Articles | Volume 18, issue 6
https://doi.org/10.5194/gmd-18-2051-2025
https://doi.org/10.5194/gmd-18-2051-2025
Development and technical paper
 | 
01 Apr 2025
Development and technical paper |  | 01 Apr 2025

Can AI be enabled to perform dynamical downscaling? A latent diffusion model to mimic kilometer-scale COSMO5.0_CLM9 simulations

Elena Tomasi, Gabriele Franch, and Marco Cristoforetti

Related authors

GPTCast: a weather language model for precipitation nowcasting
Gabriele Franch, Elena Tomasi, Rishabh Wanjari, Virginia Poli, Chiara Cardinali, Pier Paolo Alberoni, and Marco Cristoforetti
EGUsphere, https://doi.org/10.48550/arXiv.2407.02089,https://doi.org/10.48550/arXiv.2407.02089, 2024
Short summary

Related subject area

Earth and space science informatics
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
The Earth System Grid Federation (ESGF) Virtual Aggregation (CMIP6 v20240125)
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025,https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary
DNS (v1.0): An open source ray-tracing tool for space geodetic techniques
Florian Zus, Kyriakos Balidakis, Ali Hasan Dogan, Rohith Thundathil, Galina Dick, and Jens Wickert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-237,https://doi.org/10.5194/gmd-2024-237, 2025
Revised manuscript accepted for GMD
Short summary
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary

Cited articles

Abdalla, S., Isaksen, L., Janssen, P., and Wedi, N.: Effective spectral resolution of ECMWF atmospheric forecast models, ECMWF Newsletter, 137, 19–22, https://doi.org/10.21957/rue4o7ac, 2013. a
Addison, H., Kendon, E., Ravuri, S., Aitchison, L., and Watson, P. A.: Machine learning emulation of a local-scale UK climate model, arXiv [preprint], https://doi.org/10.48550/arXiv.2211.16116, 2022. a
Adinolfi, M., Raffa, M., Reder, A., and Mercogliano, P.: Investigation on potential and limitations of ERA5 Reanalysis downscaled on Italy by a convection-permitting model, Clim. Dynam., 61, 4319–4342, https://doi.org/10.1007/s00382-023-06803-w, 2023. a, b
Arjovsky, M. and Bottou, L.: Towards Principled Methods for Training Generative Adversarial Networks, in: International Conference on Learning Representations, Toulon, France, 24–26 April 2017, https://openreview.net/forum?id=Hk4_qw5xe (last access: 26 March 2025), 2017. a
ARPAE-SIMC: COSMO ARPAE-SIMC, http://www.cosmo-model.org/content/tasks/operational/cosmo/arpae-simc/default.htm, last access: 20 May 2024. a
Download
Short summary
High-resolution weather data are crucial for many applications, typically generated via resource-intensive numerical models through dynamical downscaling. We developed an AI model using latent diffusion models (LDMs) to mimic this process, increasing weather data resolution over Italy from 25 to 2 km. LDM outperforms other methods, accurately capturing local patterns and extreme events. This approach offers a cost-effective alternative, with potential disruptive application in climate sciences.
Share