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Abstract. Downscaling based on deep learning (DL) is a key
application in Earth system modeling, enabling the gener-
ation of high-resolution fields from coarse numerical sim-
ulations at reduced computational costs compared to tradi-
tional regional models. Additionally, generative DL mod-
els can potentially provide uncertainty quantification through
ensemble-like scenario generation, a task prohibitive for con-
ventional numerical approaches. In this study, we apply a la-
tent diffusion model (LDM) to demonstrate that recent ad-
vancements in generative modeling enable DL to deliver re-
sults comparable to those of numerical dynamical models,
given the same input data, preserving the realism of fine-
scale features and flow characteristics at reduced computa-
tional costs. We apply our LDM to downscale ERA5 data
over Italy up to a resolution of 2 km. The high-resolution
target data consist of 2 m temperature and 10 m horizontal
wind components from a dynamical downscaling performed
with COSMO-CLM. A selection of predictors from ERA5
is used as input, and a residual approach against a reference
U-Net is leveraged in applying the LDM. The performance
of the generative LDM is compared with reference base-
lines of increasing complexity: a quadratic interpolation of
ERA5, a U-Net, and a generative adversarial network (GAN)
built on the same reference U-Net. Results highlight the im-
provements introduced by the LDM architecture combined
with the residual approach, outperforming all the baselines
in terms of spatial error, frequency distributions, and power
spectra. These findings point out the potential of LDMs as
cost-effective, robust alternatives for downscaling applica-
tions (e.g., downscaling of climate projections), where com-
putational resources are limited but high-resolution data are
critical.

1 Introduction

High-resolution near-surface meteorological fields such as
2 m temperature and 10 m wind speed are key targets for
the weather and climate scientific and operational communi-
ties. Such high-resolution information is of essential impor-
tance for a wide variety of applications (e.g., available wind
potential and predicted energy consumption), across diverse
timescales, from weather forecasting (nowcasting, medium-
range forecasting, and seasonal predictions) to climate pro-
jections (Mearns et al., 2018). The hunger for high-resolution
data is directly linked to and justified by the information that
such data hold: extreme weather events and localized phe-
nomena can typically be described by highly resolved fields
only.

Downscaling is a well-known approach that allows for ob-
taining local high-resolution data (predictands) starting from
low-resolution information (predictors) by applying suitable
refinement techniques. The two most traditional approaches
are dynamical downscaling and statistical downscaling (He-
witson and Crane, 1996; Wilby and Wigley, 1997; Maraun
and Widmann, 2018) applied alternatively depending on the
final goal of each specific application.

Traditionally, high-resolution fields are achieved in oper-
ational weather forecasting by performing dynamical down-
scaling of lower-resolution simulations. Examples of this ap-
proach are all the local area models (LAMs) run in every op-
erational center worldwide; fed with global circulation mod-
els at a low resolution; and producing high-resolution fields
for a localized area, typically nationwide (e.g., Baldauf et al.,
2011; Seity et al., 2011; ARPAE-SIMC, 2024). As for the
climate community, this approach materializes, for example,
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in applications run within the World Climate Research Pro-
gram (WCRP) Coordinated Regional Downscaling Experi-
ment (CORDEX; Giorgi et al., 2009), performing dynam-
ical downscaling of climate projections with regional cli-
mate models (RCMs) going from the ∼ 100 km resolution of
global climate models (GCMs) down to a∼ 16 km resolution
(e.g., Jacob et al., 2014, and others). The dynamical down-
scaling approach is well established and provides physically
and temporally consistent fields. However, it still has signif-
icant drawbacks due to the high resource demands required
for its execution that limit its application, e.g., to determinis-
tic runs instead of (or limited to small) ensemble runs.

On the other hand, statistical downscaling uses coarse data
from numerical simulations to infer data at high resolution by
applying empirical relationships or transfer functions derived
from a set of known predictor–predictand data pairs (Ma-
raun and Widmann, 2018). Statistical downscaling methods
have evolved over the years since the 1990s, with increas-
ingly greater levels of complexity and data. Canonical exam-
ples of statistical downscaling methods are linear or multilin-
ear regression methods (e.g., von Storch et al., 1993; Shar-
ifi et al., 2019), analog ensemble downscaling (e.g., Sperati
et al., 2024), or quantile mapping (Panofsky and Brier, 1968).

In recent years, the advent of machine-learning tech-
niques introduced many other powerful methods. These ap-
proaches have the potential to outperform classical sta-
tistical models, introducing nonlinear components in the
downscaling process and learning from the provided high-
resolution data. Specifically, convolutional neural networks
(CNNs) are particularly well suited for handling spatially
distributed data and for the super-resolution task and being
able to capture complex, nonlinear mappings identifying cru-
cial features and have already been successfully applied to
weather downscaling (e.g., Baño Medina et al., 2020; Ram-
pal et al., 2022; Höhlein et al., 2020). Building on CNN
frameworks, two deep learning (DL) approaches are cur-
rently the most promising for improving atmospheric down-
scaling: generative adversarial networks (GANs; Goodfel-
low et al., 2014, 2020) and diffusion models (Sohl-Dickstein
et al., 2015), which both allow for a probabilistic approach
to the problem. The potential and drawbacks of these ap-
proaches are reported in the following section, Sect. 2. Addi-
tionally, the use of transformer-based architectures for down-
scaling is an emerging approach but remains relatively new
within the Earth system science domain (Zhong et al., 2024).

In this study, we develop and evaluate a latent diffusion
model (LDM), which represents a novel approach for atmo-
spheric downscaling tasks. This method offers two key ad-
vantages: first, the diffusion-based framework ensures sig-
nificantly more stable training and more realistic generations
compared to GAN models while retaining the capability to
generate fine-scale features and enabling ensemble gener-
ation. These attributes have demonstrated superior perfor-
mance in image processing applications compared to GANs
(Saharia et al., 2023; Dhariwal and Nichol, 2021). Second,

the latent-space approach improves upon pixel-space diffu-
sion methods by substantially reducing computational costs
for both training and inference (Rombach et al., 2021), mak-
ing it especially suitable for scaling downscaling tasks to
larger spatial domains and longer temporal scales. Lastly, the
high-resolution output from a numerical dynamical down-
scaling simulation serves as our target-reference dataset, al-
lowing us to assess whether a well-trained LDM can emu-
late the accuracy of dynamical downscaling. If successful,
this approach would provide a highly efficient alternative to
traditional numerical methods by drastically reducing com-
putational demands while maintaining accuracy, making it a
promising tool for a wide range of critical downscaling ap-
plications.

2 Related work and contribution

As mentioned above, currently, the most promising DL ap-
proaches for improving atmospheric downscaling are gen-
erative adversarial networks (GANs) and diffusion models,
which are both based on CNN frameworks and allow for the
generation of small-scale features and for a probabilistic ap-
proach to the problem. GANs have already shown promis-
ing results in downscaling different meteorological variables
in different regions. For example, Leinonen et al. (2021)
applied GANs for reconstructing high-resolution precipita-
tion patterns from coarsened radar images; Stengel et al.
(2020) demonstrated GANs potential in performing down-
scaling of GCMs up to 2 km for solar radiation and wind;
and steps forward in pure super-resolution applications have
also been made with GANs, as shown in Harris et al. (2022)
and in Price and Rasp (2022), where additional variables
from numerical models are used as input predictors variables
to produce high-resolution precipitation fields. Nevertheless,
GANs still pose relevant challenges, such as model instabil-
ities and mode collapses during the training procedure (Ar-
jovsky and Bottou, 2017; Mescheder et al., 2018).

On the other hand, diffusion models have recently over-
taken the GANs in the computer vision domain for super-
resolution applications because they are easier and more sta-
ble to train and can produce more realistic samples (Moser
et al., 2024; Saharia et al., 2023; Dhariwal and Nichol, 2021).
Indeed, diffusion models explicitly model the probability dis-
tribution of the data through a diffusion process, ensuring
that fine details are preserved while generating diverse out-
puts. On the contrary, the adversarial training of the GANs
sometimes leads to artifacts or limited variability in results.
In the Earth system domain, diffusion models introduce a rel-
atively younger approach but have already been proven very
effective in weather forecasting and nowcasting applications
(e.g., Leinonen et al., 2023; Li et al., 2024). Diffusion models
have yet to be widely tested and evaluated on the atmospheric
downscaling task, but their characteristics and capabilities
are undoubtedly promising for this application, as shown, for
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example, in Addison et al. (2022) for precipitation; Mardani
et al. (2023) for 2 m temperature, surface wind speed, and
precipitation; or Merizzi et al. (2024) for wind speed.

Building on these encouraging results, in this work, we ap-
proach the downscaling task with a latent diffusion model,
comparing it against some standard baselines and a GAN
baseline. Specifically, we re-adapted the latent diffusion cast
(LDCast) model (Leinonen et al., 2023), recently developed
for precipitation nowcasting. LDCast has shown superior
performance in the generation of highly realistic precipita-
tion forecast ensembles, and in the representation of uncer-
tainty, compared to traditional GAN-based methods. Our re-
sulting model for downscaling, similar to fully convolutional
models, can be trained on examples of smaller spatial do-
mains (patches) and used at the evaluation stage on domains
of arbitrary sizes, making it suitable for the generation of
high-resolution data covering wider domains. As also sug-
gested in Mardani et al. (2023), we propose the application
of the diffusion model with a residual approach, relying on
a standard U-Net architecture for capturing the bigger scales
and training the latent diffusion model to generate the resid-
ual, small scales only.

Additionally, our work differs from most of the afore-
mentioned works for the chosen pair of low-resolution and
high-resolution data for the training. This choice highly influ-
ences the level of complexity that the DL downscaling model
must achieve. Indeed, downscaling a coarsening of the high-
resolution data (e.g., Leinonen et al., 2021; Stengel et al.,
2020; Vandal et al., 2017) is a much easier task than down-
scaling modeled low-resolution data (e.g., short-term fore-
casts as in Harris et al. (2022), seasonal predictions, or cli-
mate projections) to independent high-resolution data, com-
ing from either observations or numerical model simulation.
While the first exercise falls into a purely super-resolution
task, the latter includes learning potential large-scale model
biases and correcting them or detecting and generating lo-
cal phenomena that cannot be resolved at the coarse resolu-
tion of the large-scale models. In our work, we focus on re-
analyses products and we train our models using a set of 14
ERA5 variables as low-resolution input and high-resolution
data from a dynamical downscaling of ERA5 (run with the
COSMO-CLM model) as target data. This approach is simi-
lar to that followed, for example, by Wang et al. (2021) and
Mardani et al. (2023). In doing so, we intentionally force the
model to learn to generate the effects of those local phenom-
ena resolved by the dynamical numerical model, emulating
its behavior.

Specifically, we focus on generating 2 m temperature and
10 m horizontal wind component high-resolution fields. The
downscaling of temperature and wind poses distinct chal-
lenges due to their inherent differences as meteorological
variables (De et al., 2023; Höhlein et al., 2020). The 2 m tem-
perature is generally easier to predict, being a scalar variable
and predominantly aligning with well-established patterns,
such as dependence on terrain elevation and diurnal cycles.

In contrast, wind is a vector field, comprising both magni-
tude and direction, and is influenced by small-scale processes
(such as turbulence and localized interactions) and therefore
exhibits greater variability and strong scale dependency, es-
pecially over complex terrain (Serafin et al., 2018; Rotach
and Zardi, 2007). These characteristics make wind consider-
ably more challenging to downscale, regardless of the down-
scaling methodology applied, as widely acknowledged, for
example, by Pryor and Hahmann (2019). The difference in
downscaling the two variables is also clear in the already pro-
posed deep-learning-based approaches tackling the down-
scaling of both these variables (Mardani et al., 2023).

In light of this evidence, we designed our study to train
separate models for 2 m temperature and 10 m horizontal
wind components, which is unlike other approaches found
in the literature (Mardani et al., 2023). This design choice
facilitates the interpretation of the model outputs, enabling
a clearer understanding of the strengths and limitations of
the tested models when applied to individual target variables.
However, this approach also imposes a limitation compared
to dynamical downscaling as it introduces uncertainties re-
garding inter-variable consistency.

3 Datasets

3.1 Low- and high-resolution data

The goal of this experiment is to train a DL model to mimic
a dynamical downscaling performed with a convection-
permitting regional climate model (RCM). The target high-
resolution data consist of the hourly Italian Very High Reso-
lution Reanalyses produced with COSMO5.0_CLM9 (VHR-
REA_IT CCLM) by dynamically downscaling ERA5 reanal-
yses (Hersbach et al., 2020) from their native resolution
(25 km) to 2.2 km over Italy (Raffa et al., 2021; Adinolfi
et al., 2023). Consistently with these target numerical sim-
ulations, the input low-resolution data fed to our DL model
are ERA5 data.

3.2 Data alignment and preprocessing

ERA5 data have a resolution of 0.25° worldwide, which
roughly corresponds to 22 km at the latitudes of the fo-
cus domain, while VHR-REA_IT CCLM data have a na-
tive resolution of 0.02° (2.2 km). Data from both datasets
were preprocessed to reproject, trim, and align the low-
and high-resolution fields. Specifically, the coordinate refer-
ence system (CRS) chosen for the experiment is ETRS89-
LAEA Europe (Lambert azimuthal equal area), also known
in the EPSG Geodetic Parameter Dataset under the identi-
fier EPSG:3035, and the experiment grids align with the Eu-
ropean Environmental Agency Reference grid (EEA refer-
ence grid; Peifer, 2018). ERA5 was reprojected and interpo-
lated (with nearest-neighbor interpolation) on the EEA 16 km
reference grid, while VHR-REA_IT CCLM was reprojected
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Figure 1. Experimental domain with a 2 km digital elevation model.

and interpolated on the EEA 2 km reference grid. The factor
of the downscaling procedure is, therefore, 8: over the target
domain, low-resolution data consist of 72× 86 total 16 km
pixel images while high-resolution data consist of 576× 672
total 2 km pixel images.

The choice of grid resolution and interpolation method
reflects careful consideration of several factors. The 16 km
resolution was selected as the closest resolution to ERA5’s
native grid (∼ 22 km at domain latitude) that maintains
alignment with the EEA reference grid system while pre-
serving the original large-scale information. While nearest-
neighbor interpolation may introduce some aliasing artifacts,
this method was chosen over more sophisticated approaches
because it preserves the original values without creating arti-
ficial intermediates. The downscaling models can effectively
learn to account for any systematic effects introduced by this
preprocessing step.

3.3 Experimental domain

The experiment target domain spans from 35 to 48° N and
from 5 to 20° E (Fig. 1). This area corresponds to the region
where VHR-REA_IT CCLM data are available. The region
includes a wide variety of topographically different sub-areas
(mountainous areas such as the Alps and the Apennines and
flat areas such as the Po Valley and coastal lines) which trig-
ger local phenomena whose effects are challenging to iden-
tify for the downscaling models as they are not present in the
low-resolution data.

3.4 Target variables and predictors

The target variables of the study are (i) 2 m temperature and
(ii) horizontal wind components at 10 m: different, dedicated
models to each target variable have been trained. The input
ERA5 low-resolution data are both the target variables and
the additional fields used as dynamical predictors to improve
models’ performance. The choice of the set of input fields
was based on previous literature (e.g., Höhlein et al., 2020;
Rampal et al., 2022; Harris et al., 2022) and on hardware con-
straints for the experiment. The selected fields used as pre-
dictor variables, for both target variables, are the following,
corresponding to a total of 14 input channels to our networks:

– 2 m temperature;

– 10 m zonal and meridional wind speed;

– mean sea level pressure;

– sea surface temperature;

– snow depth;

– dew-point 2 m temperature;

– incoming surface solar radiation;

– temperature at 850 hPa;

– zonal, meridional and vertical wind speed at 850hPa;

– specific humidity at 850 hPa;

– total precipitation.

In addition, high-resolution static data have been fed to
the models to guide the training and improve performance.
These fields include

– digital elevation model (DEM),

– land cover categories,

– latitude.

DEM data consist of the Copernicus Digital Elevation Model
(DEM; Copernicus, 2023) interpolated from a resolution of
90 m to a resolution of 2 km. Land cover data were retrieved
from the Copernicus Global Land Service (Buchhorn et al.,
2020) and interpolated from a resolution of 100 m to a reso-
lution of 2 km. Given that land cover was utilized as a static
variable in our analysis, we selected data from 2015: this year
represents the earliest epoch available for the selected GLC
dataset and falls approximately amid our experimental period
of 2000–2020. Land cover class data have been converted to
single-channel class masks for the DL models (totaling 16
channels). All static fields have been reprojected and aligned
to the high-resolution 2 km EEA reference grid.
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3.5 Dataset splitting strategy

The experimental database consists of hourly data from
2000 to 2020, totaling approximately 184 000 hourly sam-
ples for both low- and high-resolution data. The dataset
was randomly divided into three subsets: 70 % for train-
ing (∼ 15 years, 128 873 samples), 15 % for validation
(∼ 3 years, 27 616 samples), and 5 % for testing (∼ 1 year,
8760 samples). This random splitting ensures a uniform dis-
tribution of samples across years, months, and hours of the
day in all three datasets. The testing dataset was limited to
1 year (5 % of the total dataset) to address time constraints
associated with running all models during evaluation, partic-
ularly the diffusion model.

4 Methods

In this work, we test a deep generative latent diffusion
model (LDM) for the downscaling task, conditioned with
low-resolution predictors and high-resolution static data. The
implemented LDM is trained to predict the residual error
between a previously trained reference U-Net and the tar-
get variables; hence, the model is addressed as LDM_res
(LDM_residual) hereafter. This residual approach has shown
great performance in the application of pixel-space diffusion
models (Mardani et al., 2023) and is tested here in the latent
diffusion context. The underlying idea is to exploit the great
ability of a relatively simple network (a U-Net) to properly
capture the main, bigger-scale variability of the atmospheric
high-resolution data and leverage the power of the genera-
tive diffusion model to only focus on the reconstruction of
the smaller-scale, locally driven variability in the fields. Fig-
ure 2 shows the high-level flow chart of the training and in-
ference setup for LDM_res, while Sect. 4.3 holds the detailed
description of LDM_res architecture.

LDM_res is compared against three different baselines
with increasing levels of complexity: the quadratic interpola-
tion of ERA5, a U-Net, and a generative adversarial network
(GAN). The implemented U-Net is the core base for each
tested deep learning architecture. Indeed, the same reference
U-Net network is used (i) as a baseline, (ii) as the generator
of the implemented GAN, and (iii) for the calculation of the
residual on which LDM_res is trained. With this approach,
we aim to fairly compare the power of generating small-scale
features of the adversarial and the diffusion methods.

A dedicated network has been trained for each model type
for the two target variables: the 2 m temperature and 10 m
horizontal wind components. The downscaling is performed
for fixed time steps with an image-to-image approach.

Given the incremental complexity of the tested models,
in the following sections, we start by describing the core
reference U-Net architecture (Sect. 4.1), then the GAN ar-
chitecture (Sect. 4.2), and finally the LDM_res architecture

(Sect. 4.3). Table 1 shows the number of trainable parameters
for each model.

4.1 UNET

The core U-Net network implemented for our experiments is
a standard U-Net architecture (Ronneberger et al., 2015), fea-
turing an encoder (contracting path), a bottleneck, and a de-
coder (expansive path), with skip connections bridging cor-
responding levels between the encoder and decoder to pre-
serve spatial information. To use a standard U-Net to perform
downscaling, the input low-resolution data are interpolated
with the nearest-neighbor interpolation to the target high res-
olution before feeding them to the network. Details on the
U-Net architecture and training procedure are provided in
Appendix A1 for conciseness.

4.2 GAN

The generative adversarial network (GAN) (Goodfellow
et al., 2014, 2020) tested in this experiment consists of
deep, fully convolutional generator and discriminator net-
works conditioned with low-resolution predictors and high-
resolution static data. The generator is trained to output fields
that cannot be distinguished from ground-truth images by a
discriminator, which is trained on the other hand to detect
the generator’s “fake” outputs. Our reference GAN consists
of a U-Net generator upgraded with a PatchGAN discrimi-
nator (Isola et al., 2017). The input data to the generator are
low-resolution predictors and high-resolution static data only
(no noise addition is performed), and we, therefore, obtain a
deterministic GAN.

The generator architecture consists exactly of the U-Net
described in Sect. 4.1. Details on the GAN architecture and
training procedure are provided in Appendix A2 for concise-
ness.

4.3 Latent diffusion model

Diffusion models (Sohl-Dickstein et al., 2015) are proba-
bilistic models meant to extrapolate a data distribution p(x)
by corrupting the training data through the successive addi-
tion of Gaussian noise (fixed) and then learning to recover
the data by reversing this noising process (generative).

The latent diffusion model (LDM) applied for this exper-
iment is an architecture derived from stable diffusion (Rom-
bach et al., 2021), specifically a re-adaptation of the con-
ditional LDM LDCast (Leinonen et al., 2023), developed
for precipitation nowcasting and already successfully applied
for other variables (e.g., Carpentieri et al., 2023). The latent
diffusion model derived for the downscaling task is com-
posed of three main elements: a convolutional variational
autoencoder (VAE), a conditioner, and a denoiser. The VAE
is trained to project the residual high-resolution target vari-
ables to a latent space and to reconstruct them back to pixel
space. In inference, only the decoder of the VAE is used
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Figure 2. Training and inference flowcharts for the U-Net and GAN models (top row) and for LDM_res (bottom row). Differences between
the non-residual and residual approaches are highlighted.

to reproject the output from the other components of the
model back to pixel space. The conditioner processes low-
resolution predictors and high-resolution static data extract-
ing relevant features for conditioning, embedding them into
the denoiser. The denoiser is a U-Net-based network that
manages the diffusion process in the latent space, refining
data representations to reconstruct high-resolution outputs.
It incorporates conditioning mechanisms to integrate context
from low-resolution inputs and static data at multiple levels.
Detailed descriptions of the individual components and their
respective training configurations are provided, for concise-
ness, in Appendix A3. The total number of trainable param-
eters is shown in Table 1.

5 Results

All the presented models were tested on a 1-year dataset,
which was held out during the training and validation pro-
cesses. The results from the LDM_res are evaluated based on
a single inference run, obtained using 100 denoising steps; its
potential to produce ensemble results is postponed to future
analyses.

The following sections compare the results from LDM_res
against the baselines using various verification metrics and
distributions. In the Supplement, we report the comparison
of results from the LDM trained with and without the resid-
ual approach to provide an overview of the improvements
introduced by this method.

5.1 Qualitative evaluation

To provide a qualitative and perceptual overview of the ob-
tained results, we present a random snapshot of downscaled
variables compared with both the input ERA5 low-resolution
data and the COSMO-CLM high-resolution reference truth
(Fig. 3). The second and third columns show a zoom-in on
Sardinia Island, providing a deeper overview of models’ per-
formance over complex terrain, coastal shores, and open sea.
Both generative models, the GAN and LDM_res, effectively
overcome the blurriness observed in both the quadratic inter-
polation and the U-Net for the target variables. Particularly
for 2 m temperatures, LDM_res demonstrates a remarkable
ability to identify and reconstruct discontinuities in the vari-
able field (zoomed-in view in Fig. 3). Figure 3 also includes
results for 10 m wind speed (in color), which is a derived
field obtained by combining the two actual target variables
of the models, U and V . Perceptually, the results for this
variable from both GAN and LDM_res appear similar and
equally plausible, displaying significantly more small-scale
features compared to the U-Net. A deeper qualitative exam-
ination reveals that the GAN aligns well with the reference
truth, particularly over land, but exhibits mode collapse over
the sea for both target variables. An example of this effect
is shown in the Supplement. Conversely, the LDM_res con-
sistently generates plausible high-resolution data across the
entire domain over both land and sea and for both target vari-
ables.

5.2 Verification deterministic metrics

Figure 4 compares model results for different deterministic
metrics, averaging results over the whole domain for each
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Table 1. Number of trainable parameters for each tested model.

No. of trainable parameters

Model Subnet Per subnet Total

U-Net ∼ 31 million ∼ 31 million

GAN
U-Net generator ∼ 31 million

∼ 34 million
Discriminator ∼ 3 million

LDM
VAE ∼ 115 000 (temperature), ∼ 430 000 (wind)

∼ 300 millionConditioner ∼ 24 million
Denoiser ∼ 275 million

test time step. In addition to results from the baseline and
tested models, Fig. 4 also reports results for the VAE of the
LDM. These results are obtained using the VAE offline, feed-
ing it with COSMO-CLM high-resolution data and calculat-
ing the metrics on the reconstructed data: this allows for the
quantification of the LDM error resulting from the data de-
compression from the latent space only. We present three dis-
tance metrics, the root mean square error (RMSE), the mean
bias (bias), and the coefficient of determination (R2), and one
correlation metric, the Pearson correlation coefficient (PCC)
(all calculated following Bell et al., 2021; see Appendix C
for details).

The U-Net and GAN models show comparable and best
results for all metrics, except for the bias. Indeed, minimiz-
ing the mean square error (MSE) is the exact goal of their
training procedure. Conversely, the LDM has been trained on
a much different objective but performs very well for all the
metrics. As expected, all models struggle more in downscal-
ing the wind components than the 2 m temperature. Biases
show that all models perform very well, with LDM_res ex-
celling, especially for temperature. The U-Net and the GAN
models show spatially averaged biases within 1 °C for tem-
perature, while LDM_res shrinks this variability to less than
0.5 °C. Spatially averaged biases amount to 1 m s−1 for wind
speed, with a narrower spread for LDM_res. The U-Net and
LDM_res models show a less skewed distribution than the
GAN model for the 2 m temperature: while the GAN model
tends to underestimate the average 2 m temperature mostly,
LDM_res shows a very balanced distribution for over- and
underestimations. As for the wind speed biases, all the mod-
els always slightly underestimate the target variable.

The results show that the VAE contribution to LDM_res
is the highest for the RMSE of 2 m temperature, while bias,
R2, and PCC have little to no effect on temperature and wind
speed.

A more detailed evaluation of the models’ performance us-
ing these metrics is provided in Fig. 5, where the test dataset
is divided into meteorological seasons for seasonal analysis.
The figure demonstrates that the results remain consistent
across seasons, reinforcing the evaluations previously dis-
cussed. Notably, the summer season exhibits slightly lower

metric values across all models. Additionally, deep learning
models display more stable performance across different sea-
sons than quadratic interpolation.

5.3 Spatial distribution of errors

The spatial distribution of averaged-in-time magnitude dif-
ferences for both the target variables and all tested models
is illustrated in Fig. 6. Within each panel, the numbers in
squared brackets represent the 0.5 and 99.5 percentile values,
offering insight into the highest errors recorded over the do-
main. Negative and positive values signify underestimation
and overestimation, respectively, for both variables. Results
from the quadratic interpolation of ERA5 data provide in-
formation on the original input data: 2 m temperature tends
to be highly overestimated over complex terrain but under-
estimated on flat terrain, with smaller errors over sea. Wind
speed, conversely, is largely underestimated over land, par-
ticularly over mountain ridges, with a tendency toward over-
estimation along coastal shores.

On the contrary, all DL-based models, including the U-Net
baseline, exhibit substantially smaller errors. For 2 m temper-
ature, errors remain below 0.3 °C, while for wind speed, they
stay under 0.8 m s−1 across the entire domain. Notably, the
U-Net and GAN models perform comparably well for 2 m
temperature, whereas LDM_res excels, leveraging diffusion
processes to reduce the U-Net errors homogeneously.

As for the wind speed results, all models exhibit a ten-
dency for underestimation. LDM_res demonstrates superior
performance, minimizing errors to nearly zero over most of
the domain, with a uniform distribution over land and sea.
The GAN displays traces of its characteristic mode collapses,
especially over the sea: this evidence indicates that these
mode collapses persist statically in fixed locations over time
consistently with the deployed training approach (i.e., feed-
ing the network always across the entire, fixed domain).

5.4 Frequency distributions

Figure 7 presents the results in terms of frequency distri-
butions. LDM_res precisely captures the reconstruction of
the 2 m temperature frequency distribution, surpassing all
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Figure 3. Downscaled variables from all the tested models against low-resolution ERA5 input data and high-resolution COSMO-CLM
reference truth for a randomly picked timestamp. The left columns refer to 2 m temperature, and the right columns refer to 10 m wind speed.
The second and fourth columns show a zoom-in on Sardinia Island.
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Figure 4. Comparison of deterministic metrics for spatially averaged results of the analyzed models (the top row refers to the 2 m temperature,
and the bottom row refers to the 10 m wind speed). Notice that y axes are not shared between panels. The dashed line highlights the reference
value for each metric, and the white triangle highlights the mean metric value.

Figure 5. Comparison of different metrics/scores across seasons for the analyzed models (top row refers to the 2 m temperature and bottom
row refers to the 10 m wind speed). Notice that y axes are not shared between panels. The dashed line highlights the reference value for each
metric.

other models. All DL models effectively mitigate the oc-
currence of cold extremes evident in the low-resolution data
(as demonstrated by the quadratic interpolation distribution)
while increasing the incidence of warm extremes. Notably,
the adversarial training of the U-Net yields marginal en-
hancements in capturing the frequency distribution, with the
GAN slightly outperforming the U-Net, particularly regard-
ing cold extremes. Conversely, the diffusion process per-

formed by LDM_res significantly corrects the U-Net residual
errors, aligning closely with the reference-truth distribution
across all temperature values.

Reconstructing the distribution of 10 m wind speed proves
more challenging for all models, given the inherent chaotic
nature of the U and V wind components compared to tem-
perature, which is strongly influenced by terrain elevation.
Nonetheless, performance outcomes mirror those of the 2 m
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Figure 6. Spatial distribution of averaged-in-time magnitude difference for each tested model. The top row refers to the 2 m temperature, and
the bottom row refers to the 10 m wind speed.

temperature. The GAN modestly improves upon U-Net re-
sults, primarily in reducing occurrences of low wind speeds.
LDM_res exhibits the highest performance in capturing both
the tail and the center of the wind speed distribution.

These qualitative evaluations can be quantified by calcu-
lating a divergence score on the underlying empirical cumu-
lative distribution function (CDF) of the data such as the in-
tegrated quadratic distance (IQD), as proposed by Thorarins-
dottir et al. (2013) (see Appendix C for details). Values of
the IQD score are indicated in Fig. 7. Consistently with the
associated frequency distributions, values of IQD scores are
lower for 2 m temperature compared to wind speed across all
models. Notably, the LDM_res model achieves the best per-
formance, with IQD scores 2 orders of magnitude lower than
the U-Net and the GAN for 2 m temperature and 1 order of
magnitude lower than the GAN for wind speed, highlighting
its superior accuracy.

IQD scores were also computed for each season within
the test dataset, with the results presented in Fig. 5. The
models’ scores align with the yearly analysis across all sea-
sons. In particular, LDM_res exhibits the smallest score vari-
ations across seasons, indicating minimal sensitivity to sea-
sonal changes.

5.5 Radially averaged power spectral density (RAPSD)

Figure 8 showcases the results in terms of radially averaged
power spectral density (RAPSD) computed following the im-
plementation outlined in Pulkkinen et al. (2019). The top row
of the figure illustrates a single RAPSD, representing the av-
erage of each RAPSD calculated for every timestamp within
the test dataset. To provide insight into the distribution of
these values across all timestamps, the distributions of single-
time RAPSD for fixed wavelengths are displayed in the bot-
tom rows of Fig. 8. To provide a quantitative evaluation of
the results in terms of power spectra, we calculated the log-
spectral distance of the RAPSDs, referred to as the radially
averaged log-spectral distance (RALSD) score, as proposed
in Harris et al. (2022) (see Appendix C). For each model,
values of the RALSD score are indicated in Fig. 8.

Overall, all DL models effectively reconstruct the 2 m tem-
perature power spectra down to wavelengths of 10 km. How-
ever, LDM_res consistently outperforms both the U-Net and
the GAN, as evident from panels (b) and (c) of Fig. 8 and
the RALSD scores. The U-Net and the GAN yield simi-
lar results, with marginal yet consistent enhancements orig-
inating from the adversarial training of the U-Net, as also
proven by the similar values of RALSD score. The diffu-
sion process of LDM_res adeptly enhances the generation
of small-scale features, showing precise reconstruction of
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Figure 7. Comparison of frequency distributions for results from the tested models against COSMO-CLM reference truth. (a) and (c) refer
to the 2 m temperature, and (b) and (d) refer to the 10 m wind speed. Counting of pixel-wise data is cumulated for the yearly test dataset over
bins of 0.5 °C and 0.05 m s−1 for temperature and wind speed, respectively. Notice that y axes are logarithmic to highlight the tails of the
distributions, hence the extreme values. Panels (a) and (b) focus on the tails of the distributions, i.e., on extreme values, and panels (c) and
(d) focus on the most frequent values and show a zoom-in on the dashed boxes for each variable. The legend also shows IQD values for each
model.

the spectra to up to 9 km (see panel c). For scales smaller
than 9–10 km, all models exhibit decreased performance, al-
beit still showing improvements over the quadratic interpo-
lation of ERA5. LDM_res still outperforms the other mod-
els, but the very small scale variability of the original data is
slightly underestimated. This behavior is to be ascribed to the
VAE, as further elucidated in the Supplement. Indeed, origi-
nal reference-truth data compressed and reconstructed by the
VAE show the very same power spectra underestimation for
scales smaller than 9 km. The loss of information is therefore
due to and inherent to the projection to the latent space.

In contrast, results for wind speed distinctly demonstrate
that generative models surpass both quadratic interpolation
and U-Net, effectively matching the slope of the energy
power spectra and remaining competitive with each other.
Specifically, LDM_res consistently outperforms the GAN up
to 7 km, as emphasized in panels (b) and (c) of Fig. 8 (right
column). The RALSD scores for LDM_res and the GAN
are comparable, with the GAN exhibiting a slightly lower
value. This marginal improvement in the GAN is primarily
attributed to enhanced performance at the smallest scales (be-
low 4.2 km), where the model is more prone to generating ar-
tifacts. Similar to the 2 m temperature, for scales smaller than

10–9 km, both GAN and LDM_res experience reduced per-
formance, although they consistently exhibit improvements
over the U-Net. This behavior, for LDM_res, is in this case
only partly to be ascribed to the VAE, as further shown in
the Supplement, and an additional loss, for scales smaller
than 9 km, is to be attributed intrinsically to the extraction
of features with the diffusion process conditioned with the
low-resolution data and high-resolution static data.

The RALSD scores were also computed for each season
within the test dataset, with the results presented in Fig. 5. As
for IQDs, the models’ RALSD scores align with the yearly
analysis across all seasons. In particular, LDM_res exhibits
the smallest score variations across seasons (together with
the GAN for wind speed), indicating minimal performance
sensitivity to seasonal changes.

5.6 Runtime performance

In this section, we compare the runtime performance of our
tested models. These characteristics are of fundamental im-
portance given the potential target applications of such mod-
els. Table 2 reports data for each model: to give a whole
picture of the needed resources, we provide information on
both the training and the inference requirements. The com-
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Figure 8. Comparison of radially averaged power spectral density (RAPSD) distributions for results from the tested models against COSMO-
CLM reference truth. The left column refers to the 2 m temperature, and the right column refers to the 10 m wind speed. The first row shows
the averaged-in-time spectra across the whole test dataset. Notice that in the first row y axes are logarithmic to highlight the tail of the
distributions; hence the high frequencies. The bottom rows show the distributions of single-time RAPSD values for fixed wavelengths,
namely, 269, 20, 9, and 5 km. The legend also shows RALSD score values for each model.

putational budgets reported for LDM_res include the time
required for training and executing the U-Net, which gener-
ates the residual data, as well as the VAE_res. Consequently,
the LDM_res budgets fully account for the total computa-
tional cost associated with training and running the entire
modeling chain from scratch. Simulations were run on ei-
ther NVIDIA GeForce RTX 4090 or NVIDIA A100 GPUs.
The training dataset comprises 129 000 hourly samples over

a target domain of 576× 672 pixels (at high resolution) and
72× 86 pixels (at low resolution). The U-Net and GAN
training ran with a batch size of four for both target vari-
ables on the whole target domain. LDM_res training ran with
batch sizes of eight and four for the two target variables
(2 m temperature and 10 m wind components, respectively)
on patches of 512× 512 and 64× 64 for high-resolution and
low-resolution data, respectively. Inference times are calcu-
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Table 2. Number of GPU hours required for the training and infer-
ence (of a 1-year-long test set) by each tested model.

Model
Training Inference

2mT UV 2mT UV

U-Net ∼ 250 ∼ 380 ∼ 1 ∼ 1
GAN ∼ 300 ∼ 100 ∼ 1 ∼ 1
LDM_res ∼ 870 ∼ 1100 ∼ 15 ∼ 16

lated running with single-dimension batches across the entire
domain.

As shown in Table 2, LDM_res implies more expensive
training and inference processes when compared with the
tested DL baselines. This evidence is expected given the
more complex structure of the diffusion model and its di-
mensions in terms of trainable parameters, which is an order
of magnitude greater than that of the baselines. Neverthe-
less, the required computational time for both training and
inference remains contained and competitive with the other
available options. LDM_res requires 10 d over eight GPUs
to train the models for both the target variables and 30 h on
a single GPU to downscale 1 year of hourly temperature and
wind data. In comparison, we note here that a 1-year-long
COSMO-CLM simulation ran over the very same domain
requires 61 h running on 2160 cores (Raffa et al., 2021) (of
course producing many more high-resolution variables than
the sole 2 m temperature and 10 m horizontal wind compo-
nents).

6 Discussion

6.1 On the contribution of the VAE

In this section, we provide insights into the contribution
of the VAE to the performance of LDM_res, thus showing
the cost of moving to a latent space to perform the diffu-
sion process. To do so, we compare results from LDM_res
with VAE_res. VAE_res consists of the pure compression
and decompression of the high-resolution data to and from
the latent space and thus takes as input only the original
reference-truth high-resolution target variables. On the con-
trary, LDM_res takes as input the low-resolution ERA5 pre-
dictors, high-resolution static data, and random noise; pro-
duces information in the latent space; and projects them in
the pixel space using the VAE decoder. Both VAE_res and
LDM_res also use the corresponding U-Net estimates for
each target variable (i.e., the residual approach), but these
quantities are subtracted before the encoding step (when ap-
plied) and added back after the decompression stage, acting
essentially as constants. Therefore, the reconstruction errors
for VAE_res are thus solely attributed to the compression/de-
compression processes, while the reconstruction errors for

LDM_res arise from both the diffusion and decompression
processes.

Figure 9 compares power spectra and the associated
RALSD scores from the COSMO-CLM test reference-truth
data with those from high-resolution test data generated us-
ing VAE_res and LDM_res. This figure highlights the de-
compression stage’s contribution from the latent space to the
pixel space in LDM_res.

For 2 m temperature, the power spectra from the LDM_res
and VAE_res are nearly identical across all wavelengths, in-
cluding the smallest scales, with values of RALSD of 0.62
and 0.59, respectively. This indicates that the errors in re-
constructing COSMO-CLM spectra with LDM_res are at-
tributable solely to the decompression stage, with the diffu-
sion process effectively and accurately extracting latent fea-
tures from the conditional data. On the contrary, for 10 m
wind speed, a more chaotic field, discrepancies between the
power spectra from LDM_res and VAE_res are observed
at scales smaller than approximately 7 km, with values of
RALSD of 2.31 and 0.87, respectively. These differences
highlight the errors introduced by the sole extraction of fea-
tures by the diffusion process.

It is worth noting that these reconstruction errors occur
at spatial scales smaller than the considered effective reso-
lution of the reference numerical simulation. The effective
resolution is indeed coarser than the nominal spatial resolu-
tion, estimated to be approximately 6×1x (i.e., ∼ 13 km in
this study), as indicated by Skamarock et al. (2014), or within
the range of 4×1x to 8×1x, as reported by Abdalla et al.
(2013), for example.

6.2 On the contribution of the residual approach

In this section, we compare the performance of the LDM
trained with and without the residual approach, highlight-
ing the significant improvements introduced by the residual
methodology. The comparison focuses on the frequency dis-
tribution and the radially averaged power spectral density
(RAPSD), as shown in Figs. 10 and 9, respectively, along
with their associated metrics, IQD and RALSD.

The analysis reveals notable differences between the two
models, particularly in (i) accurately estimating the most fre-
quent values of 2 m temperature; (ii) reconstructing the full
frequency distribution of wind speed; (iii) reconstructing the
2 m temperature power spectra at small scales, where the
non-residual LDM underperforms compared to the quadratic
interpolation of ERA5; and (iv) reconstructing the 10 m wind
speed power spectra across all scales, with the non-residual
LDM exhibiting a quasi-constant lag across all wavelengths.

The corresponding VAEs for the two models (VAE and
VAE_res) show comparable performance except at the small-
est scales of the 2 m temperature power spectra (not shown).
Consequently, the diminished performance of the non-
residual LDM can be attributed to the VAE only in this spe-
cific case (iii). All other deficiencies are solely due to the dif-
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Figure 9. Comparison of radially averaged power spectral density (RAPSD) distributions for results from LDM_res, VAE_res, and LDM
against COSMO-CLM reference truth and ERA5 quadratic interpolation. The left column refers to the 2 m temperature, and the right column
refers to the 10 m horizontal wind speed. The first row shows the averaged-in-time spectra across the whole test dataset. Notice that in the
first row y axes are logarithmic to highlight the tail of the distributions; hence the high frequencies. The bottom rows show the distributions
of single-time RAPSD values for fixed wavelengths, namely, 269, 20, 9, and 5 km. The legend also shows RALSD score values for each
model.

fusion process. Training the diffusion model to reconstruct
a residual field instead of the original target field signifi-
cantly enhances performance, improving the reconstruction
of frequency distributions and power spectra across all wave-
lengths, particularly for chaotic variables such as wind speed.

6.3 On the reconstruction of extreme events: a case
study of strong winds

To evaluate the performance of the deep learning models in a
challenging scenario, we selected 7 February 2022 as a case
study. This analysis represents a preliminary investigation
of the deep learning models’ ability to reconstruct a single
strong wind event and their performance in reproducing time
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Figure 10. Comparison of frequency distributions for results from LDM_res, VAE_res, and LDM against COSMO-CLM reference truth and
ERA5 quadratic interpolation. Panels (a) and (c) refer to the 2 m temperature, and panels (b) and (d) refer to the 10 m wind speed. Counting
of pixel-wise data is cumulated for the yearly test dataset over bins of 0.5 °C and 0.05 m s−1 for temperature and wind speed, respectively.
Notice that y axes are logarithmic to highlight the tails of the distributions; hence the extreme values. The top row focuses on the tails of the
distributions, i.e., on extreme values, and the bottom row focuses on the most frequent values and shows a zoom-in on the dashed boxes for
each variable. The legend also shows IQD values for each model.

series when applied to consecutive time steps. The selected
event provides independent data separate from the training,
validation, and test datasets previously discussed. The date 7
February 2022 is particularly noteworthy due to widespread
strong winds across Italy prompting weather alerts in vari-
ous regions and causing significant wind-related damage. On
this day, the Italian peninsula was affected by a pronounced
pressure gradient resulting from the southward descent of a
low trough from northeastern Europe toward the Ionian Sea
and the simultaneous presence of a high-pressure system cen-
tered over the Bay of Biscay (see Fig. 11). This synoptic con-
figuration generated widespread föhn conditions, with strong
northerly to northwesterly winds affecting northern regions
and areas downwind of the Apennine ridges.

The performance of the models was assessed at five loca-
tions of interest corresponding to Italian weather stations that
recorded hourly wind speeds exceeding 20 m s−1 during the
case study. These stations, situated in complex terrain, are
highlighted in the final panel of Fig. 11. Figure 12 presents
the time series of 10 m wind components and wind speeds at
each target location. For 10 m wind speed, observational data
collected by the weather stations are included as a reference
for comparison.

As illustrated in Fig. 12, significant differences are ob-
served between ERA5 and COSMO-CLM data across all
reference stations. The dynamical downscaling approach of
COSMO-CLM produces substantially higher wind speeds
compared to the low-resolution ERA5 data, with discrepan-
cies reaching up to 10–13 m s−1. While COSMO-CLM still
underestimates wind speeds compared to observations, its
temporal evolution of wind flux generally aligns well with
measurements.

The deep learning models demonstrate remarkable perfor-
mance, with the target ground truth being the COSMO-CLM
output. All three models effectively reconstruct wind inten-
sities for both components, showing minimal dependency on
the underestimation present in the input low-resolution data.
Notably, the models accurately capture the temporal evolu-
tion of wind components, frequently correcting the phase
discrepancies in wind speed trends (increases or decreases)
present in the low-resolution data. This capability is particu-
larly noteworthy given that the models are trained exclusively
for image-to-image downscaling without access to temporal
information from adjacent time steps. Among the deep learn-
ing models, results are generally comparable. However, the
GAN and U-Net models tend to produce smoother temporal
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Figure 11. Panels (a), (b), and (c) show the evolution of geopotential height at 500 hPa [dam] from 06:00 UTC on 7 February 2022, to
15:00 UTC on 7 February 2022 (ERA5 data). (d) shows the location of five weather stations used for the analysis.

signals compared to the LDM_res model and the COSMO-
CLM baseline.

7 Conclusions

This study compares the performance of various downscal-
ing models, focusing on their ability to reconstruct high-
resolution meteorological variables from low-resolution in-
put data. The models evaluated include a baseline U-Net, a
generative adversarial network (GAN), and a latent diffusion
model with a residual approach against the reference U-Net
(LDM_res). The results are analyzed using qualitative eval-
uations, deterministic metrics, spatial error distributions, fre-
quency distributions, radially averaged power spectral den-
sity (RAPSD), and runtime performance.

LDM_res demonstrates superior performance across most
metrics, particularly in reconstructing fine-scale details and
maintaining accuracy in frequency distributions (especially
for the extreme values) and spatial error distributions.
LDM_res outperforms the other models in reconstructing the
power spectra, showing superior performance, especially for
wind speed, with outstanding results for wavelengths of up
to 7 km. Residual errors at smaller scales can be attributed to
the data projection into the latent space, specifically to the us-
age of the VAE. This performance loss might be mitigated by
conducting the diffusion process directly in the pixel space.

However, this alternative approach would substantially in-
crease the computational costs for both training and infer-
ence.

The remarkable results of LDM_res are to be ascribed
equally to two fundamental aspects of the proposed model:

– the incomparable effectiveness of the diffusion process
in extracting features and leveraging the provided con-
ditioning;

– the residual approach which allows the diffusion pro-
cess to focus only on smaller scales and more subtle
characteristics of the fields, delegating the estimates of
large-scale variation in the atmospheric fields to a sim-
pler, yet effective, network.

However, the great performance of LDM_res comes at the
cost of significantly higher computational requirements for
both training and inference when compared to the other DL
models, i.e., the U-Net or the GAN. Nonetheless, LDM_res
still offers a significant advantage in terms of inference speed
and computational efficiency once the model is trained when
compared to the extensive computational resources required
by COSMO-CLM.

In conclusion, the ability of LDM_res to accurately re-
produce the statistics of the COSMO-CLM model reference-
truth data, provided with the same input, demonstrates its po-
tential as an effective and versatile dynamical downscaling
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Figure 12. Hourly evolution of 10 m wind components and 10 m wind speed as reconstructed by all models on 7 February 2022 in the
selected target locations. Available 10 m wind speed observations from each weather station are also reported.

emulator. This approach significantly accelerates the down-
scaling process compared to traditional numerical dynamical
models, making it highly suitable for a broad range of impor-
tant applications, such as downscaling seasonal forecasts or
climate projections.

Nevertheless, two primary limitations remain in the pro-
posed deep learning approach: (i) inter-variable consistency
and (ii) temporal consistency of the generated fields. These
fundamental aspects, which are inherently preserved in dy-
namical downscaling performed using physically based nu-
merical models, are not guaranteed by the design of this
study. Specifically, LDM_res is applied and trained sepa-
rately for 2 m temperature and 10 m horizontal wind com-
ponents, performing image-to-image downscaling. Regard-
ing inter-variable consistency, results from this study, as well
as findings from other works, such as Mardani et al. (2023),
suggest that a multi-variable approach is feasible and could
provide significant benefits by better leveraging all available
parameters within the network. Concerning temporal con-
sistency, although results briefly showcased in the presented
case study indicate that the DL model generates consecutive
time steps that form rather consistent time series, further in-
vestigation and testing are necessary to thoroughly address
this aspect, as discussed in the “Future work” section.

8 Future work

The results presented in this work suggest several promis-
ing directions for further investigation into the application of
latent diffusion models for downscaling.

Addressing the primary limitations of our DL approach,
namely, (i) inter-variable consistency and (ii) temporal con-
sistency of the generated fields, is a key priority. Apply-
ing LDM_res with a multi-variable approach requires no
architectural adjustments and could yield valuable insights,
such as whether additional variables necessitate larger net-
work architectures to optimize performance. The potential
and efficiency of a multi-variable approach have already
been demonstrated in pixel-space diffusion downscaling by
Mardani et al. (2023). Further evaluation of the temporal
consistency of downscaled data in this version of LDM_res
is also relevant. Enhancements in this area could involve
conditioning the diffusion process on a (short) temporal se-
quence of low-resolution fields or incorporating previous
high-resolution outputs in an auto-regressive approach. Ad-
ditionally, the generative capabilities of LDM_res need to
be explored to assess the potential added value of a DL-
generated ensemble.

Future developments could explore the integration of la-
tent diffusion models into existing modeling frameworks and
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operational systems, such as using them as postprocessing
tools for real-time weather forecasts, seasonal forecasts, and
climate projections. These integrations would require tai-
lored training procedures, alignment with operational inputs
and reference data, and rigorous validation to ensure robust-
ness and compatibility with practical applications. For exam-
ple, ongoing research, funded as an innovation project within
this research’s funding, is already investigating the effective-
ness of LDM_res in downscaling precipitation and tempera-
ture, in a multi-variable approach, from climate projections
predictors. This exploration is expected to further elucidate
the versatility and robustness of the proposed approach and
showcase its practical applications.

Appendix A: Architecture and training procedure of the
DL models

A1 UNET

The U-Net encoder is composed of four blocks, each con-
sisting of a layer containing two consecutive 2D convolu-
tions with rectified linear unit (ReLU) activation interspersed
with batch normalization to ensure stable learning (Ioffe and
Szegedy, 2015), and a max-pooling operation. The max-
pooling layer reduces the spatial resolution by half, enabling
the model to capture increasingly complex features while re-
ducing the image dimensions. The output of each encoder
block is used in both the next encoder block and the corre-
sponding decoder block through skip connections. The de-
coder mirrors the encoder with transposed 2D convolutional
layers and upsampling steps to go back to the starting resolu-
tion. The use of batch normalization ensures robust learning,
while the skip connections help preserve critical spatial infor-
mation across the encoder–decoder bridge. The total number
of trainable parameters for the U-Net is ∼ 31 M (Table 1).
Details on the U-Net structure and resolutions are depicted
in Fig. A1.

The loss function used for training is the mean squared
error (MSE) loss with mean reduction, which is suitable for
regression-based tasks and ensures smooth convergence. The
Adam optimizer (Kingma and Ba, 2015), chosen for its ef-
fectiveness in handling non-stationary objectives and sparse
gradients, is employed with a learning rate of 10−3 and no
weight decay. Training is conducted for up to 100 epochs,
with early stopping enabled to terminate training if validation
performance does not improve over 10 consecutive epochs.
Each epoch involved iterating through the dataset with a
batch size of 16, which was chosen to balance memory con-
straints and training efficiency. The network is constantly fed
with the whole target domain, and no patch training is ap-
plied.

A2 GAN

The discriminator of the GAN is a PatchGAN convolutional
classifier (Isola et al., 2017), which focuses on structures at
the scale of image patches. The structure of the discrimina-
tor is composed of modules of the form convolution–batch
norm–ReLU. It assigns a “realness” score to each N ×N
patch of the image, runs convolutionally across the image,
and allows us to obtain an overall score by averaging all re-
sponses for each patch. High-quality results can be obtained
with patches much smaller than the full size of the image,
with relevant advantages in terms of resources for the train-
ing and application to arbitrarily large images. Details on the
discriminator network structure and resolutions are depicted
in Fig. A1. The total number of trainable parameters for the
GAN is ∼ 34 M (Table 1).

The training procedure follows the combined loss func-
tion approach for GANs (Goodfellow et al., 2020), includ-
ing recent improvements to promote stability in the training
(Esser et al., 2021), with the primary goal of balancing the
minimization of both the generator’s and the discriminator’s
losses, which are adversarial. The hyperparameters set for
the training are derived from the search and optimization al-
ready performed by Esser et al. (2021), while the parameters
we manually fine-tuned are described in the following. The
pixel loss we used is the mean absolute error (MAE), while
the discriminator loss is the hinge loss. The discriminator
is activated after 50 000 training steps, giving the generator
time to learn to generate consistent outputs and thus stabi-
lizing the adversarial training (Esser et al., 2021). After acti-
vating the discriminator, the network is trained by updating
alternatively the gradients of the generator and the discrimi-
nator. The network is constantly fed with the whole target do-
main and no patch training is applied. The Adam optimizer
(Kingma and Ba, 2015) is used for both the generator and the
discriminator, with a base learning rate equal to 4.5× 10−6

multiplied by the number of the GPU and the batch size used
for the training – i.e., 4.5× 10−6

× 1 GPU× 4 (batch size)
(Goyal et al., 2018), and with beta parameters set to 0.5 and
0.9. Training is conducted for up to 100 epochs, with early
stopping enabled to terminate training if validation perfor-
mance does not improve over 10 consecutive epochs. Each
epoch involved iterating through the dataset with a batch size
of four chosen to balance memory constraints and training
efficiency.

A3 LDM_res

The latent diffusion model derived for the downscaling task
is composed of three main elements: a convolutional vari-
ational autoencoder (VAE), a conditioner, and a denoiser.
In the following sections, we report a detailed description
of each model component and its training procedure. Fig-
ures A2 and A3 summarize the training and inference proce-
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Figure A1. Details on the architectures for the reference U-Net and the GAN implemented for the downscaling task. The reference U-Net
and the generator networks are depicted on the left panel, and the discriminator network is on the right panel. NN stands for nearest neighbor.

dures for the model and the main structure of each compo-
nent architecture, respectively.

A3.1 Variational autoencoder

The variational autoencoder (VAE) projects the residual
high-resolution data from the pixel space to a continuous la-
tent space (encoder) and projects them back to the pixel space
(decoder). We train a dedicated VAE for the 2 m temperature
and a dedicated VAE for the 10 m wind speed components in-
dependently from the conditioner and denoiser. Once trained,
the VAE weights are kept constant during the training of the
rest of the network architecture. During inference, only the
decoder of the VAE is used (see Fig. A3).

The encoder and the decoder are structured as 2D convo-
lutional networks composed of blocks of a ResNet residual
block (Stephan et al., 2008) and a downsampling/upsampling
convolutional layer. Three levels of such blocks are used,
each reducing each spatial dimension by a factor of 2, while
the number of channels is bottlenecked at 32 times the num-
ber of input target variables (i.e., 32× 1 for the 2 m temper-
ature and 32× 2 for the 10 m wind speed components). The
VAE bottleneck latent space is regularized with a loss based
on Kullback–Leibler (KL) divergence (Kullback and Leibler,
1951; Csiszar, 1975) between the latent variable and a mul-
tivariate standard normal variable.

The VAEs are trained on random 512× 512 pixel patches
of high-resolution target variables, with a batch size of 16.
The training process for the VAEs leverages AdamW op-
timizer (Loshchilov and Hutter, 2019), with a base learn-
ing rate of 1× 10−3, the beta parameters set to 0.5 and 0.9,
and a weight decay of 1× 10−3. The loss function combines
a reconstruction loss, computed as the mean absolute error
(MAE) between predicted and target outputs, with the KL

divergence term. The KL divergence, scaled by a weight fac-
tor (λKL = 0.01), enforces a standard normal distribution on
the latent space. A ReduceLROnPlateau scheduler (PyTorch,
2023) is employed to dynamically adjust the learning rate by
reducing it by a factor of 0.25 if the validation reconstruction
loss does not improve for three consecutive epochs. Train-
ing is conducted for up to 100 epochs, with early stopping
enabled to terminate training if validation performance does
not improve over 10 consecutive epochs.

While the space dimensions are reduced by a factor of 82

(from 512× 512 to 64× 64 pixel patches), the number of
channels is increased from 1 (for the 2 m temperature) and 2
(for the 10 m wind speed components) to 32 and 64, respec-
tively: the overall amount of data is therefore compressed
only by a factor of 2 for both VAEs (from 1× 512× 512 to
32× 64× 64 and from 2× 512× 512 to 64× 64× 64). Nev-
ertheless, the gain in training performance of the denoiser
and conditioner is much greater than the data reduction fac-
tor as the compression along the space dimension is more
relevant for reducing the computational cost of the training
than the increase in channel number (Rombach et al., 2021).

Figure A2 depicts details of the VAE’s structure.

A3.2 Conditioner

The conditioner stack acts as a context encoder to process
the low-resolution predictors and high-resolution static data
and embed them into each level of the denoiser U-Net archi-
tecture. Initially, both datasets are preprocessed by passing
through a dedicated encoder, a projection layer, and an anal-
ysis sequence before being merged. The predictors’ encoder
is a basic identity layer since they already have the same
spatial dimensions as the latent space (64× 64). The static
data encoder is a variational encoder with the same struc-
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Figure A2. An overview of the components of our downscaling latent diffusion model: the variational autoencoder, the conditioner, and the
denoiser networks. Conv denotes convolution. The MLP (multilayer perceptron) is a block consisting of a linear layer, activation function,
and another linear layer. Res block denotes a ResNet-type residual block. The v in the array size labels stands for the number of target
variables (1 for 2 m temperature and 2 for 10 m horizontal wind speed components).

Figure A3. An overview of the training and inference procedures for our downscaling latent diffusion model. The v in the array size labels
stands for the number of target variables (1 for 2 m temperature and 2 for 10 m horizontal wind speed components).
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ture as the VAE described in the previous section, Sect. A3.1.
For both datasets, the projection layer is a 2D convolutional
layer with a unitary kernel size used to increase the num-
ber of channels, and the analysis is a sequence of four 2D
adaptive Fourier neural operator (AFNO) blocks (following
Pathak et al., 2022), used to extract relevant features. After
preprocessing, the conditioning information is prepared to be
fed to each level of the denoiser U-Net by applying a combi-
nation of average pooling and 2D ResNet layers. Figure A2
depicts details of the conditioner’s structure.

A3.3 Denoiser

Our denoising stack is structured as the one of LDCast
(Leinonen et al., 2023), a re-adaptation of the U-Net-type
network applied in the original latent diffusion model (Rom-
bach et al., 2021). The resulting denoiser network consists of
a U-Net backbone enabled with a conditioning mechanism
based on 2D AFNO blocks (Leinonen et al., 2023), aiming at
a cross-attention-like operation (as suggested in Guibas et al.,
2022). This structure is meant to control the high-resolution
synthesis process feeding the conditioning in each level of
the U-Net architecture.

For the downscaling task, the conditioning information
consists of the low-resolution predictors’ data and the high-
resolution static data elaborated by the conditioner. Fig-
ure A2 depicts the details of the denoiser’s structure.

To improve the reconstruction of extreme values (for
both temperature and wind speed), we implemented the v-
prediction parameterization in our LDM model, following
Salimans and Ho (2022): this parameterization trains the de-
noiser to model a weighted combination of both the noise
and the start image, instead of either the only noise or the
only start image as done in the more traditional implementa-
tions eps and x0, respectively.

As shown in Fig. A3, the conditioner and the denoiser are
trained together, minimizing the mean square error (MSE),
feeding the network with random patches of ERA5 predic-
tors (64× 64 pixels) and static data (512× 512 pixels) for the
conditioning and high-resolution target variables (512× 512
pixels) for the ground truth. The batch size is set to four
and eight for the 2 m temperature and 10 m wind compo-
nents models, respectively, tuned to balance memory con-
straints and training efficiency. The training is performed us-
ing the AdamW optimizer (Loshchilov and Hutter, 2019),
with a base learning rate of 1× 10−4, the beta parameters
set to 0.5 and 0.9, and a weight decay of 1× 10−3. A Re-
duceLROnPlateau scheduler (PyTorch, 2023) is employed to
dynamically adjust the learning rate by reducing it by a fac-
tor of 0.25 if the validation loss does not improve for three
consecutive epochs. Additionally, exponential moving aver-
aging (EMA) is applied to the network weights, following
Rombach et al. (2021). Training is conducted for up to 100
epochs, with early stopping enabled to terminate training if
validation performance does not improve over 10 consecu-

tive epochs. The other hyperparameters set for the training
are derived from the implementation of the LDCast model
by Leinonen et al. (2023).

Appendix B: Additional snapshots of downscaled data

Some additional snapshots of downscaled data from all the
tested models are shown in Figs. B1 and B2. The left columns
refer to 2 m temperature, and the right columns refer to 10 m
wind speed. The second and fourth columns show a zoom-in
on Sardinia Island.
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Figure B1. Downscaled variables from all the tested models against low-resolution ERA5 input data and high-resolution COSMO-CLM
reference truth for an additional random timestamp.
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Figure B2. Downscaled variables from all the tested models against low-resolution ERA5 input data and high-resolution COSMO-CLM
reference truth for an additional random timestamp.
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Appendix C: Calculation of verification metrics

In Sect. 5.2, we discuss the following metrics: three distance
metrics; the root mean square error (RMSE); the mean bias
(bias); the coefficient of determination (R2); and one corre-
lation metric, the Pearson correlation coefficient (PCC). All
the metrics are calculated with the xskillscore library (Bell
et al., 2021). Definitions are as follows:

RMSE=

√√√√1
n

n∑
i=1
(ai − bi)

2, (C1)

bias=
1
n

n∑
i=1
(ai − bi), (C2)

SStot =

n∑
i=1
(ai − a)

2, (C3)

SSres =

n∑
i=1
(ai − bi)

2, (C4)

R2
= 1−

SSres

SStot
, (C5)

PCC=
∑n
i=1(ai − a)(bi − b)√∑n

i=1(ai − a)
2
√∑n

i=1(bi − b)
2
, (C6)

where a and b are the predicted and reference-truth values,
respectively, for every ith pixel of the domain and n is the
total number of pixels in the domain.

In Sect. 5.4, we discuss the integrated quadratic distance
score, which is calculated following Thorarinsdottir et al.
(2013) and measures the similarity between two distributions
by the integral over the squared difference between the two
distribution functions:

IQD=

max∫
min

(F (t)−G(t))2 dt, (C7)

where F(t) and G(t) are the empirical cumulative distribu-
tion function of the modeled and reference-truth data, re-
spectively, computed following the implementation outlined
in Pulkkinen et al. (2019); the minimum and maximum are
[−30, 45] °C and [0, 25] m s−1 for 2 m temperature and
wind speed, respectively; dt has been fixed to 0.5 °C and
0.25 m s−1 for 2 m temperature and wind speed, respectively.

In Sect. 5.5, we discuss results in terms of the log-spectral
distance of the RAPSDs, referred to as the radially averaged
log-spectral distance (RALSD) score, following Harris et al.
(2022):

RALSD_score=

√√√√ 1
N

N∑
i=1

(
10 log10

P true

P gen

)2

, (C8)

where P true and P gen are the radially averaged power spec-
tral densities of the reference-truth and modeled data, respec-
tively, computed following the implementation outlined in

Pulkkinen et al. (2019), and N is the number of frequencies
(i.e., 336).

Code and data availability. Data from ERA5 (Hersbach et al.,
2020) were used as input low-resolution data for our models and
were downloaded from the Copernicus Climate Change Service
(https://doi.org/10.24381/cds.bd0915c6, Hersbach et al., 2023a,
https://doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2023b).
The results contain modified Copernicus Climate Change Ser-
vice information for 2020. Neither the European Commission
nor ECMWF is responsible for any use that may be made
of the Copernicus information or data it contains. The target
high-resolution VHR-REA_IT data (Raffa et al., 2021; Adinolfi
et al., 2023) were downloaded from the Euro-Mediterranean
Center on Climate Change (CMCC) Data Delivery Sys-
tem (https://doi.org/10.25424/cmcc/era5-2km_italy, CMCC, 2021).
CMCC produced the VHR-REA_IT dataset as part of the HIGH-
LANDER project and released it under the CC BY 4.0 licence.
The full, preprocessed dataset used for the presented experiments
is available on Zenodo (https://doi.org/10.5281/zenodo.12944960,
Tomasi et al., 2024c; https://doi.org/10.5281/zenodo.12945014,
Tomasi et al., 2024d; https://doi.org/10.5281/zenodo.12945028,
Tomasi et al., 2024e; https://doi.org/10.5281/zenodo.12945040,
Tomasi et al., 2024f; https://doi.org/10.5281/zenodo.12945050,
Tomasi et al., 2024g; https://doi.org/10.5281/zenodo.12945058,
Tomasi et al., 2024h; https://doi.org/10.5281/zenodo.12945066,
Tomasi et al., 2024i). Additionally, Zenodo hosts a sample dataset
(https://doi.org/10.5281/zenodo.12934521, Tomasi et al., 2024a)
to test and train the models and the trained models themselves
(https://doi.org/10.5281/zenodo.12941117, Tomasi et al., 2024b).
A dedicated GitHub repository (https://github.com/DSIP-FBK/
DiffScaler, last access: 26 March 2025) hosts the PyTorch Light-
ning (Falcon and The PyTorch Lightning team, 2019) code of the
models described in this paper based on the Lightning Hydra Tem-
plate (Yadan, 2019) licensed under the MIT License. LDM_res v1.0
GitHub release is archived on Zenodo (Franch et al., 2024) and al-
lows for downloading the code to reproduce the presented experi-
ments (https://doi.org/10.5281/zenodo.13356322).
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