A ∈ RN×nA , where nA is the number of local DOFs in the advection space. By Hi,∗ ∈ RnA (and similar for the stress and
the strain), we denote the local row vector of the DOFs belonging to element i. The matrices PSI〈nA〉 ∈ RnA×nG are given at compile time,
and they evaluate the dG functions in the Gauss points, with nG being the number of Gauss points. The scalars P ?,1min ∈ R are physical
parameters and constant for a simulation. The matrices M−1

i
∈ RnS×nG are pre-assembled and stored for each element. They represent the

local inverse mass matrix scaled with the weights coming from the transformation of the mesh elements and multiplied with the matrix
PSI〈nS〉 ∈ RnS×nG . By ∗, we denote the element-wise Hadamard product of matrices.

Table 2. Total time spend on the stress computation for 2.6× 105

elements over 30 time-steps for the different implementations on an
A100 GPU. Each modification is tested independently and speedup
is relative to the respective baseline.

Optimization Time [s] Speedup

CUDA baseline 0.366± 0.004 1.0
CUDA shared memory 0.370± 0.002 0.99
CUDA column-major 0.419± 0.002 0.87
CUDA on-the-fly map 0.321± 0.002 1.14

SYCL–AdaptiveCPP baseline 0.466± 0.002 1.0
SYCL–AdaptiveCPP shared memory 0.532± 0.001 0.88
SYCL–AdaptiveCPP on-the-fly map 0.372± 0.002 1.25

Kokkos baseline 0.522± 0.001 1.0
Kokkos shared memory 0.551± 0.002 0.95
Kokkos on-the-fly map 0.386± 0.002 1.35

memory is needed. This is still less than half of the 64 kB
available constant memory (NVIDIA, 2023a).

Another potential avenue to accelerate memory accesses
is to carefully prepare the layout of the data. For the C++
CPU code, variables such as S11 are stored in row-major or-
der, meaning that coefficients belonging to the same cell are
contiguous in memory. This locality is beneficial for both
effective cache usage and vectorized memory accesses. On
the GPU, the most efficient way to access global memory is
through coalesced reads whereby neighboring threads access
neighboring addresses. Since each thread processes one cell,
this can be achieved by storing variables in column-major
order. Nonetheless, as we can see in Table 2, the switch to
column-major storage order leads to a measurable slowdown.
A profiler revealed that the use of a column-major layout
does improve the memory access patterns and the number
of excessive sectors loaded from global memory decrease
from 59 % for the row-major version to just 2 %. However,
this difference is rendered ineffective by the cache. In par-
ticular, data that are seemingly loaded without need in the
row-major version due to the strided access are, in fact, re-
quired by subsequent computations when they can be read

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3022 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

from the cache. Furthermore, the column-major version per-
forms more instructions for index computations, leading to
the overall slowdown.

A third option to reduce global memory accesses is to trade
off reads with more computations. This is beneficial when the
code is memory-bound, as is often the case on the GPU, es-
pecially with classical linear algebra (Dublish et al., 2017).
In our code, the input/output (I/O) can be reduced by recom-
puting the inverse parametric mapM−1, which depends only
on the geometry of the mesh and compile-time constants. In
particular, each matrix has a size of nS×nG, while each mesh
cell’s geometry is fully described by four vertices with two
values each, which are furthermore shared with neighboring
cells. So, disregarding constants, even for a small dG degree
such as nS = 3, fewer reads are required if we compute the
matrices on the fly (see also Richter et al., 2023a, Sect. 5.3.3).
Upon closer inspection, we also find that when stored in
column-major order, vertex reads are coalesced, while reads
to M−1 are not due to the fact that M−1 is implemented as
an array of matrices. Since the Eigen matrix type only deals
with two dimensions, adjusting the storage order of M−1 to
allow for coalesced accesses would be difficult. We find that
the on-the-fly computation ofM−1 indeed delivers a speedup
of 14 % over the CUDA baseline on an NVIDIA A100 GPU.

The above optimizations illustrate that GPU performance
remains hard to predict and that for low-level GPU program-
ming, proper profiling is essential to identify bottlenecks and
develop efficient code. This applies not only to optimizations
that address well-known bottlenecks, as above, but also to
work on inconspicuous details in the code, such as the or-
der of expressions. An illustrative example of this is, again,
found in the treatment of precomputed M−1; this is relevant
in particular for higher-order discretizations that are exam-
ined in greater detail in Sect. 4.3. Accessing the matrix by
reference or by making an explicit copy has no impact on the
performance for smaller matrix sizes like 3× 4. However,
when M−1 is 8× 9 in size, i.e., in a second-order discretiza-
tion, the copy results in a kernel that is 43 % faster over-
all. Curiously, the slowdown with the access by reference is
largely not caused by a memory bandwidth bottleneck. In-
stead, the massive number of unique memory accesses over-
whelms the instruction queue that is responsible for execut-
ing cached memory accesses. The copy of M−1 alleviates
this by encouraging the use of more registers to store the co-
efficients, thereby avoiding memory accesses.

3.2 OpenACC and OpenMP

A simple approach for moving computations to the GPU is to
use a directive-based programming model like OpenACC or
OpenMP. In this case, only small or no changes to the code
are required. Targeting C, C++, and Fortran, both OpenACC
and OpenMP define directives to annotate loops. These in-
struct the compiler to offload the computations onto the GPU.

OpenACC or OpenMP differ in how the parallel execu-
tion is described. OpenMP is prescriptive, meaning that the
programmer has to detail how a loop should be parallelized.
On the other hand, OpenACC provides a simpler descrip-
tive directive that leaves more decisions to the compiler. See
Usha et al. (2020) for more details on the differences between
both approaches. In practice, OpenACC tends to give bet-
ter performance (Usha et al., 2020; Ðukić and Mišić, 2023).
However, it has more limited compiler support. Except for
basic support in GCC, OpenACC can only be used with
experimental and commercial compilers that primary target
NVIDIA hardware. Therefore, efforts exist to automatically
translate OpenACC to OpenMP to access the larger ecosys-
tem of OpenMP (Denny et al., 2018; Servat et al., 2022).

To accelerate our code, we tried three different compil-
ers: GCC 12.2 and NVIDIA HPC 23.5 with support for both
OpenMP and OpenACC and Clang 16.0, which currently
only supports OpenMP. However, we found that all three
compilers fail for our code. The NVIDIA compiler refused
to compile Eigen code, while GCC and Clang either crashed
during compilation or produced a broken program that would
crash once executed. Runtime crashes can be attributed to
incorrect memory transfers, for which only Clang provided
some diagnostics in the form of compile-time warnings. In
particular, objects which are not trivially copyable, such as
Eigen matrices with at least one dynamic dimension, are not
captured properly. While directives are provided to manu-
ally specify the needed buffers, this is cumbersome to do for
the complicated template-based Eigen types in our code. Fur-
thermore, it voids the main advantage of the directive-based
approach – namely, its simplicity. Use of OpenMP and Ope-
nACC was therefore not pursued further.

3.3 SYCL

SYCL (Khronos Group, 2023a) is an open standard for het-
erogeneous computing developed by the Khronos group. The
standard proposes a high-level API extending C++17 that al-
lows the same code to run on various devices such as cen-
tral processing units (CPUs), GPUs, and FPGAs. There are
currently two major implementations of the SYCL standard,
both of which are open-source and built on LLVM. Devel-
opment of AdaptiveCPP (Alpay and Heuveline, 2023), pre-
viously known as hipSYCL and OpenSYCL, is lead by Hei-
delberg University. While various backends are available, the
focus is on NVIDIA and AMD GPUs. The other major im-
plementation of SYCL is Data Parallel C++ (DPC++), which
is developed by Intel. DPC++ primarily targets Intel CPUs,
GPUs, and FPGAs.

SYCL builds on top of standard C++ to minimize the
effort of adapting existing code. However, the SYCL stan-
dard forbids recursion and function pointers in kernel
code (Khronos Group, 2023b), both of which are used in
Eigen’s expression templates. DPC++ does not allow one to
compile the neXtSIM-DG code because of these limitations

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3023

although the function calls should be entirely inlined in the
compiled code. AdaptiveCPP requires more effort for setup,
but the tool chain compiles Eigen. We therefore limit our in-
vestigations to AdaptiveCPP in the following.

SYCL automates device memory management and move-
ment of data between host and device, but memory require-
ments of a kernel need to be declared explicitly. To this end,
a buffer needs to be defined, pointing to already allocated
memory on the host. Then, a command group is created
which collects all information needed to run a task in par-
allel. Inside the command group, accessors allow us to ex-
plicitly describe which buffers need to be accessed and how,
i.e., to read or write. Once pushed into a queue, the SYCL
runtime uses these memory requirements as well as optional
dependencies on other command groups to select the best-
suited memory region to perform needed memory transfers
and to schedule the execution. Inside the command group,
we can declare a parallel for loop and construct Eigen maps
analogous to CUDA with pointers provided by the accessors.

We can investigate the same optimizations as with the
CUDA code. While shared memory did not improve perfor-
mance for native CUDA, it is still of interest to us to see
how it affects the SYCL implementation since memory man-
agement works differently there. To access local memory in
SYCL, which is the name used for CUDA’s shared memory,
we have to declare a local_accessor in the command buffer.
In addition, local memory only makes sense in the context
of thread blocks, so we need to use a more complicated for
loop which makes thread blocks explicit. Unfortunately, such
a construct is known to perform far worse on the CPU than a
simple loop and work on reducing this gap is an active area
of research (Meyer et al., 2023). Therefore, if the code is to
be efficient on both CPU and GPU, local memory should be
introduced only in code paths specialized for the GPU. For
the code snippet under study, this additional effort was not
considered worthwhile. Returning to Table 2, we see using
shared memory makes the kernel moderately slower. On the
other hand, computing M−1 on the fly leads to a more sub-
stantial relative speedup over the AdaptiveCPP baseline than
the same optimization in native CUDA.

3.4 Kokkos

Kokkos (Trott et al., 2022) is another programming model
that enables heterogeneous computing in modern C++, cur-
rently with support for CPU as well as NVIDIA and AMD
GPUs. Kokkos is developed as part of the Exascale Com-
puting Project by the US Department of Energy. The main
difference to SYCL is that Kokkos is a library, while SYCL
requires compiler integration. The library-based approach
greatly simplifies deployment of projects using Kokkos but
potentially limits possible optimizations and features.

Kokkos consists of macros and wrappers that provide a
unified API for the different backends, with the final code
being processed by the chosen compiler. Therefore, we can

once again start from the CPU code shown in Listing 1,
knowing that it works in native CUDA. The primary mecha-
nism to manage memory in Kokkos is Views, which are ba-
sically a shared pointer to a multi-dimensional array. Typi-
cally, both a device view and a mirrored host view are cre-
ated to facilitate data transfers. For our use case, it is possi-
ble to create a view on already allocated memory with the
unmanaged trait. However, unmanaged views do not go well
together with the mirrored views concept in backend agnos-
tic code, leading to unnecessary copies during the execution
on the CPU. Since in general the device view needs its own
buffer, copies between the mirrored views will be performed
regardless of whether they already reside in the same mem-
ory space. These extra copies can be avoided by adding a
special case for just the view creation on the CPU. They are
therefore not a major problem for portability. Once properly
set up, data are accessible in the kernel through the device
view, and we can use the underlying pointer to create an
Eigen map in the same manner as in CUDA.

Possible code optimizations in Kokkos are similar to those
available in SYCL. CUDA’s shared memory, called scratch
memory in Kokkos, can be accessed by specifying a Team-
Policy with a thread block size instead of using a simple par-
allel for loop. Here, a nuisance of the library becomes ap-
parent as the total scratch memory needed for a particular
kernel has to be set manually. Furthermore, parallelism de-
scribed with explicit thread blocks has the same downside
as in SYCL, which is namely that it leads to strongly de-
graded CPU performance. In our tests, we find that usage of
scratch memory introduces a small overhead in Kokkos (see
Table 2). On-the-fly map computation is again beneficial, and
it results in a large speedup of 35 %.

3.5 PyTorch

PyTorch (Paszke et al., 2019) is one of the most popular li-
braries for machine learning (Aoun et al., 2022). It consists
of a simple-to-use Python frontend and a high-performance
C++ backend that has a dedicated compiler to optimize code
execution and maps execution for different hardware such as
CPUs, GPUs, and tensor processing units (TPUs). Full sup-
port is available for CPUs, NVIDIA GPUs, and AMD GPUs.

To make effective use of PyTorch and the optimizations it
implements, computations have to be reformulated in terms
of large tensors. For this, we remove the main loop in line 4
of Listing 1 and treat the element dimension N as the batch
dimension of variable size. The matrix–vector products then
become matrix–matrix products, and element-wise opera-
tions remain unchanged. Some care is necessary to perform
the products with the per-element inverse maps, e.g., line 16.
Since we have a third dimension in M−1, this is not a stan-
dard matrix–matrix product. However, we can map this op-
eration to a batched matrix–matrix (bmm) product by ap-
pending a dimension of size 1 to the second argument and
removing it again afterward (squeezing in PyTorch termi-

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3024 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Figure 1. Total time spend on the stress computation over 30 time
steps for the different PyTorch variants on an A100. The products
withM−1 are implemented as either batched matrix–matrix (bmm)
product or element-wise product and sum (∗,sum). TensorRT uses
single precision (F32) since double is not supported.

nology). Alternatively, we can formulate this computation
as an element-wise product by adding a dimension corre-
sponding to nS to the second argument followed by a sum
over that dimension. The latter operation turns out to be 4 to
5 times faster across different backends, indicating that Py-
Torch is not tuned for our use case where the matrices are
much smaller than those common in machine learning work-
loads.

To integrate the PyTorch code into our C++ simulation, we
have multiple options. With minor syntactic changes com-
pared to the Python version, we can implement the computa-
tions directly with PyTorch’s C++ API. However, this is in-
efficient since each operation is executed as a separate kernel
with no kernel fusion taking place, resulting in many reads
and writes of the same data. A second option is to define
the computation as a PyTorch model in Python. This model
can be exported as TorchScript and loaded in C++. Part of
the C++ runtime is a just-in-time compiler which attempts
to optimize the model execution on repeated use. However,
more recent efforts to accelerate PyTorch models have been
focused on TorchDynamo, a compiler first released with Py-
Torch 2.0. While the frontend of TorchDynamo is written in
Python, various backends are available, some of which can
be used without the Python runtime. Most promising among
those we tested is the built-in TorchInductor, which leverages
the compiler Triton (Tillet et al., 2019) to produce highly op-
timized fused-matrix multiplications (PyTorch-devs, 2023).
In particular, PyTorch 2.2 introduces AOTInductor, a version
of TorchInductor that exports the entire model as a shared
library with a single wrapper function to call directly from
C++. Another way to deploy the PyTorch model in C++
is through the extension Torch-TensorRT (Torch-TensorRT-
devs, 2024), which uses NVIDIA’s inference engine Ten-
sorRT (NVIDIA, 2023b) as backend. One limitation of Ten-
sorRT is that it does not support double precision.

We compare the four proposed variants to integrate the Py-
Torch model into C++ in Fig. 1. Although they use the same
tensor primitives, the native C++ interface is considerably
slower than TorchScript. The new compiler, TorchInductor,
with its Triton-optimized kernels, is significantly faster than

the alternatives when using the element-wise product. When
implemented with bmm, the compiler fails to optimize the
operation due to a lack of GPU memory. The fact that a batch
size of 2.6× 105 is already too large, although the operands
require less than 5 MB of memory, points to it being an edge
case not properly considered by the optimizer. TensorRT is
slower than TorchInductor for our use case, even while run-
ning in lower precision, and has even more trouble with
the bmm operation. Optimization of the model takes over a
minute, and the inference is orders of magnitude slower than
the sum-based version.

3.6 Development and deployment effort

The development of dedicated CUDA code is time-
consuming and error-prone. One purpose of the alternatives
we considered in this work is to reduce this high development
effort. Furthermore, most of them support a unified code for
a variety of compute hardware. We therefore make a qualita-
tive comparison between the different approaches, consider-
ing not only ease of development but also deployment of the
finished code on a target system.

With their modern C++ interface, both Kokkos and SYCL
make it easier to write correct code compared to CUDA. Sim-
plified resource management and stricter types reduce the
risk of memory-related bugs and make more errors visible
at compile time. The simple parallelism constructs also hide
GPU-specific scheduling based on blocks and grids from a
developer. A further advantage of SYCL is that explicit an-
notations of device functions are unnecessary. SYCL’s mem-
ory model fully automates transfers between host and device,
eliminating another source of errors. It should be noted, how-
ever, that the more advanced C++ features used by Kokkos
and SYCL can make the frameworks less approachable for
non-C++ experts than the C-like interface of CUDA. PyTorch
follows a completely different programming paradigm from
the other options. From a system programming language per-
spective, PyTorch takes time to get used to. Development in
PyTorch is, however, overall much simpler. There is no mem-
ory management or explicit parallelism to take care of, and
rapid prototyping in Python is possible. A potential downside
can be that some computations are hard to express in terms
of tensor operations, in which case a low-level, manual im-
plementation is still needed. Another downside for our par-
ticular case was that the code had to be completely rewritten
in PyTorch, while for the other options, the C++ CPU code
could be largely reused.

For running the code on a target system, pure CUDA is
easiest. Usually pre-installed on clusters, no additional setup
is required. Furthermore, CUDA (or the AMD equivalent
ROCm) is a prerequisite for the other frameworks to use the
GPU, so if a manual installation is needed, this effort is un-
avoidable for every framework. The Kokkos library can be
easily integrated into a project’s CMake-based build system
and then works out of the box. In combination with auto-

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3025

matic fetching, e.g., via a git submodule, the library setup
becomes transparent. SYCL requires a specialized toolchain.
For AdaptiveCPP, this means that its compiler wrapper has
to be first built from the source. The manual configuration
that is needed for AdaptiveCPP to find the proper compil-
ers is cumbersome and, in some cases, necessitate, build-
ing a suitable version of LLVM first. For PyTorch, prebuilt
C++ libraries are available for all supported platforms. To
use TorchInductor, the Python package is needed to generate
the code on the target system, but it is easily acquired through
a package manager.

4 Numerical experiments

To analyze the performance of our implementations, we use
the established VP benchmark of a moving cyclone over a
sea-ice region (Mehlmann et al., 2021). We simulate a dura-
tion of 1 h, which requires 30 advection steps and 3000 stress
updates. For the discretization, we choose first-order con-
tinuous Galerkin (cG) elements and discontinuous Galerkin
(dG) elements with 3 degrees of freedom for the advection.
The original C++ CPU version of the code has already been
validated on this benchmark (see Richter et al., 2023a). We
therefore compare it to the CPU version to validate the com-
puted results and note that, while there is no loss in accu-
racy between the implementations, deviations from double
machine precision can cause visible differences in the results
over longer timescales. See Sect. 4.2 for additional details.

In the GPU implementations, significant time is required
to transfer memory between host and device. Nonetheless,
we only consider the kernel execution times in the follow-
ing since the final objective of our work is a full GPU im-
plementation of the dynamical core. While transfers are still
necessary for coupling with other models, the major effort
of simulating the sea-ice dynamics is in the mEVP iteration
with the many sub-iterations considered in this work. This
will amortize the costs of the memory transfers. Further-
more, they can potentially be hidden by overlapping them
with computations. To ensure accurate timings, synchroniza-
tion barriers are inserted as needed before and after the kernel
invocation. In SYCL, memory transfers are implicit, so we
rely on the built-in profiling instead to obtain the timings for
SYCL–AdaptiveCPP. Details on the software and hardware
used in the experiments are listed in Table 3.

4.1 Performance scaling

Of particular importance for coupled climate simulations is
the scaling of the performance as a function of grid resolu-
tion. With a fixed domain size of 512 km, we reduce the cell
size from 4 to 0.25 km. This corresponds to an increase in the
number of elements from 1.6×104 to 1.7×107 (i.e., one has
a quadratic scaling of the element number in the resolution).
In Fig. 2, we compare the best implementation for each ap-

proach as a function of elements for two different data center
GPUs.

For the OpenMP reference, we obtain the best results by
utilizing all available threads with simultaneous multithread-
ing enabled and the settings OMP_PROC_BIND=spread
and OMP_PLACES=threads. In the GPU versions of
CUDA, Kokkos, and SYCL–AdaptiveCPP, we compute the
inverse maps on-the-fly. In the case of Kokkos and SYCL–
AdaptiveCPP, the simple for loop is used to run the update in
parallel, which also makes an execution on the CPU efficient,
albeit with precomputed maps. For Kokkos on the CPU, we
get the best results with the OpenMP backend and the same
settings as raw OpenMP. For PyTorch, we take the imple-
mentation generated by TorchInductor with the element-wise
product and sum.

Running on an NVIDIA A100 GPU (Fig. 2a), our CUDA
implementation delivers a significant speedup over the
OpenMP CPU reference implementation. For the smallest
problem with 1.6× 104 elements, CUDA is 3 times faster,
scaling up to 6.4 for 1.7× 107 elements. Kokkos asymp-
totically achieves the same performance as CUDA on the
GPU and as OpenMP on the CPU. This is to be expected
since the very same compilers (NVCC and GCC) are used
by Kokkos, and only memory buffers and kernel dispatch are
abstracted. On small problems, Kokkos overhead makes it
50 % slower than CUDA but, surprisingly, the CPU version
is slightly faster than raw OpenMP for the same number of
elements. SYCL–AdaptiveCPP scales worse than the other
GPU accelerated codes, being 70 % slower than CUDA for
the largest problem size we tested. However, it still provides
a significant improvement over the CPU OpenMP version
running with 96 threads. The good performance of SYCL–
AdaptiveCPP for small problem sizes is likely an artifact
from the different time measuring method since the SYCL
timings do not fully account for the kernel launch overhead.
However, since this cost does not scale with the number of
elements, it becomes insignificant for larger problems where
the GPU implementations are most useful. On the CPU, we
were not able to run a meaningful experiment with SYCL–
AdaptiveCPP. Best performance was achieved with a restric-
tion to just 24 threads, indicating that the available CPUs
are not utilized properly. The documentation states that the
performance of the CPU backend should be similar to raw
OpenMP and that a significant deviation is likely caused by
an improperly configured toolchain. However, we were un-
able to obtain stable results on three different systems, illus-
trating the substantially greater difficulty in using the frame-
work compared to Kokkos. TorchInductor on GPU is slower
than the OpenMP CPU code for every problem size tested,
and TorchInductor’s CPU code (not shown) is an order of
magnitude slower than the GPU version.

To test the portability of the heterogeneous compute
frameworks, we also ran the experiments on System 2,
equipped with an AMD MI250X GPU. The results are shown
in Fig. 2b. Kokkos, SYCL–AdaptiveCPP, and PyTorch work

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3026 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Table 3. The two systems on which performance measurements where conducted.

System 1 System 2

CPU 2× AMD EPYC Rome 7402, 2× 24 cores @ 2.8 GHz AMD EPYC 7A53, 64 cores @ 2.75 GHz
GPU NVIDIA A100, 40 GB HBM2e AMD Instinct MI250X, 128 GB HBM2e
OpenMP (CPU) compiler GCC 12.3 –
GPU software stack CUDA 12.2 ROCm 5.6.1
Kokkos 4.1.0 4.1.0
AdaptiveCPP 23.10.0 based on Clang 17.04 23.10.0 based on AMD Clang 16.0
PyTorch 2.3 Nightly (24 November 2023) 2.4 (ROCm 6.1.2)

Figure 2. Timings of the stress update using the best-performing version for each framework on System 1 with an NVIDIA A100 (a) and
System 2 with an AMD Instinct MI250X (b). The size of the mesh cells is scaled from 4 to 0.25 km while keeping the domain size constant
to increase the number of elements. On the AMD Instinct MI250X, only one of the two graphics compute dice (GCDs) is used. The values
for OpenMP (CPU) are the same in both plots and were measured on System 1 with 96 threads.

without modifications but only utilize half of the MI250X
since it is a dual graphics compute die (GCD) design. SYCL–
AdaptiveCPP performs better on the AMD GPU, while
Kokkos is somewhat slower than on the NVIDIA A100. Both
thereby achieve a similar runtime, which is roughly 25 %
higher than that of CUDA running on the A100. For Py-
Torch, the MI250X is 50 % slower than the A100 in our ex-
periments. On paper, a single graphics compute die of the
MI250X has the same memory bandwidth as the A100 and
an F64 peak performance more than twice as high (A100
9.7 TFLOPS, MI250X 23.9 TFLOPS). These results indicate
that the AMD ecosystem is still less mature. However, with
the performance currently achieved, it is still a worthwhile
target platform.

4.2 Mixed precision

One avenue to further speed up the simulation is to per-
form computations with lower-precision float types. Switch-

ing from double precision (F64) to single precision (F32)
halves the memory required and doubles the theoretical peak
performance achievable on an A100 (F64 9.7 TFLOPS, F32
19.5 TFLOPS). Modern GPUs support even lower-precision
types that promise further speedups. Of particular inter-
est is tensor float (TF32), a format used in tensor cores,
which are specialized matrix multiplication hardware found
on NVIDIA GPUs and originally introduced for machine
learning workloads. TF32 uses the same exponent as F32 so
that the range of representable numbers is the same as for
F32, combined with a half-precision mantissa with just 10
bits that yields a significantly higher peak performance for
matrix multiplications (156 TFLOPS) compared to F32.

First, we evaluate the impact of lower-precision floats on
the quality of the results. To this end, we perform the stress
update in F32, while the rest of the simulation still runs in
F64. To make use of the tensor cores, we run the PyTorch
version, where TF32 can be enabled with a simple switch.

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3027

Figure 3. Shear deformation (log10) for the benchmark after 48 h, where the stress update is computed with float types: F64 (a), F32 (b), and
a mix of F32 and TF32 (c).

Figure 4. Radially averaged power spectral density (RAPSD) of the shear deformation (log10).

Results for the benchmark after 48h of simulation time are
shown in Fig. 3. Visually, F64 and F32 are indistinguishable,
while some movement of larger cracks and additional fine
features can be seen with TF32. Nevertheless, the overall dis-
tribution of features in the shear deformation remains very
similar, and there is good agreement in the frequency spec-
trum of the features, as can be seen in Fig. 4.

To quantify the stability of the physical model itself and
whether computations with lower accuracy amplify instabil-
ities, we look at the distribution of linear kinematic features
(LKFs) (Kwok, 2001) using a script provided by Hutter et al.
(2019). In Fig. 5, we investigate the influence of randomly
perturbed initial conditions on the formation of LKFs in the
benchmark simulation. For F64 and F32, both mean and stan-
dard deviation are largely the same, and perturbations up to
F32 machine precision around 10−7 appear to have no impact
on the distribution. This indicates that, at least for short-term
simulations, F32 can be used without impacting the results.
For TF32, there is a statistically significant deviation in the
length of LKFs even for very small perturbations. However,
the uncertainty in the sea-ice tracers from data assimilation is
of the order 10−2 or larger (Liu et al., 2019; Xie et al., 2017).

In our experiment, the variation in the initial conditions has
a larger effect on the LKFs than the floating-point type used
at this point, so TF32 could still be useful in practice.

The performance gains from switching the stress update
to F32 or TF32 are shown in Fig. 6. For CUDA, switching
from F64 to F32 gives a speedup of 80 %, which is in line
with the expected speedup for the A100 since both compute
and memory throughput are effectively doubled. For this rea-
son, we expect to see similar gains from using F32 in Kokkos
and SYCL–AdaptiveCPP, albeit with the different compiler
of the latter; other factors including occupancy and the use of
special function units could play a larger role. For TorchIn-
ductor, the relative speedup with F32 over the F64 version is
much higher at 315 %. As machine learning tasks rarely use
double precision, the optimizer is likely tuned much more
for the single precision case. The variant with tensor cores
enabled, TorchInductor (TF32), has a speedup of 412 % over
F64, which is not quite as large as the theoretical peak perfor-
mance would suggest. This is because not all operations can
make use of the tensor cores, and where it is possible, the
matrices involved are too small to take full advantage of the
tensor cores. In absolute terms, TorchInductor (TF32) still

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3028 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Figure 5. Distribution of the number (a) and the total length (b) of linear kinematic features (LKFs) after 48 h when the initial state of ice
height H and ice concentration A are perturbed by adding uniform noise sampled from [−ε,ε) to each component of the fields. Points show
the mean of 24 randomized runs with a specific maximum magnitude ε, while the whiskers indicate the standard deviation. The ε values are
chosen as the interval machine precision for different floating-point types, i.e., 2−53 (F64), 2−23 (F32), 2−10 (F16/TF32), 2−7 (BF16).

Figure 6. Timings of the stress update for lower-precision floating-point types on the NVIDIA A100. The dashed lines are references in F64,
taken from Fig. 2.

takes almost twice as long as CUDA (F64) even with access
to tensor cores.

4.3 Higher-order scaling

Our finite-element code makes it easily possible to change
the local number of degrees of freedom. So far we have
focused on just one discretization, cG1-dG3, i.e., first-
order continuous Galerkin (cG) elements for velocity and 3-
degree-of-freedom discontinuous Galerkin (dG) for the ad-
vection. A higher-order discretization significantly increases
the compute load. This could make the computations more
efficient on the GPU when compared to the CPU since the

GPU is limited by memory bandwidth in our code. On the
A100, compute throughput reported by the profiler for cG1-
dG3 varies from 28 % to 50 % depending on whether the pre-
computed maps are used, while the memory throughput is at
70 % to 80 %.

A simple roofline model of the A100 GPU is shown in
Fig. 7. For our code, the relevant bottleneck is clearly the
arithmetic intensity, i.e., the ratio of compute operations per
byte accessed in global memory. The values reported by the
profiler for our baseline kernels with precomputed maps are
all close to the bandwidth limit, which underscores our obser-

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3029

Figure 7. Roofline model of the F32 performance of the A100 with different variants of our CUDA kernel. Theoretical values are computed
manually, while the other values are taken from Nsight Compute, the NVIDIA GPU profiler. The peak compute value given here assumes
base clock speed to be consistent with the profiler results. Optimized kernels perform the on-the-fly map computation, which is not viable
for higher cG order.

vations from Fig. 3, i.e., that the only effective optimization
is a reduction in the data transfer per computation.

In contrast, the optimized kernels with on-the-fly paramet-
ric map computation present a different picture where neither
memory bandwidth nor compute are a bottleneck. Instead,
other limitations become apparent which can be attributed
to the complexity of our kernel. One aspect that is exacer-
bated by the on-the-fly map computation is the high number
of registers that are needed by each thread. More temporary
variables are needed and although, for the tested cG1 kernels,
these variables still fit in the registers, the higher register us-
age leads to a lower occupancy, i.e., the ratio of active warps
that fit on each execution unit at the same time and the the-
oretical maximum supported by the hardware (for cG1-dG3:
57 % unoptimized, 40 % optimized). As a result, the sched-
uler is unable to keep the different pipelines busy, and more
cycles are wasted waiting.

While the gains in arithmetic intensity from the optimiza-
tion are clearly worth it for cG1 (cf. Table 2), the same is not
true for cG2. With second-order cG elements, the increased
workload per thread, caused by the on-the-fly map computa-
tion, becomes a major bottleneck. The computation involves
a matrix inverse that becomes both too expensive and too
memory intensive for higher orders. For first-order cG, this
matrix is 3× 3 in size, and we can use a closed-form for-
mula to compute the inverse that results in efficient code. For
second-order cG elements, the matrix has size 8× 8 and we
have to rely on a generic algorithm for matrix inversion. As
we can see in Fig. 7, the arithmetic intensity of the “opti-
mized” cG2 kernels is, in fact, lower than that of the kernels
with precomputed maps because of a large number of tem-
porary variables stored in global memory since the available
per-thread register space is exhausted (in technical terms,
data are spilled to local memory). Subsequently, the unop-

Table 4. Estimated arithmetic intensity (FLOPbyte−1) of kernels
with different discretization orders for F32. The roofline for the
A100 is 9.73 FLOPbyte−1 (or 12.5 FLOPbyte−1 with boost clock).
The arithmetic intensity depends on the chosen degrees of freedom
nA in the dG advection space as well as number of stress compo-
nents nS and Gauss points nG which are both determined by the cG
order.

cG\dG nA = 1 nA = 3 nA = 6

1 (nS = 3,nG = 4) 1.30 1.31 1.31
2 (nS = 8,nG = 9) 1.29 1.32 1.38

timized kernel is roughly 8 times faster. In the following, we
therefore limit our analysis to the version with precomputed
maps.

Although the arithmetic intensity is reduced, the high-
order discretization is still more powerful when it comes to
resolving local features in sea ice. This is known from CPU
implementations (see Mehlmann et al. (2021) and Richter
et al. (2023b)), and Fig. 8 demonstrates that the GPU effi-
ciency does not depend significantly on the order.

To analyze the possible throughput independent of (sub-
optimal) code generation, we also compute a theoretical
bound based on the algorithmic description in Listing 1. For
memory accesses, we only count the data that are unique
for each kernel invocation, i.e., Si,∗,Ei,∗,Hi,∗,Ai,∗, and
M−1
i , giving us a total of 9nS + 2nA+ nSnG float reads and

writes. For compute operations, we only count float oper-
ations and assume F32 since, in that case, all operations
are native GPU instructions with well-documented through-
put (NVIDIA, 2023a). Additions are not counted since they
can all be executed as fused multiply–add, min and max
have the same throughput as compute operations, and exp2

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3030 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

and sqrt−1 count as four operations each (compute capability
8.0). Therefore, the total number of operations is

6nS + 3nA+ 6nSnG+ 2nAnG+ 28nG,

giving us the theoretical arithmetic intensities recorded in Ta-
ble 4. We can see that, in agreement with the profiler results,
an increase in either order is insignificant for the arithmetic
intensity. The largest difference of just 6 % is from cG2-dG1
to cG2-dG6, which should not have much of an impact on
the memory access bottleneck.

To verify this scaling model, we measure the runtime for
different discretization orders and compare with the OpenMP
CPU baseline in Fig. 8. We find that the speedup from using
the GPU ranges from 4.4 to 6.0, with no clear trend for either-
order parameter, in line with the theoretical prediction. The
observed differences can mainly be attributed to the prob-
lem size impacting the behavior of the CPU version since the
relative runtime between the different GPU variants is very
consistent across problem sizes.

5 NeXtSIM-DG implementation

Based on the results from Sect. 4, we decided on Kokkos
for the full implementation of the neXtSIM-DG sea-ice dy-
namical core. In our evaluation, Kokkos offered performance
almost competitive to CUDA but with greater ease of devel-
opment, multi-vendor GPU support, and potential to replace
the dedicated CPU implementation.

The port of the complete mEVP iteration to Kokkos is,
for the most part, straightforward with the experience gained
from the implementation of the stress. Of note is the need
for a different parallelization strategy for operations that in-
volves neighboring cells of the mesh, such as the divergence
computation. In the OpenMP implementation, race condi-
tions are circumvented by performing the update in two steps
whereby every other row is processed in parallel (Richter
et al., 2023a). However, as illustrated in Fig. 9, this paral-
lelization strategy along just one dimension does not provide
nearly enough work to saturate a GPU. One way to further
increase parallelism without introducing contention at the
edges is to perform four separate steps in a strided checker-
board pattern instead. Another way, that turns out to be faster
for the divergence computation, is to process every cell in
parallel and to rely on atomic operations to ensure that the
values are updated correctly. The use of atomics in such a
way could be sub-optimal when running on CPU, but it does
not appear to be a problem in our experiments.

Another concern for portability, also related to cross-cell
updates, is the choice of the parallel loop construct. To eas-
ily address neighbors, it can be tempting to use Kokkos’s 2D
range policy. However, this policy splits work into tiles in-
stead of rows, which does not go well with our underlying
data layout on the CPU. The whole mEVP update becomes 3
times slower on the CPU when using 2D loops for strain and

divergence computations instead of 1D loops with manual
index computation. GPU performance is, in our case, largely
unaffected by this choice.

5.1 Benchmark

While the new Kokkos code is not fully optimized yet and
limited to F64, it already provides a substantial speedup
over the OpenMP code. Results for the benchmark setup de-
scribed in Sect. 4 are presented in Fig. 10. In contrast to the
previous experiments, the timings for the full mEVP iteration
include the necessary data transfers to and from the device.
Running on GPU, the mEVP iteration is faster by a factor of
6 even for small problem sizes. Running on CPU, the Kokkos
code performs just as well as the OpenMP code. The cost of
data transfers for the GPU version is still non-negligible at a
constant 10 % for larger meshes even though the 100 mEVP
sub-steps are performed entirely on the device. This under-
lines the importance of minimizing necessary data transfers
and running larger parts of a simulation on the GPU.

Another important aspect of the GPU implementation are
the device memory requirements. Due to the precomputed
matrices in particular, the available device memory does im-
pose a practical limit on the mesh size. The memory re-
quirements are recorded in Table 5. Apart from a constant
part that is mostly reserved for the runtime and which varies
slightly between devices, the memory usage scales linearly
with the number of elements. A GPU with 40 GB VRAM can
therefore fit roughly 5.6×107 elements of order cG1-dG3. A
switch to the higher-order cG2-dG6 reduces the maximum
number of elements to a little over one-fifth of that number.

As more parts of the simulation, such as the advection,
are performed on the GPU, the memory requirements in-
crease further. Possible strategies to reduce the device mem-
ory usage include moving buffers to RAM while they are not
needed and to precompute only parts of the required maps to
facilitate greater reuse between kernels. Both strategies are a
trade-off between speed and memory. An alternative option
is to distribute the work across multiple devices. While this
introduces synchronization overhead, the device memory us-
age itself should then not be a bottleneck as our results in
Fig. 10 show that a single GPU can be well utilized with 106

elements or more.

5.2 Realistic case

So far we have worked with an idealized test case in Carte-
sian coordinates that has a square domain which is com-
pletely covered by sea ice except for a single boundary layer.
In a realistic setting, there will areas of land and open sea
which do not need to be simulated. Although the parametric
mesh can be deformed to closely fit a coastline, the regu-
lar structure of the mesh will leave some computational cells
inactive when more complicated geometry is involved. We
therefore also considered a more realistic setup in our exper-

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3031

Figure 8. Performance of the CUDA implementation with precomputed map M−1 for different discretization orders on the A100. The three
largest problem sizes from the scaling test are shown.

Figure 9. Parallel processing of biquadratic cG2 vectors. The mesh has 12 elements with Nx = 4,Ny = 3. Each block corresponds to one

thread and blocks of the same color can be processed in parallel. The maximum number of parallel tasks is, from left to right, Ny2 (row-wise),
NxNy

4 (strided), NxNy (atomic).

iment (see Table 11). Once again, the OpenMP reference and
Kokkos (CPU) versions perform very similarly. The GPU
baseline is around 2.7 times faster than the CPU. The smaller
performance gap compared to previous experiments can be
explained by the differences in hardware. The CPUs are sig-
nificantly faster, and we use 122 physical cores instead of
48 as before. While the H100 that is used for the experi-
ments is also faster than the A100 in the other experiments,
the main bottleneck, the memory bandwidth, does not signif-
icantly improve from the A100 (1.6 TB) to the H100 PCIe
(2 TB).

Spherical coordinates, which introduce additional scaling
terms, lead to a performance penalty of around 15 % for all
tested variants. The land mask, which deactivates updates for
one-third of the domain, has little impact on the CPU. With a
12 % improvement for OpenMP and 6 % for Kokkos (CPU),
the final measured times are slightly slower than the baseline.
The small improvement from the land mask is because of
the static parallel schedule whereby each thread receives the
same number of elements to update, leaving the thread with
the most active elements to determine the overall speed. This
will be addressed in the message passing interface (MPI) ver-

sion of the code, where the domain decomposition can take
into account land cells. The GPU version, on the other hand,
can already take advantage of the inactive cells to some ex-
tent since work is split into many small warps which finish
instantly when they consist entirely of land. In fact, a speedup
of 26 % from setting the land mask makes the GPU code
faster overall for the realistic case than for the idealized base-
line. To get this speedup, there need to be larger areas of land,
and the mesh resolution has to be sufficiently high so that the
ratio of warps consisting of both active and inactive cells is
small compared to the total.

The different characteristics regarding the land mask lead
to the first platform specific adoption in our code. For kernels
such as the stress, which do not affect neighboring cells, land
checks are optional and consequently inserted in the GPU
version but left out when compiling for the CPU. The pre-
sented values in Table 11 already include this optimization.

Finally, the memory usage does not change for the realis-
tic case, so the values in Table 5 remain valid. The additional
values used for spherical coordinates are currently loaded
onto the device regardless of whether they are needed. The
land mask has no effect since the space for land cells in the

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3032 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Figure 10. Timings of the full mEVP iteration on the NVIDIA A100 (System 1). The values for Kokkos (GPU) include the necessary data
transfers between CPU and GPU. The CPU runs are with 96 threads.

Table 5. GPU memory usage for different discretization orders. A constant amount of memory is reserved by the runtime. Memory require-
ments for data scale linearly with the number of mesh elements, giving us an upper limit for the problem size on a 40 GB GPU like the
A100.

Order Base memory [MB] Per-element [kB] Max elements with 40 GB

cG1-dG3 463.5 0.70 5.6× 107

cG2-dG6 463.5 3.44 1.2× 107

field arrays still has to be allocated to allow for direct access
to the cell data with computed indices.

6 Conclusions

We implemented and evaluated different options for the GPU
parallelization of the neXtSIM-DG dynamical core. Accord-
ing to our results, CUDA remains the most reliable op-
tion both in terms of performance and with regard to the
toolchain. Thanks to the CUDA support of Eigen, we were
also able to use the CPU C++ code with minimal modifica-
tions in CUDA.

Kokkos benefits in the same way from Eigen’s CUDA li-
brary support, while SYCL does not need explicit support
which makes it well suited for an incremental port of exist-
ing C++ code in general. The streamlined memory model and
simplified parallel constructs of Kokkos and SYCL facilitate
more effective development, but at some performance cost.
Using dedicated GPU features, such as shared memory, re-
mains an issue because it leads to code that is very inefficient
on the CPU, breaking the promise of the heterogeneous com-
puting paradigm. However, our study demonstrates that this
specialization is not always needed to achieve good perfor-
mance, and we can therefore recommend Kokkos as an alter-
native to CUDA. While SYCL shares the benefits on paper, it

suffers from immature implementations and is currently too
unreliable for practical use.

PyTorch currently lacks far behind the more conventional
options in terms of performance and is therefore mostly
worth considering for rapid prototyping. However, the op-
timizer heuristics are clearly far from optimal yet for our use
case and the underlying compilers are developing quickly, so
we expect performance improvements in the future. Further-
more, PyTorch and similar machine learning frameworks are
interesting alternatives because of their ease of development
and the access to automatic differentiation they provide. The
latter is of great relevance for hybrid methods that combine
a conventional discretization with a machine learning com-
ponent, e.g., Bedrunka et al. (2021), Kochkov et al. (2021),
Demeure et al. (2023), and Kochkov et al. (2024).

Our investigation of mixed precision underscores previ-
ous results from the literature, i.e., that lower-precision float
types should be considered for GPU codes. Performing a ma-
jor computation of our sea-ice simulation in single precision
shows no degradation in the results, while it almost doubles
the performance. Although the application of tensor cores
with their even lower precision does have a measurable im-
pact on the results, further tests with more realistic scenarios
will be needed to determine whether there is a practical im-
pact of going below single precision and to study the effects
of numerical precision on long-term climate simulations.

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3033

Figure 11. A more realistic test case with a mesh of dimensions 1240×980 (∼ 1.2×106 elements) and a resolution of 3.125 km covering the
Arctic. The data are for 1 January 2010 with initial conditions, including the ice concentration (a) and ocean forcing derived from TOPAZ4
reanalysis (Sakov et al., 2012) and ERA5 reanalysis (Hersbach et al., 2020) for atmospheric forcing. Performance measurements (b) are
taken on a system with 2× AMD EPYC 7773X (64 cores each) using 122 OpenMP threads in total and an NVIDIA H100 PCIe. Factors that
affect the performance compared to the benchmark test case are the use of spherical coordinates and a land mask (gray), which leaves only
68 % of the cells active. Performance values shown are relative to the idealized CPU (OpenMP) baseline without land and with Cartesian
coordinates. Whiskers indicate the standard deviation from eight runs.

From a computational perspective, our finite-element-
based GPU code does not favor higher-order discretizations.
While the speedup over CPU is considerable for all combi-
nations tested, there are additional optimization opportuni-
ties for the first-order continuous elements which make them
more efficient. A comprehensive evaluation of the trade-off
between quality and speed of different discretization orders
is left for future work.

For the GPU parallelization of the entire neXtSIM-DG
dynamic core, we chose Kokkos. For the full mEVP itera-
tion running entirely on GPU, we obtain a speedup by a fac-
tor of 6, switching from a dual CPU node to a single A100
GPU in double precision. With some care, the GPU Kokkos
implementation achieves the same performance on CPU as
our manual OpenMP-based implementation, making the lat-
ter obsolete. The code is not fully optimized yet, and more
work is needed to port advection and other rheologies. With
components outside the dynamical core also still in active
development, performance comparisons with currently used
models are difficult. However, based on the results shown in
this work, a move from the current 10 km resolution sea-ice
models (Ólason et al., 2021; Hutter et al., 2022) to practical
kilometer-scale models seems tangible.

Appendix A: Introduction to GPUs

Graphics processing units are coprocessors originally de-
signed to accelerate computer graphics. To generate images
in quick succession, a massive number of operations, e.g.,
computing the color of each pixel on the screen, has to be
performed. The computations are typically identical, and it
is thus a highly parallel problem. Initially, the specific algo-

rithms used for this purpose were implemented directly in the
hardware, and the resulting fixed function pipeline offered
only very limited possibilities for customization. However,
to enable higher-fidelity graphics, most parts of the pipeline
were replaced with programmable stages over time. Attempts
to use such programmable GPUs for scientific computing
soon followed (Bolz et al., 2003; Krüger and Westermann,
2005). To further facilitate the application of GPUs beyond
computer graphics, new programming interfaces were devel-
oped that represent GPUs as general-purpose stream proces-
sors (Buck et al., 2004). In this paradigm, a program takes
a long sequence (a stream) of data and applies kernel func-
tions to each element in the sequence. Among the general-
purpose programming interfaces, CUDA (NVIDIA, 2023a)
has been the most influential, and the fundamental program-
ming model defined by CUDA has stayed the same since its
introduction in 2006.

In the following, we give an overview of GPUs as general-
purpose parallel processors aimed at readers somewhat fa-
miliar with the architecture of CPUs. In the interest of
brevity, we only use the nomenclature of CUDA, but the con-
cepts and components described here also exist on GPUs of
other vendors, sometimes under different names.

GPUs are designed for high throughput and can, given
an embarrassingly parallel problem, deliver significant gains
in performance and energy efficiency over CPUs. Naturally,
this requires a trade-off since chip resources need to be dis-
tributed differently. As Fig. A1 shows, for CPUs, much of
the die space is allocated to the multi-level cache hierarchy
and control circuits, e.g., speculative execution, with the goal
to minimize latency as much as possible. In contrast, GPUs
prioritize compute throughput with many more arithmetical
logical units (ALUs) and a much wider execution pipeline. If

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3034 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

sufficient work is available to saturate the compute pipeline,
latency can, in principle, be hidden because computations in
different stages of execution can keep every part of the hard-
ware busy. For a program to take advantage of just a single
GPU, it needs thousands of similar computations that can be
run in parallel as opposed to just a few tasks needed to fully
utilize a multi-core CPU. In practical terms, a good balance
between operations is required to achieve high utilization;
i.e., the compute units can only be kept busy if the data can
be loaded and stored with the same speed as they are pro-
cessed. The dedicated main memory on GPUs (VRAM) is
therefore also optimized toward higher bandwidth, whereas
regular RAM for CPUs prioritizes lower latency.

To access data on the GPU, they first need to be moved to
global memory, a logical space residing in the VRAM. Since
transfers between the host memory (system RAM) and de-
vice memory (VRAM) are slow, the work offloaded to GPUs
needs to be sufficiently expensive. Therefore, when a com-
plex computation is performed, it can be worthwhile to per-
form an individual operation on the GPU, even if it is not
efficient, when this minimizes the data transferred between
GPUs and CPUs.

The main building block of a GPU is the streaming mul-
tiprocessor (SM). Equipped with its own cache, registers,
ALUs, and control logic, a streaming multiprocessor can
operate largely autonomously and is similar to a core on
the CPU. The number of streaming multiprocessors varies
widely between chips, and performance considerations for
a program with respect to this number are similar to vary-
ing the number of CPU cores, i.e., weak and strong scaling.
High-end GPUs have around 128 streaming multiprocessors.

Conceptually, each streaming multiprocessor is a single in-
struction, multiple data (SIMD) processor that achieves com-
putational efficiency by data parallel processing, i.e., through
a number of threads that perform the same computation on
different data. Such a warp of threads is comparable to a CPU
thread where every operation is performed as SIMD. How-
ever, warps are much wider than the vector units commonly
found on CPUs. Figure A1 alludes to this with the ALUs (or
CUDA cores) being grouped in sets of 16, though in practice,
a common warp size is 32. As a consequence of the SIMD
paradigm, branches (if statements) can be hugely detrimental
to the performance on the GPU if they cause frequent warp
divergence, i.e., the selection of different code paths within
a warp. In that case, the whole warp will execute each taken
branch, and undesired results are just masked out at the end.
A similar problem exists for CPU code, where branches can
prevent effective vectorization.

Each GPU thread has its own set of registers and private
local memory if additional space is needed. Since local mem-
ory is just a special address space in VRAM, it has very high
latency, and it puts additional strain on the same memory bus
as global memory accesses. While automated caches allevi-
ate the issue of slow device memory to some extent, much
better performance can often be achieved by utilizing shared
memory. This memory space is part of the L1 cache, allow-
ing for fast random access but is manually programmed so
that one can ensure that the right data are held in the cache.
The same shared memory space is shared between multiple
threads.

Multiple warps together form a thread block and all
threads in the same block are resident on a single streaming
multiprocessor at the same time. Instead of having a fixed
number of registers available to each thread, on GPUs, the
registers are allocated as needed for each kernel from the
register file. Keeping the state of multiple warps in registers
is necessary to make context switches between them cheap,
which is key to achieving a high throughput. A high per-
thread register requirement can therefore be detrimental to
performance because it decreases the possible thread block
size. A lower occupancy means that fewer warps are avail-
able to the scheduler, which in turn increases the likelihood
of wasted cycles. An important feature of thread blocks is
their ability to effectively coordinate work. Synchronization
is possible via a lightweight barrier and all threads in a block
have access to the same shared memory, thereby making it
possible to share intermediate results.

All thread blocks are organized into a grid and indepen-
dently executed on the available streaming multiprocessors.
Synchronization between blocks usually happens only once
the whole grid is finished, although another intermediate
level called cooperative groups is available on the latest hard-
ware.

In addition to the general-purpose ALUs, streaming mul-
tiprocessors are equipped with a number of fixed function
units to accelerate specific computations. These include ten-
sor cores which compute matrix–matrix multiplications and
special function units (SFUs) that compute approximations
for certain transcendental functions. Programming with ten-
sor cores requires special consideration because tensor cores
are controlled at the warp level, whereas the program is writ-
ten in terms of threads.

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3035

Figure A1. A schematic overview of an example CPU versus a GPU.

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025



3036 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Appendix B: Code

Listing B1. Implementation of the stress update with Eigen. The method is generic in the degrees of freedom of the different cG and dG
elements. The matrix() and array() methods change the type of an expression to differentiate between matrix and component-wise
operations and are NoOps during runtime.

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025



R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3037

Code and data availability. A snapshot with all the code needed
to reproduce the experiments in this paper is available on Zen-
odo (https://doi.org/10.5281/ZENODO.13711171, Jendersie et al.,
2024). The input data for the realistic case are provided separately
(https://doi.org/10.5281/ZENODO.14673422, Jendersie and Spain,
2025). The project neXtSIM-DG is under active development and
hosted on GitHub (https://github.com/nextsimhub/nextsimdg, last
access: 20 May 2025). The full model code provided with this pa-
per is based on v0.3.1 of neXtSIM-DG, with minor bug fixes and
added GPU support, which is not part of the main release. The pro-
vided stand-alone dynamical core, used for the comparison of the
different GPU implementations of the stress, is also available as
a self-contained repository at https://kosinus.math.uni-magdeburg.
de/Thanduriel/dynamical_core (last access: 20 May 2025). The rel-
evant versions are tagged as v0.3.1b.

Author contributions. RJ developed the GPU codes, conducted the
experiments, and wrote the bulk of the text. CL gave substantial
input on the research direction and analysis methods and worked
on the final text. TR provided the original CPU code as well as the
model description and helped to improve the final text.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This project is supported by Schmidt Sciences.
The authors gratefully acknowledge Gauss Centre for Supercom-
puting e.V. (https://www.gauss-centre.eu, last access: 20 May 2025)
for funding this project by providing computing time on the GCS
supercomputer JUWELS (Jülich Supercomputing Centre, 2021) at
the Jülich Supercomputing Centre (JSC). We acknowledge the Eu-
roHPC Joint Undertaking for awarding this project access to the
EuroHPC supercomputer LUMI hosted by CSC (Finland) and the
LUMI consortium through a EuroHPC Regular Access call.

Review statement. This paper was edited by Ludovic Räss and re-
viewed by Till Rasmussen and one anonymous referee.

References

Alpay, A. and Heuveline, V.: One Pass to Bind Them: The First
Single-Pass SYCL Compiler with Unified Code Representation
Across Backends, in: International Workshop on OpenCL, ACM,
https://doi.org/10.1145/3585341.3585351, 2023.

Aoun, M. R. E., Tidjon, L. N., Rombaut, B., Khomh,
F., and Hassan, A. E.: An Empirical Study of Library
Usage and Dependency in Deep Learning Frameworks,
arXiv, https://doi.org/10.48550/ARXIV.2211.15733, 28 Novem-
ber 2022.

Banderier, H., Zeman, C., Leutwyler, D., Rüdisühli, S., and
Schär, C.: Reduced floating-point precision in regional climate
simulations: an ensemble-based statistical verification, Geosci.
Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-
5573-2024, 2024.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C.,
and Wedi, N. P.: The digital revolution of Earth-system science,
Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-
021-00023-0, 2021a.

Bauer, P., Stevens, B., and Hazeleger, W.: A digital twin of
Earth for the green transition, Nat. Clim. Change, 11, 80–83,
https://doi.org/10.1038/s41558-021-00986-y, 2021b.

Bedrunka, M. C., Wilde, D., Kliemank, M., Reith, D., Foysi, H.,
and Krämer, A.: Lettuce: PyTorch-Based Lattice Boltzmann
Framework, 40–55, Springer International Publishing, ISBN
9783030905392, https://doi.org/10.1007/978-3-030-90539-2_3,
2021.

Bolz, J., Farmer, I., Grinspun, E., and Schröder, P.:
Sparse matrix solvers on the GPU: conjugate gradi-
ents and multigrid, ACM Trans. Graph., 22, 917–924,
https://doi.org/10.1145/882262.882364, 2003.

Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy,
D., Garric, G., Lee, Y. J., Lemieux, J., Lique, C., Losch, M.,
Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen,
T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheol-
ogy Experiment (SIREx): 1. Scaling and Statistical Properties
of Sea-Ice Deformation Fields, J. Geophys. Res.-Oceans, 127,
e2021JC017667, https://doi.org/10.1029/2021jc017667, 2022.

Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic–
viscous–plastic method revisited, Ocean Model., 71, 2–12,
https://doi.org/10.1016/j.ocemod.2013.05.013, 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q.: JAX: composable trans-
formations of Python+NumPy programs, GitHub, http://github.
com/google/jax (last access: 20 May 2025), 2018.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Hous-
ton, M., and Hanrahan, P.: Brook for GPUs: stream comput-
ing on graphics hardware, ACM Trans. Graph., 23, 777–786,
https://doi.org/10.1145/1015706.1015800, 2004.

Cao, K., Wu, Q., Wang, L., Wang, N., Cheng, H., Tang, X., Li, D.,
and Wang, L.: GPU-HADVPPM V1.0: a high-efficiency parallel
GPU design of the piecewise parabolic method (PPM) for hori-
zontal advection in an air quality model (CAMx V6.10), Geosci.
Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-
4367-2023, 2023.

Dansereau, V., Weiss, J., Saramito, P., and Lattes, P.: A Maxwell
elasto-brittle rheology for sea ice modelling, The Cryosphere, 10,
1339–1359, https://doi.org/10.5194/tc-10-1339-2016, 2016.

Demeure, N., Kisner, T., Keskitalo, R., Thomas, R., Borrill, J.,
and Bhimji, W.: High-level GPU code: a case study examin-
ing JAX and OpenMP., in: Proceedings of the SC’23 Work-
shops of The International Conference on High Performance

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025

https://doi.org/10.5281/ZENODO.13711171
https://doi.org/10.5281/ZENODO.14673422
https://github.com/nextsimhub/nextsimdg
https://kosinus.math.uni-magdeburg.de/Thanduriel/dynamical_core
https://kosinus.math.uni-magdeburg.de/Thanduriel/dynamical_core
https://www.gauss-centre.eu
https://doi.org/10.1145/3585341.3585351
https://doi.org/10.48550/ARXIV.2211.15733
https://doi.org/10.5194/gmd-17-5573-2024
https://doi.org/10.5194/gmd-17-5573-2024
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/10.1038/s41558-021-00986-y
https://doi.org/10.1007/978-3-030-90539-2_3
https://doi.org/10.1145/882262.882364
https://doi.org/10.1029/2021jc017667
https://doi.org/10.1016/j.ocemod.2013.05.013
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1145/1015706.1015800
https://doi.org/10.5194/gmd-16-4367-2023
https://doi.org/10.5194/gmd-16-4367-2023
https://doi.org/10.5194/tc-10-1339-2016


3038 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Computing, Network, Storage, and Analysis, SC-W 2023, ACM,
https://doi.org/10.1145/3624062.3624186, 2023.

Denny, J. E., Lee, S., and Vetter, J. S.: CLACC: Translating Ope-
nACC to OpenMP in Clang, in: 2018 IEEE/ACM 5th Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-HPC),
IEEE, https://doi.org/10.1109/llvm-hpc.2018.8639349, 2018.

Dublish, S., Nagarajan, V., and Topham, N.: Evaluating and mit-
igating bandwidth bottlenecks across the memory hierarchy
in GPUs, in: 2017 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), IEEE,
https://doi.org/10.1109/ispass.2017.7975295, 2017.

Ðukić, J. and Mišić, M.: An Evaluation of Directive-Based Paral-
lelization on the GPU Using a Parboil Benchmark, Electronics,
12, 4555, https://doi.org/10.3390/electronics12224555, 2023.

Esau, I. N.: Amplification of turbulent exchange over wide Arc-
tic leads: Large-eddy simulation study, J. Geophys. Res.-Atmos.,
112, D08109, https://doi.org/10.1029/2006jd007225, 2007.

Feltham, D.: Sea Ice Rheology, Annu. Rev. Fluid Mech., 40, 91–
112, https://doi.org/10.1146/annurev.fluid.40.111406.102151,
2008.

Guennebaud, G., Jacob, B., Larsen, R. M., Sanchez, C. A., Av-
ery, P., Bachrach, A., Barthelemy, S., Becker, C., Benjamin, D.,
Berger, C., Berres, A., Blanco, J. L., Borgerding, M., Bossart, R.,
Brix, K., Brun, G., Buondonno, G., Büttgenbach, P., Capricelli,
T., Carre, N., Ceccato, J., Chalupecky, V., Chrétien, B., Coles,
A., ”complexzeros”, J., Constantino, E., Danoczy, M., Dean, J.,
Drenkhahn, G., Ehrlicher, C., Fernandes, M., Ferro, D. G., Garg,
R., Gautier, M., Gladky, A., Glaser, S., Glisse, M., Gosselin, F.,
Grüninger, C., Hamelin, P., Hanwell, M. D., Harmon, D., He,
C.-P., Heibel, H., Hertzberg, C., Holoborodko, P., Holy, T., Intel,
Irons, T., de Jong, B., Kim, K., Klammler, M., Köhler, C., Ko-
repanov, A., Krivenko, I., Kruisselbrink, M., Kundu, A., Lenz,
M., Li, B., Lipponer, S., Lowenberg, D., Luitz, D. J., Maks, N.,
Mantzaflaris, A., Marcin, D. J., Margaritis, K. A., Martin, R.,
Marxer, R., Massa, V. D., Mayer, C., Meier-Dörnberg, F., Mierle,
K., Montel, L., Nerbonne, E., Neundorf, A., Newton, J., Niesen,
J., Nuentsa, D., Oberländer, J., van den Oever, J., Olbrich, M.,
Pilgrim, S., Piltz, B., Piwowarski, B., Ploskey, Z., Po, G., Popov,
S., QI, G., Rajagopalan, M., Rajko, S., Repinc, J., Riddile, K. F.,
Roberts, R., Rodriguez, A., Román, P., Ruepp, O., Rusu, R. B.,
Saupin, G., Saut, O., Schindler, B., Schmidt, M., Schridde, D.,
Schwendner, J., Seiler, C., Senst, M., Sheorey, S., Somerville,
A., Stapleton, A., Steiner, B., Strothoff, S., Swirski, L., Sza-
lkowski, A., Traversaro, S., Trojanek, P., Truchet, A., Tsourouks-
dissian, A. R., Tellenbach, D., Tyrer, J. R., Ulerich, R., de Va-
lence, H., Vanhassel, I., Dyck, M. V., Wheeler, S., Witherden,
F., Wolfer, U., Yguel, M., Zoppitelli, P., and Adler, J.: Eigen v3,
http://eigen.tuxfamily.org (last access: 20 May 2025), 2010.

Hatfield, S., Chantry, M., Düben, P., and Palmer, T.: Ac-
celerating High-Resolution Weather Models with Deep-
Learning Hardware, in: Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’19, ACM,
https://doi.org/10.1145/3324989.3325711, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani,
R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,

L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Hibler, W. D.: A Dynamic Thermodynamic Sea Ice Model,
J. Phys. Oceanogr., 9, 815–846, https://doi.org/10.1175/1520-
0485(1979)009<0815:adtsim>2.0.co;2, 1979.

Hunke, E., Allard, R., Blain, P., Blockley, E., Feltham, D., Fichefet,
T., Garric, G., Grumbine, R., Lemieux, J.-F., Rasmussen, T.,
Ribergaard, M., Roberts, A., Schweiger, A., Tietsche, S., Trem-
blay, B., Vancoppenolle, M., and Zhang, J.: Should Sea-Ice Mod-
eling Tools Designed for Climate Research Be Used for Short-
Term Forecasting?, Current Climate Change Reports, 6, 121–
136, https://doi.org/10.1007/s40641-020-00162-y, 2020.

Hutter, N., Zampieri, L., and Losch, M.: Leads and ridges in
Arctic sea ice from RGPS data and a new tracking algo-
rithm, The Cryosphere, 13, 627–645, https://doi.org/10.5194/tc-
13-627-2019, 2019.

Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N.,
Lee, Y. J., Lemieux, J., Lique, C., Losch, M., Maslowski, W.,
Myers, P. G., Ólason, E., Rampal, P., Rasmussen, T., Talandier,
C., Tremblay, B., and Wang, Q.: Sea Ice Rheology Experi-
ment (SIREx): 2. Evaluating Linear Kinematic Features in High-
Resolution Sea Ice Simulations, J. Geophys. Res.-Oceans, 127,
e2021JC017666, https://doi.org/10.1029/2021jc017666, 2022.

Ikuyajolu, O. J., Van Roekel, L., Brus, S. R., Thomas, E. E., Deng,
Y., and Sreepathi, S.: Porting the WAVEWATCH III (v6.07) wave
action source terms to GPU, Geosci. Model Dev., 16, 1445–1458,
https://doi.org/10.5194/gmd-16-1445-2023, 2023.

Jakob, C., Gettelman, A., and Pitman, A.: The need to opera-
tionalize climate modelling, Nat. Clim. Change, 13, 1158–1160,
https://doi.org/10.1038/s41558-023-01849-4, 2023.

Jendersie, R. and Spain, T.: neXtSIM_DG in-
put data for realistic case, Zenodo [data set],
https://doi.org/10.5281/ZENODO.14673422, 2025.

Jendersie, R., Richter, T., and Lessig, C.: neXtSIM_DG
dynamical core GPU experiments, Zenodo [code],
https://doi.org/10.5281/ZENODO.13711171, 2024.

Jülich Supercomputing Centre: JUWELS Cluster and Booster: Ex-
ascale Pathfinder with Modular Supercomputing Architecture at
Juelich Supercomputing Centre, Journal of large-scale research
facilities, 7, A183, https://doi.org/10.17815/jlsrf-7-183, 2021.

Kauker, F., Bertino, L., Bracher, A., Gabarró, C., Garric, G.,
Hughes, N., Kaminski, T., Lavergne, T., Malnes, E., Musto-
nen, T., Pedersen, L. T., Schauer, U., Scholze, M., Schyberg,
H., Tietsche, S., Wagner, P., and Wilkinson, J.: A roadmap to-
wards a European end-to-end operational system for monitor-
ing and forecasting of the Polar Regions, KEPLER Deliver-
able Report, https://kepler380449468.files.wordpress.com/2021/
08/kepler-deliverable-report-5.2-1.pdf (last access: 20 May
2025), 2021.

Khronos Group: SYCL: a cross-platform abstraction layer for het-
erogeneous computing, https://www.khronos.org/sycl (last ac-
cess: 30 November 2023), 2023a.

Khronos Group: SYCL 2020 standard – language restric-
tions, https://registry.khronos.org/SYCL/specs/sycl-2020/html/
sycl-2020.html#_language_restrictions_in_kernels (last access:
21 November 2023), 2023b.

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025

https://doi.org/10.1145/3624062.3624186
https://doi.org/10.1109/llvm-hpc.2018.8639349
https://doi.org/10.1109/ispass.2017.7975295
https://doi.org/10.3390/electronics12224555
https://doi.org/10.1029/2006jd007225
https://doi.org/10.1146/annurev.fluid.40.111406.102151
http://eigen.tuxfamily.org
https://doi.org/10.1145/3324989.3325711
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2
https://doi.org/10.1175/1520-0485(1979)009<0815:adtsim>2.0.co;2
https://doi.org/10.1007/s40641-020-00162-y
https://doi.org/10.5194/tc-13-627-2019
https://doi.org/10.5194/tc-13-627-2019
https://doi.org/10.1029/2021jc017666
https://doi.org/10.5194/gmd-16-1445-2023
https://doi.org/10.1038/s41558-023-01849-4
https://doi.org/10.5281/ZENODO.14673422
https://doi.org/10.5281/ZENODO.13711171
https://doi.org/10.17815/jlsrf-7-183
https://kepler380449468.files.wordpress.com/2021/08/kepler-deliverable-report-5.2-1.pdf
https://kepler380449468.files.wordpress.com/2021/08/kepler-deliverable-report-5.2-1.pdf
https://www.khronos.org/sycl
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#_language_restrictions_in_kernels
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#_language_restrictions_in_kernels


R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1) 3039

Kimmritz, M., Danilov, S., and Losch, M.: The adap-
tive EVP method for solving the sea ice mo-
mentum equation, Ocean Model., 101, 59–67,
https://doi.org/10.1016/j.ocemod.2016.03.004, 2016.

Kimpson, T., Paxton, E. A., Chantry, M., and Palmer, T.: Cli-
mate-change modelling at reduced floating-point precision with
stochastic rounding, Q. J. Roy. Meteor. Soc., 149, 843–855,
https://doi.org/10.1002/qj.4435, 2023.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S.: Machine learning–accelerated computa-
tional fluid dynamics, P. Natl. Acad. Sci., 118, e2101784118,
https://doi.org/10.1073/pnas.2101784118, 2021.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J.,
Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben, P., Hat-
field, S., Battaglia, P., Sanchez Gonzalez, A., Willson, M.,
Brenner, M. P., and Hoyer, S.: Neural general circulation
models for weather and climate, Nature, 632, 1060–1066,
https://doi.org/10.1038/s41586-024-07744-y, 2024.

Krüger, J. and Westermann, R.: Linear algebra operators for GPU
implementation of numerical algorithms, in: ACM SIGGRAPH
2005 Courses, SIGGRAPH ’05, p. 234–es, Association for Com-
puting Machinery, New York, NY, USA, ISBN 9781450378338,
https://doi.org/10.1145/1198555.1198795, 2005.

Kwok, R.: Deformation of the Arctic Ocean sea ice cover be-
tween November 1996 and April 1997: a qualitative survey, Solid
Mech. Appl., 94, 315–322, https://doi.org/10.1007/978-94-015-
9735-7_26, 2001.

Lang, S. T. K., Dawson, A., Diamantakis, M., Dueben, P., Hatfield,
S., Leutbecher, M., Palmer, T., Prates, F., Roberts, C. D., Sandu,
I., and Wedi, N.: More accuracy with less precision, Q. J. Roy.
Meteor. Soc., 147, 4358–4370, https://doi.org/10.1002/qj.4181,
2021.

Liu, J., Chen, Z., Hu, Y., Zhang, Y., Ding, Y., Cheng, X., Yang,
Q., Nerger, L., Spreen, G., Horton, R., Inoue, J., Yang, C.,
Li, M., and Song, M.: Towards reliable Arctic sea ice predic-
tion using multivariate data assimilation, Sci. Bull., 64, 63–72,
https://doi.org/10.1016/j.scib.2018.11.018, 2019.

Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribu-
tion on turbulent heat transfer between the ocean and the atmo-
sphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-
6-143-2012, 2012.

Marsan, D., Stern, H., Lindsay, R., and Weiss, J.:
Scale Dependence and Localization of the Deforma-
tion of Arctic Sea Ice, Phys. Rev. Lett., 93, 178501,
https://doi.org/10.1103/physrevlett.93.178501, 2004.

Mehlmann, C. and Richter, T.: A modified global Newton solver
for viscous-plastic sea ice models, Ocean Model., 116, 96–107,
https://doi.org/10.1016/j.ocemod.2017.06.001, 2017.

Mehlmann, C., Danilov, S., Losch, M., Lemieux, J. F., Hutter,
N., Richter, T., Blain, P., Hunke, E. C., and Korn, P.: Simulat-
ing Linear Kinematic Features in Viscous-Plastic Sea Ice Mod-
els on Quadrilateral and Triangular Grids With Different Vari-
able Staggering, J. Adv. Model. Earth Sy., 13, e2021MS002523,
https://doi.org/10.1029/2021ms002523, 2021.

Meyer, J., Alpay, A., Hack, S., Fröning, H., and Heuveline,
V.: Implementation Techniques for SPMD Kernels on CPUs,
in: International Workshop on OpenCL, IWOCL ’23, ACM,
https://doi.org/10.1145/3585341.3585342, 2023.

NVIDIA: CUDA C++ Programming Guide, https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html, (last access:
28 November 2023), 2023a.

NVIDIA: TensorRT: an SDK for high-performance deep learning
inference, https://developer.nvidia.com/tensorrt (last access: 28
November 2023), 2023b.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style,
High-Performance Deep Learning Library, in: Advances in
Neural Information Processing Systems 32, edited by: Wal-
lach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F.,
Fox, E., and Garnett, R., 8024–8035, Curran Associates,
Inc., http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf (last access:
20 May 2025), 2019.

Ólason, E., Rampal, P., and Dansereau, V.: On the statistical prop-
erties of sea-ice lead fraction and heat fluxes in the Arctic, The
Cryosphere, 15, 1053–1064, https://doi.org/10.5194/tc-15-1053-
2021, 2021.

Ólason, E., Boutin, G., Korosov, A., Rampal, P., Williams, T.,
Kimmritz, M., Dansereau, V., and Samaké, A.: A New Brit-
tle Rheology and Numerical Framework for Large-Scale Sea-
Ice Models, J. Adv. Model. Earth Sy., 14, e2021MS002685,
https://doi.org/10.1029/2021ms002685, 2022.

Paxton, E. A., Chantry, M., Klöwer, M., Saffin, L., and Palmer,
T.: Climate Modeling in Low Precision: Effects of Both Deter-
ministic and Stochastic Rounding, J. Climate, 35, 1215–1229,
https://doi.org/10.1175/jcli-d-21-0343.1, 2022.

PyTorch-devs: TorchInductor: a PyTorch-native Compiler
with Define-by-Run IR and Symbolic Shapes, https://dev-
discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-
with-define-by-run-ir-and-symbolic-shapes/747 (last access: 13
May 2024), 2023.

Rasmussen, T. A. S., Poulsen, J., Ribergaard, M. H., Sasanka,
R., Craig, A. P., Hunke, E. C., and Rethmeier, S.: Refactoring
the elastic–viscous–plastic solver from the sea ice model CICE
v6.5.1 for improved performance, Geosci. Model Dev., 17, 6529–
6544, https://doi.org/10.5194/gmd-17-6529-2024, 2024.

Richter, T., Dansereau, V., Lessig, C., and Minakowski, P.: A
dynamical core based on a discontinuous Galerkin method
for higher-order finite-element sea ice modeling, Geosci.
Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-
3907-2023, 2023a.

Richter, T., Dansereau, V., Lessig, C., and Minakowski, P.: A snip-
pet from neXtSIM_DG: next generation sea-ice model with DG,
Zenodo, https://doi.org/10.5281/ZENODO.7688636, 2023b.

Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and
Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation sys-
tem for the North Atlantic and Arctic, Ocean Sci., 8, 633–656,
https://doi.org/10.5194/os-8-633-2012, 2012.

Sauer, J. A. and Muñoz-Esparza, D.: The FastEddy® Resident-GPU
Accelerated Large-Eddy Simulation Framework: Model For-
mulation, Dynamical-Core Validation and Performance Bench-
marks, J. Adv. Model. Earth Sy., 12, e2020MS002100,
https://doi.org/10.1029/2020ms002100, 2020.

https://doi.org/10.5194/gmd-18-3017-2025 Geosci. Model Dev., 18, 3017–3040, 2025

https://doi.org/10.1016/j.ocemod.2016.03.004
https://doi.org/10.1002/qj.4435
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1038/s41586-024-07744-y
https://doi.org/10.1145/1198555.1198795
https://doi.org/10.1007/978-94-015-9735-7_26
https://doi.org/10.1007/978-94-015-9735-7_26
https://doi.org/10.1002/qj.4181
https://doi.org/10.1016/j.scib.2018.11.018
https://doi.org/10.5194/tc-6-143-2012
https://doi.org/10.5194/tc-6-143-2012
https://doi.org/10.1103/physrevlett.93.178501
https://doi.org/10.1016/j.ocemod.2017.06.001
https://doi.org/10.1029/2021ms002523
https://doi.org/10.1145/3585341.3585342
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/tensorrt
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5194/tc-15-1053-2021
https://doi.org/10.5194/tc-15-1053-2021
https://doi.org/10.1029/2021ms002685
https://doi.org/10.1175/jcli-d-21-0343.1
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747
https://doi.org/10.5194/gmd-17-6529-2024
https://doi.org/10.5194/gmd-16-3907-2023
https://doi.org/10.5194/gmd-16-3907-2023
https://doi.org/10.5281/ZENODO.7688636
https://doi.org/10.5194/os-8-633-2012
https://doi.org/10.1029/2020ms002100


3040 R. Jendersie et al.: A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C.,
Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X.,
Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S.,
Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S.,
and Wernli, H.: Kilometer-Scale Climate Models: Prospects
and Challenges, B. Am. Meteorol. Soc., 101, E567–E587,
https://doi.org/10.1175/bams-d-18-0167.1, 2020.

Servat, H., Rossi, G., Duran, A., and Narayanaswamy, R.: On
the Migration of OpenACC-Based Applications into OpenMP
5+, in: OpenMP in a Modern World: From Multi-device Sup-
port to Meta Programming, pp. 127–141, Springer International
Publishing, https://doi.org/10.1007/978-3-031-15922-0_9, 2022.

Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S.,
Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Ko-
dama, C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M.,
Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L., Wedi, N.,
and Zhou, L.: DYAMOND: the DYnamics of the Atmospheric
general circulation Modeled On Non-hydrostatic Domains, Prog.
Earth Planet. Sc., 6, 61, https://doi.org/10.1186/s40645-019-
0304-z, 2019.

Sun, J., Dennis, J. M., Mickelson, S. A., Vanderwende, B., Get-
telman, A., and Thayer-Calder, K.: Acceleration of the Param-
eterization of Unified Microphysics Across Scales (PUMAS)
on the Graphics Processing Unit (GPU) With Directive-Based
Methods, J. Adv. Model. Earth Sy., 15, e2022MS003515,
https://doi.org/10.1029/2022ms003515, 2023.

Tillet, P., Kung, H. T., and Cox, D.: Triton: an intermediate lan-
guage and compiler for tiled neural network computations, in:
Proceedings of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, PLDI ’19,
ACM, https://doi.org/10.1145/3315508.3329973, 2019.

Tintó Prims, O., Acosta, M. C., Moore, A. M., Castrillo, M., Ser-
radell, K., Cortés, A., and Doblas-Reyes, F. J.: How to use
mixed precision in ocean models: exploring a potential reduction
of numerical precision in NEMO 4.0 and ROMS 3.6, Geosci.
Model Dev., 12, 3135–3148, https://doi.org/10.5194/gmd-12-
3135-2019, 2019.

Torch-TensorRT-devs: Torch-TensorRT: Ahead of Time (AOT)
compiling for PyTorch JIT and FX, https://github.com/pytorch/
TensorRT (last access: 20 May 2025), 2024.

Trott, C. R., Lebrun-Grandie, D., Arndt, D., Ciesko, J., Dang,
V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S.,
Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Pow-
ell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Tur-
cksin, B., and Wilke, J.: Kokkos 3: Programming Model Exten-
sions for the Exascale Era, IEEE T. Parall. Distr., 33, 805–817,
https://doi.org/10.1109/tpds.2021.3097283, 2022.

Usha, R., Pandey, P., and Mangala, N.: A Comprehensive
Comparison and Analysis of OpenACC and OpenMP
4.5 for NVIDIA GPUs, in: 2020 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), IEEE,
https://doi.org/10.1109/hpec43674.2020.9286203, 2020.

Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov,
P.: Quality assessment of the TOPAZ4 reanalysis in the Arc-
tic over the period 1991–2013, Ocean Sci., 13, 123–144,
https://doi.org/10.5194/os-13-123-2017, 2017.

XLA: An open-source machine learning compiler, GitHub, https:
//github.com/openxla/xla (last access: 28 November 2023), 2023.

Geosci. Model Dev., 18, 3017–3040, 2025 https://doi.org/10.5194/gmd-18-3017-2025

https://doi.org/10.1175/bams-d-18-0167.1
https://doi.org/10.1007/978-3-031-15922-0_9
https://doi.org/10.1186/s40645-019-0304-z
https://doi.org/10.1186/s40645-019-0304-z
https://doi.org/10.1029/2022ms003515
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.5194/gmd-12-3135-2019
https://doi.org/10.5194/gmd-12-3135-2019
https://github.com/pytorch/TensorRT
https://github.com/pytorch/TensorRT
https://doi.org/10.1109/tpds.2021.3097283
https://doi.org/10.1109/hpec43674.2020.9286203
https://doi.org/10.5194/os-13-123-2017
https://github.com/openxla/xla
https://github.com/openxla/xla

	Abstract
	Introduction
	Model description
	Implementation
	CUDA
	OpenACC and OpenMP
	SYCL
	Kokkos
	PyTorch
	Development and deployment effort

	Numerical experiments
	Performance scaling
	Mixed precision
	Higher-order scaling

	NeXtSIM-DG implementation
	Benchmark
	Realistic case

	Conclusions
	Appendix A: Introduction to GPUs
	Appendix B: Code
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

