Articles | Volume 17, issue 24
https://doi.org/10.5194/gmd-17-9023-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-9023-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconciling surface deflections from simulations of global mantle convection
Conor P. B. O'Malley
Department of Earth Science and Engineering, Imperial College London, London, SW7 2BP, UK
now at: Cathie Group, 2–4 Hanover Square, Newcastle upon Tyne, NE1 3NP, UK
Gareth G. Roberts
CORRESPONDING AUTHOR
Department of Earth Science and Engineering, Imperial College London, London, SW7 2BP, UK
James Panton
School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
Fred D. Richards
Department of Earth Science and Engineering, Imperial College London, London, SW7 2BP, UK
J. Huw Davies
School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
Victoria M. Fernandes
Department of Earth Science and Engineering, Imperial College London, London, SW7 2BP, UK
now at: Section 4.6 Geomorphology, GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany
Sia Ghelichkhan
Research School of Earth Sciences, Australian National University, 142 Mills Road, Acton, ACT 0200, Australia
Related authors
No articles found.
Gwynfor T. Morgan, J. Huw Davies, Robert Myhill, and James Panton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3496, https://doi.org/10.5194/egusphere-2024-3496, 2024
Short summary
Short summary
We simulate the effect of phase boundaries which are described by multiple Clapeyron slopes in P-T space on mantle geodynamics. We are motivated by two examples: the Rw-to-Brm+Pc reaction proceeding via Ak at cool temperatures, & a curving Gt-to-Brm boundary. Some have suggested these could change mantle dynamics. We find that this is unlikely for both reactions: the first due to the uniqueness of thermodynamic state, and the second due to the low value of Clapeyron slope and density change.
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024, https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Short summary
We numerically model the influence of an arc on back-arc extension. The arc is simulated by placing a hot region on the overriding plate. We investigate how plate ages and properties of the hot region affect back-arc extension and present regime diagrams illustrating the nature of back-arc extension for these models. We find that back-arc extension occurs not only in the hot region but also, surprisingly, away from it, and a hot region facilitates extension on the overriding plate.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Martin Wolstencroft and J. Huw Davies
Solid Earth, 8, 817–825, https://doi.org/10.5194/se-8-817-2017, https://doi.org/10.5194/se-8-817-2017, 2017
Short summary
Short summary
A key aspect of plate tectonics is the periodic assembly and subsequent break-up of supercontinents. There is strong evidence that this has happened repeatedly over geological history, but exactly how a supercontinent breaks up is still debated. In this paper, we use computer modelling of Earth's interior to show that the force needed to break a supercontinent should always arise from a combination of global-scale passive
pulling apartand active
pushing apartforces driven by the mantle.
Hein J. van Heck, J. Huw Davies, Tim Elliott, and Don Porcelli
Geosci. Model Dev., 9, 1399–1411, https://doi.org/10.5194/gmd-9-1399-2016, https://doi.org/10.5194/gmd-9-1399-2016, 2016
Short summary
Short summary
Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. We have implemented a new way to track both bulk compositions and concentrations of trace elements in a mantle convection code. In our model, chemical fractionation happens at evolving melting zones. We compare our results to a semi-analytical theory relating observed arrays of correlated Pb isotope compositions to melting age distributions.
D. R. Davies, J. H. Davies, P. C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu
Geosci. Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, https://doi.org/10.5194/gmd-6-1095-2013, 2013
Related subject area
Solid Earth
Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model
A fast surrogate model for 3D Earth glacial isostatic adjustment using Tensorflow (v2.8.0) artificial neural networks
Accelerated pseudo-transient method for elastic, viscoelastic, and coupled hydro-mechanical problems with applications
ShellSet v1.1.0 parallel dynamic neotectonic modelling: a case study using Earth5-049
FastIsostasy v1.0 – a regional, accelerated 2D glacial isostatic adjustment (GIA) model accounting for the lateral variability of the solid Earth
Automatic adjoint-based inversion schemes for geodynamics: reconstructing the evolution of Earth's mantle in space and time
GEOMAPLEARN 1.0: Detecting geological structures from geological maps with machine learning
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
REHEATFUNQ (REgional HEAT-Flow Uncertainty and aNomaly Quantification) 2.0.1: a model for regional aggregate heat flow distributions and anomaly quantification
A new temperature–photoperiod coupled phenology module in LPJ-GUESS model v4.1: optimizing estimation of terrestrial carbon and water processes
High-precision 1′ × 1′ bathymetric model of Philippine Sea inversed from marine gravity anomalies
Deciphering past earthquakes from the probabilistic modeling of paleoseismic records – the Paleoseismic EArthquake CHronologies code (PEACH, version 1)
Modelling detrital cosmogenic nuclide concentrations during landscape evolution in Cidre v2.0
IMEX_SfloW2D v2: a depth-averaged numerical flow model for volcanic gas–particle flows over complex topographies and water
Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle
AdaHRBF v1.0: gradient-adaptive Hermite–Birkhoff radial basis function interpolants for three-dimensional stratigraphic implicit modeling
PySubdiv 1.0: open-source geological modeling and reconstruction by non-manifold subdivision surfaces
Reconstructing tephra fall deposits via ensemble-based data assimilation techniques
ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Addressing challenges in uncertainty quantification: the case of geohazard assessments
DeepISMNet: three-dimensional implicit structural modeling with convolutional neural network
Towards automatic finite-element methods for geodynamics via Firedrake
MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems
A global, spherical finite-element model for post-seismic deformation using Abaqus
SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D
CliffDelineaTool v1.2.0: an algorithm for identifying coastal cliff base and top positions
Capturing the interactions between ice sheets, sea level and the solid Earth on a range of timescales: a new “time window” algorithm
Structural, petrophysical, and geological constraints in potential field inversion using the Tomofast-x v1.0 open-source code
Spatial agents for geological surface modelling
RHEA v1.0: Enabling fully coupled simulations with hydro-geomechanical heterogeneity
Modelling of faults in LoopStructural 1.0
PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries
LoopStructural 1.0: time-aware geological modelling
Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping
Analytical solutions for mantle flow in cylindrical and spherical shells
Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a
GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)
PLUME-MoM-TSM 1.0.0: a volcanic column and umbrella cloud spreading model
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
CobWeb 1.0: machine learning toolbox for tomographic imaging
pygeodyn 1.1.0: a Python package for geomagnetic data assimilation
IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches
A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Bayesian inference of earthquake rupture models using polynomial chaos expansion
Geodynamic diagnostics, scientific visualisation and StagLab 3.0
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
Pengfei Zhang, Yi-an Cui, Jing Xie, Youjun Guo, Jianxin Liu, and Jieran Liu
Geosci. Model Dev., 17, 8521–8533, https://doi.org/10.5194/gmd-17-8521-2024, https://doi.org/10.5194/gmd-17-8521-2024, 2024
Short summary
Short summary
Our study proposes a three-dimensional analytical solution for the self-potential (SP) method to detect seafloor massive sulfide deposits. Using the mirror image method, we derived formulas for the SP generated by polarized bodies in layered media. We conducted experiments with a simulated environment and compared the results with our theoretical predictions. The findings confirmed a high degree of accuracy, demonstrating the reliability of our approach for faster and precise SP modeling.
Ryan Love, Glenn A. Milne, Parviz Ajourlou, Soran Parang, Lev Tarasov, and Konstantin Latychev
Geosci. Model Dev., 17, 8535–8551, https://doi.org/10.5194/gmd-17-8535-2024, https://doi.org/10.5194/gmd-17-8535-2024, 2024
Short summary
Short summary
A relatively recent advance in glacial isostatic adjustment modeling has been the development of models that include 3D Earth structure, as opposed to 1D structure. However, a major limitation is the computational expense. We have developed a method using artificial neural networks to emulate the influence of 3D Earth models to affordably constrain the viscosity parameter space. Our results indicate that the misfits are of a scale such that useful predictions of relative sea level can be made.
Yury Alkhimenkov and Yury Y. Podladchikov
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-160, https://doi.org/10.5194/gmd-2024-160, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Accelerated Pseudo-Transient (APT) method is an efficient way to solve partial differential equations, particularly well-suited for parallel computing. This paper explores the APT method's effectiveness in solving elastic, viscoelastic, and hydro-mechanical problems, focusing on quasi-static conditions in 1D, 2D, and 3D. The study examines the best numerical settings for fast and accurate solutions. The paper shows how the APT can handle complex problems in high-resolution models.
Jon B. May, Peter Bird, and Michele M. C. Carafa
Geosci. Model Dev., 17, 6153–6171, https://doi.org/10.5194/gmd-17-6153-2024, https://doi.org/10.5194/gmd-17-6153-2024, 2024
Short summary
Short summary
ShellSet is a combination of well-known geoscience software packages. It features a simple user interface and is optimised through the addition of a grid search input option (automatically searching for optimal models within a defined N-dimensional parameter space) and the ability to run multiple models in parallel. We show that for each number of models tested there is a performance benefit to parallel running, while two examples demonstrate a use case by improving an existing global model.
Jan Swierczek-Jereczek, Marisa Montoya, Konstantin Latychev, Alexander Robinson, Jorge Alvarez-Solas, and Jerry Mitrovica
Geosci. Model Dev., 17, 5263–5290, https://doi.org/10.5194/gmd-17-5263-2024, https://doi.org/10.5194/gmd-17-5263-2024, 2024
Short summary
Short summary
Ice sheets present a thickness of a few kilometres, leading to a vertical deformation of the crust of up to a kilometre. This process depends on properties of the solid Earth, which can be regionally very different. We propose a model that accounts for this often-ignored heterogeneity and run 100 000 simulation years in minutes. Thus, the evolution of ice sheets is modeled with better accuracy, which is critical for a good mitigation of climate change and, in particular, sea-level rise.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
David Oakley, Christelle Loiselet, Thierry Coowar, Vincent Labbe, and Jean-Paul Callot
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-35, https://doi.org/10.5194/gmd-2024-35, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
In this work, we develop two automated workflows for identifying fold structures on geological maps using machine learning. In one method, we identify map patterns suggestive of folding based on pre-defined rules and apply a clustering algorithm to group those from the same fold together. In the other, we train a convolutional neural network to identify folds based on a set of training examples. We apply both methods to a set of synthetic maps and to real-world maps from two locations in France.
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024, https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
Short summary
Numerical models that use simulated particles are a powerful tool for investigating flow in the interior of the Earth, but the accuracy of these models is not fully understood. Here we present two new benchmarks that allow measurement of model accuracy. We then document that better accuracy matters for applications like convection beneath an oceanic plate. Our benchmarks and methods are freely available to help the community develop better models.
Malte Jörn Ziebarth and Sebastian von Specht
Geosci. Model Dev., 17, 2783–2828, https://doi.org/10.5194/gmd-17-2783-2024, https://doi.org/10.5194/gmd-17-2783-2024, 2024
Short summary
Short summary
Thermal energy from Earth’s active interior constantly dissipates through Earth’s surface. This heat flow is not spatially uniform, and its exact pattern is hard to predict since it depends on crustal and mantle properties, both varying across scales. Our new model REHEATFUNQ addresses this difficulty by treating the fluctuations of heat flow within a region statistically. REHEATFUNQ estimates the regional distribution of heat flow and quantifies known structural signals therein.
Shouzhi Chen, Yongshuo H. Fu, Mingwei Li, Zitong Jia, Yishuo Cui, and Jing Tang
Geosci. Model Dev., 17, 2509–2523, https://doi.org/10.5194/gmd-17-2509-2024, https://doi.org/10.5194/gmd-17-2509-2024, 2024
Short summary
Short summary
It is still a challenge to achieve an accurate simulation of vegetation phenology in the dynamic global vegetation models (DGVMs). We implemented and coupled the spring and autumn phenology models into one of the DGVMs, LPJ-GUESS, and substantially improved the accuracy in capturing the start and end dates of growing seasons. Our study highlights the importance of getting accurate phenology estimations to reduce the uncertainties in plant distribution and terrestrial carbon and water cycling.
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024, https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Short summary
Seafloor topography, as fundamental geoinformation in marine surveying and mapping, plays a crucial role in numerous scientific studies. In this paper, we focus on constructing a high-precision seafloor topography and bathymetry model for the Philippine Sea (5° N–35° N, 120° E–150° E), based on shipborne bathymetric data and marine gravity anomalies, and evaluate the reliability of the model's accuracy.
Octavi Gómez-Novell, Bruno Pace, Francesco Visini, Joanna Faure Walker, and Oona Scotti
Geosci. Model Dev., 16, 7339–7355, https://doi.org/10.5194/gmd-16-7339-2023, https://doi.org/10.5194/gmd-16-7339-2023, 2023
Short summary
Short summary
Knowing the rate at which earthquakes happen along active faults is crucial to characterize the hazard that they pose. We present an approach (Paleoseismic EArthquake CHronologies, PEACH) to correlate and compute seismic histories using paleoseismic data, a type of data that characterizes past seismic activity from the geological record. Our approach reduces the uncertainties of the seismic histories and overall can improve the knowledge on fault rupture behavior for the seismic hazard.
Sébastien Carretier, Vincent Regard, Youssouf Abdelhafiz, and Bastien Plazolles
Geosci. Model Dev., 16, 6741–6755, https://doi.org/10.5194/gmd-16-6741-2023, https://doi.org/10.5194/gmd-16-6741-2023, 2023
Short summary
Short summary
We present the development of a code to simulate simultaneously the dynamics of landscapes over geological time and the evolution of the concentration of cosmogenic isotopes in grains throughout their transport from the slopes to the river outlets. This new model makes it possible to study the relationship between the detrital signal of cosmogenic isotope concentration measured in sediment and the erosion--deposition processes in watersheds.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Caroline J. van Calcar, Roderik S. W. van de Wal, Bas Blank, Bas de Boer, and Wouter van der Wal
Geosci. Model Dev., 16, 5473–5492, https://doi.org/10.5194/gmd-16-5473-2023, https://doi.org/10.5194/gmd-16-5473-2023, 2023
Short summary
Short summary
The waxing and waning of the Antarctic ice sheet caused the Earth’s surface to deform, which is stabilizing the ice sheet and mainly determined by the spatially variable viscosity of the mantle. Including this feedback in model simulations led to significant differences in ice sheet extent and ice thickness over the last glacial cycle. The results underline and quantify the importance of including this local feedback effect in ice sheet models when simulating the Antarctic ice sheet evolution.
Baoyi Zhang, Linze Du, Umair Khan, Yongqiang Tong, Lifang Wang, and Hao Deng
Geosci. Model Dev., 16, 3651–3674, https://doi.org/10.5194/gmd-16-3651-2023, https://doi.org/10.5194/gmd-16-3651-2023, 2023
Short summary
Short summary
We propose a Hermite–Birkhoff radial basis function (HRBF) formulation, AdaHRBF, with an adaptive gradient magnitude for continuous 3D stratigraphic potential field (SPF) modeling of multiple stratigraphic interfaces. In the linear system of HRBF interpolants constrained by the scattered on-contact attribute points and off-contact attitude points of a set of strata in 3D space, we add a novel optimization term to iteratively obtain the true gradient magnitude.
Mohammad Moulaeifard, Simon Bernard, and Florian Wellmann
Geosci. Model Dev., 16, 3565–3579, https://doi.org/10.5194/gmd-16-3565-2023, https://doi.org/10.5194/gmd-16-3565-2023, 2023
Short summary
Short summary
In this work, we propose a flexible framework to generate and interact with geological models using explicit surface representations. The essence of the work lies in the determination of the flexible control mesh, topologically similar to the main geological structure, watertight and controllable with few control points, to manage the geological structures. We exploited the subdivision surface method in our work, which is commonly used in the animation and gaming industry.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi
Geosci. Model Dev., 16, 2495–2513, https://doi.org/10.5194/gmd-16-2495-2023, https://doi.org/10.5194/gmd-16-2495-2023, 2023
Short summary
Short summary
We propose a workflow to automatically generate synthetic seismic data and corresponding stratigraphic labels (e.g., clinoform facies, relative geologic time, and synchronous horizons) by geological and geophysical forward modeling. Trained with only synthetic datasets, our network works well to accurately and efficiently predict clinoform facies in 2D and 3D field seismic data. Such a workflow can be easily extended for other geological and geophysical scenarios in the future.
Ibsen Chivata Cardenas, Terje Aven, and Roger Flage
Geosci. Model Dev., 16, 1601–1615, https://doi.org/10.5194/gmd-16-1601-2023, https://doi.org/10.5194/gmd-16-1601-2023, 2023
Short summary
Short summary
We discuss challenges in uncertainty quantification for geohazard assessments. The challenges arise from limited data and the one-off nature of geohazard features. The challenges include the credibility of predictions, input uncertainty, and assumptions’ impact. Considerations to increase credibility of the quantification are provided. Crucial tasks in the quantification are the exhaustive scrutiny of the background knowledge coupled with the assessment of deviations of assumptions made.
Zhengfa Bi, Xinming Wu, Zhaoliang Li, Dekuan Chang, and Xueshan Yong
Geosci. Model Dev., 15, 6841–6861, https://doi.org/10.5194/gmd-15-6841-2022, https://doi.org/10.5194/gmd-15-6841-2022, 2022
Short summary
Short summary
We present an implicit modeling method based on deep learning to produce a geologically valid and structurally compatible model from unevenly sampled structural data. Trained with automatically generated synthetic data with realistic features, our network can efficiently model geological structures without the need to solve large systems of mathematical equations, opening new opportunities for further leveraging deep learning to improve modeling capacity in many Earth science applications.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Federico Brogi, Simone Colucci, Jacopo Matrone, Chiara Paola Montagna, Mattia De' Michieli Vitturi, and Paolo Papale
Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022, https://doi.org/10.5194/gmd-15-3773-2022, 2022
Short summary
Short summary
Computer simulations play a fundamental role in understanding volcanic phenomena. The growing complexity of these simulations requires the development of flexible computational tools that can easily switch between sub-models and solution techniques as well as optimizations. MagmaFOAM is a newly developed library that allows for maximum flexibility for solving multiphase volcanic flows and promotes collaborative work for in-house and community model development, testing, and comparison.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022, https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Zuzanna M. Swirad and Adam P. Young
Geosci. Model Dev., 15, 1499–1512, https://doi.org/10.5194/gmd-15-1499-2022, https://doi.org/10.5194/gmd-15-1499-2022, 2022
Short summary
Short summary
Cliff base and top lines that delimit coastal cliff faces are usually manually digitized based on maps, aerial photographs, terrain models, etc. However, manual mapping is time consuming and depends on the mapper's decisions and skills. To increase the objectivity and efficiency of cliff mapping, we developed CliffDelineaTool, an algorithm that identifies cliff base and top positions along cross-shore transects using elevation and slope characteristics.
Holly Kyeore Han, Natalya Gomez, and Jeannette Xiu Wen Wan
Geosci. Model Dev., 15, 1355–1373, https://doi.org/10.5194/gmd-15-1355-2022, https://doi.org/10.5194/gmd-15-1355-2022, 2022
Short summary
Short summary
Interactions between ice sheets, sea level and the solid Earth occur over a range of timescales from years to tens of thousands of years. This requires coupled ice-sheet–sea-level models to exchange information frequently, leading to a quadratic increase in computation time with the number of model timesteps. We present a new sea-level model algorithm that allows coupled models to improve the computational feasibility and precisely capture short-term interactions within longer simulations.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Eric A. de Kemp
Geosci. Model Dev., 14, 6661–6680, https://doi.org/10.5194/gmd-14-6661-2021, https://doi.org/10.5194/gmd-14-6661-2021, 2021
Short summary
Short summary
This is a proof of concept and review paper of spatial agents, with initial research focusing on geomodelling. The results may be of interest to others working on complex regional geological modelling with sparse data. Structural agent-based swarming behaviour is key to advancing this field. The study provides groundwork for research in structural geology 3D modelling with spatial agents. This work was done with NetLogo, a free agent modelling platform used mostly for teaching complex systems.
José M. Bastías Espejo, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021, https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Short summary
The hydraulic and mechanical properties of the subsurface are inherently heterogeneous. RHEA is a simulator that can perform couple hydro-geomechanical processes in heterogeneous porous media with steep gradients. RHEA is able to fully integrate spatial heterogeneity, allowing allocation of distributed hydraulic and geomechanical properties at mesh element level. RHEA is a valuable tool that can simulate problems considering realistic heterogeneity inherent to geologic formations.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev., 14, 1841–1864, https://doi.org/10.5194/gmd-14-1841-2021, https://doi.org/10.5194/gmd-14-1841-2021, 2021
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Andrzej Górszczyk and Stéphane Operto
Geosci. Model Dev., 14, 1773–1799, https://doi.org/10.5194/gmd-14-1773-2021, https://doi.org/10.5194/gmd-14-1773-2021, 2021
Short summary
Short summary
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the workflow designed to implement all of its components. The model contains different geological structures of various scales and complexities. It is intended to serve as a tool for the geophysical community to validate imaging approaches, design acquisition techniques, estimate uncertainties, benchmark computing approaches, etc.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565, https://doi.org/10.5194/gmd-13-6547-2020, https://doi.org/10.5194/gmd-13-6547-2020, 2020
Short summary
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020, https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Loïc Huder, Nicolas Gillet, and Franck Thollard
Geosci. Model Dev., 12, 3795–3803, https://doi.org/10.5194/gmd-12-3795-2019, https://doi.org/10.5194/gmd-12-3795-2019, 2019
Short summary
Short summary
The pygeodyn package is a geomagnetic data assimilation tool written in Python. It gives access to the Earth's core flow dynamics, controlled by geomagnetic observations, by means of a reduced numerical model anchored to geodynamo simulation statistics. It aims to provide the community with a user-friendly and tunable data assimilation algorithm. It can be used for education, geomagnetic model production or tests in conjunction with webgeodyn, a set of visualization tools for geomagnetic models.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, Giacomo Lari, and Alvaro Aravena
Geosci. Model Dev., 12, 581–595, https://doi.org/10.5194/gmd-12-581-2019, https://doi.org/10.5194/gmd-12-581-2019, 2019
Short summary
Short summary
Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones) and fountaining during moderately explosive eruptions. We present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. Benchmark cases and preliminary application to the simulation of the 11 February pyroclastic avalanche at Mt. Etna (Italy) are shown.
Yihao Wu, Zhicai Luo, Bo Zhong, and Chuang Xu
Geosci. Model Dev., 11, 4797–4815, https://doi.org/10.5194/gmd-11-4797-2018, https://doi.org/10.5194/gmd-11-4797-2018, 2018
Short summary
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio
Geosci. Model Dev., 11, 3071–3088, https://doi.org/10.5194/gmd-11-3071-2018, https://doi.org/10.5194/gmd-11-3071-2018, 2018
Short summary
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Short summary
We introduce the Soil and
Landscape Evolution Model (SaLEM) for the prediction of soil parent material evolution following a lithologically differentiated approach. The GIS tool is working within the software framework SAGA GIS. Weathering, erosion and transport functions are calibrated using extrinsic and intrinsic parameter data. First results indicate that our approach shows evidence for the spatiotemporal prediction of soil parental material properties.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Cited articles
Al-Hajri, Y., White, N., and Fishwick, S.: Scales of transient convective support beneath Africa, Geology, 37, 883–886, https://doi.org/10.1130/G25703A.1, 2009. a
Bahadori, A., Holt, W. E., Feng, R., Austermann, J., Loughney, K. M., Salles, T., Moresi, L., Beucher, R., Lu, N., Flesch, L. M., Calvelage, C. M., Rasbury, E. T., Davis, D. M., Potochnik, A. R., Ward, W. B., Hatton, K., Haq, S. S. B., Smiley, T. M., Wooton, K. M., and Badgley, C.: Coupled influence of tectonics, climate, and surface processes on landscape evolution in southwestern North America, Nat. Commun., 13, 1–18, 2022. a
Ball, P. W., White, N. J., Maclennan, J., and Stephenson, S. N.: Global Influence of Mantle Temperature and Plate Thickness on Intraplate Volcanism, Nat. Commun., 12, 1–13, https://doi.org/10.1038/s41467-021-22323-9, 2021. a, b
Ball, P. W., Duvernay, T., and Davies, D. R.: A coupled geochemical–geodynamic approach for predicting mantle melting in space and time, Geochem. Geophy. Geosy., 23, 1–31, https://doi.org/10.1029/2022gc010421, 2022. a
Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., Myhill, R., and Naliboff, J.: ASPECT v2.5.0, Zenodo [code], https://doi.org/10.5281/zenodo.8200213, 2023. a
Bauer, S., Huber, M., Ghelichkhan, S., Mohr, M., Rüde, U., and Wohlmuth, B.: Large-scale simulation of mantle convection based on a new matrix-free approach, J. Comput. Sci.-Neth, 31, 60–76, https://doi.org/10.1016/j.jocs.2018.12.006, 2019. a
Becker, T. W. and Boschi, L.: A comparison of tomographic and geodynamic mantle models, Geochem. Geophy. Geosy., 3, 1–48, https://doi.org/10.1029/2001GC000168, 2002. a
Biggin, A. J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T. H., Van Der Meer, D. G., and Van Hinsbergen, D. J.: Possible links between long-term geomagnetic variations and whole-mantle convection processes, Nat. Geosci., 5, 526–533, https://doi.org/10.1038/ngeo1521, 2012. a
Braun, J.: The many surface expressions of mantle dynamics, Nat. Geosci., 3, 825–833, https://doi.org/10.1038/ngeo1020, 2010. a
Bunge, H.-P. and Baumgardner, J. R.: Mantle convection modeling on parallel virtual machines, Comput. Phys., 9, 207–215, https://doi.org/10.1063/1.168525, 1995. a, b
Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.: Mantle-circulation models with sequential data assimilation: Inferring present-day mantle structure from plate-motion histories, Philos. T. R. Soc. A, 360, 2545–2567, https://doi.org/10.1098/rsta.2002.1080, 2002. a
Bunge, H.-P., Hagelberg, C. R., and Travis, B. J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography, Geophys. J. Int., 152, 280–301, https://doi.org/10.1046/j.1365-246X.2003.01948.x, 2003. a
Cao, Z. and Liu, L.: Origin of Three-Dimensional Crustal Stress Over the Conterminous United States, J. Geophys. Res.-Sol. Ea., 126, e2021JB022137, https://doi.org/10.1029/2021JB022137, 2021. a
Chang, C. and Liu, L.: Investigating the formation of the Cretaceous Western Interior Seaway using landscape evolution simulations, GSA Bulletin, 133, 347–361, https://doi.org/10.1130/B35653.1, 2021. a
Colli, L., Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input model, Gondwana Res., 53, 252–272, https://doi.org/10.1016/j.gr.2017.04.027, 2018. a
Corrieu, V., Thoraval, C., and Ricard, Y.: Mantle dynamics and geoid Green functions, Geophys. J. Int., 120, 516–523, https://doi.org/10.1111/j.1365-246X.1995.tb01835.x, 1995. a, b
Craig, C. H. and McKenzie, D.: Surface deformation, gravity and the geoid from a three-dimensional convection model at low Rayleigh numbers, Earth Planet. Sc. Lett., 83, 123–136, https://doi.org/10.1016/0012-821X(87)90056-2, 1987. a
Crameri, F., Schmeling, H., Golabek, G. J., Duretz, T., Orendt, R., Buiter, S. J., May, D. A., Kaus, B. J., Gerya, T. V., and Tackley, P. J.: A comparison of numerical surface topography calculations in geodynamic modelling: An evaluation of the `sticky air' method, Geophys. J. Int., 189, 38–54, https://doi.org/10.1111/j.1365-246X.2012.05388.x, 2012. a
Czarnota, K., Hoggard, M. J., White, N., and Winterbourne, J.: Spatial and temporal patterns of Cenozoic dynamic topography around Australia, Geochem. Geophy. Geosy., 14, 634–658, https://doi.org/10.1029/2012GC004392, 2013. a
Dannberg, J., Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., and Myhill, R.: The importance of grain size to mantle dynamics and seismological observations, Geochem. Geophy. Geosy., 18, 3034–3061, https://doi.org/10.1002/2017GC006944, 2017. a
Davies, D. R., Davies, J. H., Bollada, P. C., Hassan, O., Morgan, K., and Nithiarasu, P.: A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling, Geosci. Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, 2013. a, b, c
Davies, D. R., Valentine, A. P., Kramer, S. C., Rawlinson, N., Hoggard, M. J., Eakin, C. M., and Wilson, C. R.: Earth's multi-scale topographic response to global mantle flow, Nat. Geosci., 12, 845–850, https://doi.org/10.1038/s41561-019-0441-4, 2019. a, b, c, d
Davies, D. R., Ghelichkhan, S., Hoggard, M. J., Valentine, A. P., and Richards, F. D.: Observations and Models of Dynamic Topography: Current Status and Future Directions, chap. 11, in: Dynamics of Plate Tectonics and Mantle Convection, edited by: Duarte, J., Elsevier, Amsterdam (Netherlands), Oxford (UK), Cambridge (MA, USA), https://doi.org/10.1016/B978-0-323-85733-8.00017-2, pp. 223–269, 2023. a, b
Fernandes, V. M. and Roberts, G. G.: Cretaceous to Recent net continental uplift from paleobiological data: Insights into sub-plate support, GSA Bulletin, 133, 1–20, https://doi.org/10.1130/b35739.1, 2021. a, b, c
Fernandes, V. M., Roberts, G. G., White, N., and Whittaker, A. C.: Continental-Scale Landscape Evolution: A History of North American Topography, J. Geophys. Res.-Earth, 124, 1–34, https://doi.org/10.1029/2018jf004979, 2019. a
Fernandes, V. M., Roberts, G. G., and Richards, F.: Testing Mantle Convection Simulations With Paleobiology and Other Stratigraphic Observations: Examples From Western North America, Geochem. Geophy. Geosy., 25, e2023GC011381, https://doi.org/10.1029/2023GC011381, 2024. a
Fichtner, A. and Villaseñor, A.: Crust and upper mantle of the western Mediterranean – Constraints from full-waveform inversion, Earth Planet. Sc. Lett., 428, 52–62, https://doi.org/10.1016/j.epsl.2015.07.038, 2015. a
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P.: Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods, Geophys. J. Int., 179, 1703–1725, https://doi.org/10.1111/j.1365-246X.2009.04368.x, 2009. a
Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., and Villaseñor, A.: Multiscale full waveform inversion, Geophys. J. Int., 194, 534–556, https://doi.org/10.1093/gji/ggt118, 2013. a
Flament, N.: Present-day dynamic topography and lower-mantle structure from palaeogeographically constrained mantle flow models, Geophys. J. Int., 216, 2158–2182, https://doi.org/10.1093/gji/ggy526, 2019. a, b
Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J., Heine, C., and Dietmar Müller, R.: Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching, Earth Planet. Sc. Lett., 387, 107–119, https://doi.org/10.1016/j.epsl.2013.11.017, 2014. a
Flament, N., Gurnis, M., Müller, R. D., Bower, D. J., and Husson, L.: Influence of subduction history on South American topography, Earth Planet. Sc. Lett., 430, 9–18, https://doi.org/10.1016/j.epsl.2015.08.006, 2015. a, b
Foley, S. F. and Fischer, T. P.: An essential role for continental rifts and lithosphere in the deep carbon cycle, Nat. Geosci., 10, 897–902, https://doi.org/10.1038/s41561-017-0002-7, 2017. a
Forte, A. M.: Constraints on Seismic Models from Other Disciplines – Implications for Mantle Dynamics and Composition, chap. 1.23, in: Seismology and the Structure of the Earth, edited by: Romanowicz, B. and Dziewonski, A., Elsevier B. V., Amsterdam, https://doi.org/10.1016/B978-044452748-6.00027-4, pp. 805–858, 2007. a, b, c
Forte, A. M. and Peltier, R.: Viscous Flow Models of Global Geophysical Observables 1. Forward Problems, J. Geophys. Res., 96, 20131–20159, https://doi.org/10.1029/91JB01709, 1991. a
Forte, A. M. and Peltier, W. R.: The Kinematics and Dynamics of Poloidal-Toroidal Coupling in Mantle Flow: The Importance of Surface Plates and Lateral Viscosity Variations, Adv. Geophys., 36, 1–119, https://doi.org/10.1016/S0065-2687(08)60537-3, 1994. a
Forte, A. M., Simmons, N. A., and Grand, S. P.: Constraints on Seismic Models from Other Disciplines – Constraints on 3-D Seismic Models from Global Geodynamic Observables: Implications for the Global Mantle Convective Flow, in: Treatise on Geophysics, Second Edition, vol. 1, Elsevier, https://doi.org/10.1016/B978-0-444-53802-4.00028-2, pp. 853–907, 2015. a
French, S. W. and Romanowicz, B.: Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525, 95–99, https://doi.org/10.1038/nature14876, 2015. a
Galloway, W. E., Whiteaker, T. L., and Ganey-Curry, P.: History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin, Geosphere, 7, 938–973, https://doi.org/10.1130/GES00647.1, 2011. a
Gantmacher, F. R.: The Theory of Matrices, Chelsea Publishing Company, New York, ISBN 9780821813935, 1959. a
Ghelichkhan, S.: Propagator Matrix Code for Calculating Dynamic Topography (v0.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.12696774, 2024. a
Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Global mantle flow retrodictions for the early Cenozoic using an adjoint method: Evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses, Geophys. J. Int., 226, 1432–1460, https://doi.org/10.1093/gji/ggab108, 2021. a, b, c, d, e, f, g, h
Ghosh, A. and Holt, W. E.: Plate Motions and Stresses from Global Dynamic Models, Science, 335, 838–843, https://doi.org/10.1126/science.1214209, 2012. a
Ghosh, A., Becker, T. W., and Zhong, S. J.: Effects of lateral viscosity variations on the geoid, Geophys. Res. Lett., 37, 2–7, https://doi.org/10.1029/2009GL040426, 2010. a
Glišović, P. and Forte, A. M.: A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle, J. Geophys. Res.-Sol. Ea., 121, 4067–4084, https://doi.org/10.1002/2016JB012841, 2016. a
Gunnell, Y. and Burke, K.: The African Erosion Surface: A Continental-Scale Synthesis of Geomorphology, Tectonics, and Environmental Change over the Past 180 Million Years, Memoir of the Geological Society of America, 201, 1–66, https://doi.org/10.1130/2008.1201, 2008. a
Gurnis, M., Mitrovica, J. X., Ritsema, J., and Van Heijst, H.-J.: Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African Superplume, Geochem. Geophy. Geosy., 1, 1–35, https://doi.org/10.1029/1999GC000035, 2000. a
Hager, B. H.: Subducted Slabs and the Geoid: Constraints on Mantle Rheology and Flow, J. Geophys. Res., 89, 6003–6015, 1984. a
Hager, B. H. and Clayton, R. W.: Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid, chap. 9, in: Mantle Convection: Plate Tectonics and Global Dynamics, edited by Peltier, W. R., Gordon and Breach Science Publishers, New York, pp. 657–763, ISBN 9780677221205, 1989. a, b, c, d, e, f
Hager, B. H. and O'Connell, R. J.: A Simple Global Model of Plate Dynamics and Mantle Convection, J. Geophys. Res., 86, 4843–4867, https://doi.org/10.1029/JB086iB06p04843, 1981. a, b, c, d
Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P., and Dziewonski, A. M.: Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545, https://doi.org/10.1038/314752a0, 1985. a, b
Hazzard, J. A. N., Richards, F. D., Goes, S. D. B., and Roberts, G. G.: Probabilistic Assessment of Antarctic Thermomechanical Structure: Impacts on Ice Sheet Stability, EarthArXiv, https://doi.org/10.31223/X5C35R, 2022. a
Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems, Geophys. J. Int., 210, 833–851, https://doi.org/10.1093/gji/ggx195, 2017. a
Hoggard, M. J., White, N., and Al-Attar, D.: Supplementary Information for “Global dynamic topography observations reveal limited influence of large-scale mantle flow”, Nat. Geosci., 9, 1–34, https://doi.org/10.1038/ngeo2709, 2016b. a
Hoggard, M. J., Austermann, J., Randel, C., and Stephenson, S.: Observational Estimates of Dynamic Topography Through Space and Time, chap. 15, in: Mantle Convection and Surface Expressions, edited by: Marquardt, H., Ballmer, M., Cottaar, S., and Konter, J., AGU, https://doi.org/10.1002/9781119528609.ch15, pp. 371–411, 2021. a, b, c, d, e
Jeans, J. H.: The Propagation of Earthquake Waves, P. Roy. Soc. Lond. A, 102, 554–574, 1923. a
Kramer, S. C., Davies, D. R., and Wilson, C. R.: Analytical solutions for mantle flow in cylindrical and spherical shells, Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, 2021. a
Lambeck, K., Smither, C., and Johnston, P.: Sea-level change, glacial rebound and mantle viscosity for northern Europe, Geophys. J. Int., 134, 102–144, https://doi.org/10.1046/j.1365-246X.1998.00541.x, 1998. a
Lau, H. C. P., Mitrovica, J. X., Davis, J. L., Tromp, J., Yang, H.-Y., and Al-Attar, D.: Tidal tomography constrains Earth's deep-mantle buoyancy, Nature, 551, 321–326, https://doi.org/10.1038/nature24452, 2017. a
Lees, M. E., Rudge, J. F., and McKenzie, D.: Gravity, topography, and melt generation rates from simple 3D models of mantle convection, Geochem. Geophy. Geosy., 21, 1–29, https://doi.org/10.1029/2019gc008809, 2020. a
Lekić, V. and Fischer, K. M.: Contrasting lithospheric signatures across the western United States revealed by Sp receiver functions, Earth Planet. Sc. Lett., 402, 90–98, https://doi.org/10.1016/j.epsl.2013.11.026, 2014. a
Liu, L. and Gurnis, M.: Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection, J. Geophys. Res.-Sol. Ea., 113, 1–17, https://doi.org/10.1029/2008jb005594, 2008. a
Liu, S. and King, S. D.: A benchmark study of incompressible Stokes flow in a 3-D spherical shell using ASPECT, Geophys. J. Int., 217, 650–667, https://doi.org/10.1093/gji/ggz036, 2019a. a, b
Liu, S. and King, S. D.: A benchmark study of incompressible Stokes flow in a 3-D spherical shell using ASPECT, Geophys. J. Int., 217, 650–667, https://doi.org/10.1093/gji/ggz036, 2019b. a
Lu, C., Forte, A. M., Simmons, N. A., Grand, S. P., Kajan, M. N., Lai, H., and Garnero, E. J.: The Sensitivity of Joint Inversions of Seismic and Geodynamic Data to Mantle Viscosity, Geochem. Geophy. Geosy., 21, 1–29, https://doi.org/10.1029/2019gc008648, 2020. a
McKenzie, D.: Surface deformation, gravity anomalies and convection, Geophys. J. Roy. Astr. S., 48, 211–238, https://doi.org/10.1111/j.1365-246X.1977.tb01297.x, 1977. a
McKenzie, D. P., Roberts, J. M., and Weiss, N. O.: Convection in the earth's mantle: Towards a numerical simulation, J. Fluid Mech., 62, 465–538, 1974. a
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., Zahirovic, S., and Müller, R. D.: Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth-Sci. Rev., 214, 1–44, https://doi.org/10.1016/j.earscirev.2020.103477, 2021. a, b, c, d, e
Mitrovica, J. X. and Forte, A. M.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sc. Lett., 225, 177–189, https://doi.org/10.1016/j.epsl.2004.06.005, 2004. a, b, c
Molnar, P., England, P. C., and Jones, C. H.: Mantle dynamics, isostasy, and the support of high terrain, J. Geophys. Res.-Sol. Ea., 120, 1932–1957, https://doi.org/10.1002/2014JB011724, 2015. a
Morris, M., Fernandes, V. M., and Roberts, G. G.: Extricating dynamic topography from subsidence patterns: Examples from Eastern North America's passive margin, Earth Planet. Sc. Lett., 530, 1–13, https://doi.org/10.1016/j.epsl.2019.115840, 2020. a
Moucha, R. and Forte, A. M.: Changes in African topography driven by mantle convection: supplementary information, Nat. Geosci., 4, 707–712, https://doi.org/10.1038/ngeo1235, 2011. a
Moucha, R., Forte, A. M., Mitrovica, J. X., and Daradich, A.: Lateral variations in mantle rheology: Implications for convection related surface observables and inferred viscosity models, Geophys. J. Int., 169, 113–135, https://doi.org/10.1111/j.1365-246X.2006.03225.x, 2007. a
Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., and Grand, S. P.: Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform, Earth Planet. Sc. Lett., 271, 101–108, https://doi.org/10.1016/j.epsl.2008.03.056, 2008. a
O'Connell, R. J.: Pleistocene Glaciation and the Viscosity of the Lower Mantle, Geophys. J. Roy. Astr. S., 23, 299–327, https://doi.org/10.1111/j.1365-246X.1971.tb01823.x, 1971. a
O'Malley, C. P. B., White, N. J., Stephenson, S. N., and Roberts, G. G.: Large-Scale Tectonic Forcing of the African Landscape, J. Geophys. Res.-Earth, 126, 1–37, https://doi.org/10.1029/2021jf006345, 2021. a, b
Panasyuk, S. V., Hager, B. H., and Forte, A. M.: Understanding the effects of mantle compressibility on geoid kernels, Geophys. J. Int., 124, 121–133, https://doi.org/10.1111/j.1365-246X.1996.tb06357.x, 1996. a, b, c, d
Panton, J., Davies, J. H., and Myhill, R.: The Stability of Dense Oceanic Crust Near the Core-Mantle Boundary, J. Geophys. Res.-Sol. Ea., 128, 1–21, https://doi.org/10.1029/2022JB025610, 2023. a, b, c
Priestley, K. and McKenzie, D.: The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle, Earth Planet. Sc. Lett., 381, 78–91, https://doi.org/10.1016/j.epsl.2013.08.022, 2013. a, b
Ribe, N. M.: Analytical Approaches to Mantle Dynamics, Treatise on Geophysics, 7, 167–226, https://doi.org/10.1016/B978-044452748-6.00117-6, 2007. a, b
Ricard, Y.: Physics of Mantle Convection, Treatise on Geophysics, 7, 31–88, 2007. a
Richards, F. D., Hoggard, M. J., White, N., and Ghelichkhan, S.: Quantifying the relationship between short-wavelength dynamic topography and thermomechanical structure of the upper mantle using calibrated parameterization of anelasticity, J. Geophys. Res.-Sol. Ea., 125, 1–36, https://doi.org/10.1029/2019JB019062, 2020. a, b
Richards, F. D., Hoggard, M. J., Ghelichkhan, S., Koelemeijer, P., and Lau, H. C. P.: Geodynamic, geodetic, and seismic constraints favour deflated and dense-cored LLVPs, Earth Planet. Sc. Lett., 602, 1–13, https://doi.org/10.1016/j.epsl.2022.117964, 2023. a, b, c
Richards, M. A. and Hager, B. H.: Geoid Anomalies in a Dynamic Earth, J. Geophys. Res., 89, 5987–6002, https://doi.org/10.1029/JB089iB07p05987, 1984. a, b
Roberts, G., O'Malley, C., Panton, J., Richards, F., Davies, H., Milanez Fernandes, V., and Ghelichkhan, S.: 'Reconciling Surface Deflections From Simulations of Global Mantle Convection': Numerical model dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.12704925, 2024. a
Salles, T., Flament, N., and Müller, D.: Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period, Geochem. Geophy. Geosy., 18, 280–305, https://doi.org/10.1002/2016GC006617, 2017. a
Spasojevic, S. and Gurnis, M.: Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous, AAPG Bull., 96, 2037–2064, https://doi.org/10.1306/03261211121, 2012. a
Stanley, J. R., Braun, J., Baby, G., Guillocheau, F., Robin, C., Flowers, R. M., Brown, R., Wildman, M., and Beucher, R.: Constraining Plateau Uplift in Southern Africa by Combining Thermochronology, Sediment Flux, Topography, and Landscape Evolution Modeling, J. Geophys. Res.-Sol. Ea., 126, 1–34, https://doi.org/10.1029/2020JB021243, 2021. a, b
Steinberger, B.: Effects of latent heat release at phase boundaries on flow in the Earth's mantle, phase boundary topography and dynamic topography at the Earth's surface, Phys. Earth Planet. In., 164, 2–20, https://doi.org/10.1016/j.pepi.2007.04.021, 2007. a
Steinberger, B.: Topography caused by mantle density variations: Observation-based estimates and models derived from tomography and lithosphere thickness, Geophys. J. Int., 205, 604–621, https://doi.org/10.1093/gji/ggw040, 2016. a
Steinberger, B. and Antretter, M.: Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits, Geochem. Geophy. Geosy., 7, 1–25, https://doi.org/10.1029/2006GC001409, 2006. a
Steinberger, B. and Calderwood, A. R.: Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations, Geophys. J. Int., 167, 1461–1481, https://doi.org/10.1111/j.1365-246X.2006.03131.x, 2006. a, b
Steinberger, B., Nelson, P. L., Grand, S. P., and Wang, W.: Yellowstone plume conduit tilt caused by large-scale mantle flow, Geochem. Geophy. Geosy., 20, 5896–5912, https://doi.org/10.1029/2019gc008490, 2019. a
Stephenson, S. N., White, N. J., Carter, A., Seward, D., Ball, P. W., and Klöcking, M.: Cenozoic Dynamic Topography of Madagascar, Geochem. Geophy. Geosy., 22, 1–38, https://doi.org/10.1029/2020gc009624, 2021. a
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects of an endothermic phase transition at 670 km depth on spherical mantle convection, Nature, 361, 699–704, https://doi.org/10.1038/361699a0, 1993. a
Thoraval, C. and Richards, M. A.: The geoid constraint in global geodynamics: Viscosity structure, mantle heterogeneity models and boundary conditions, Geophys. J. Int., 131, 1–8, https://doi.org/10.1111/j.1365-246X.1997.tb00591.x, 1997. a, b
Thoraval, C., Machete, P., and Cazenave, A.: Influence of mantle compressibility and ocean warping on dynamical models of the geoid, Geophys. J. Int., 117, 566–573, https://doi.org/10.1111/j.1365-246X.1994.tb03954.x, 1994. a
Turcotte, D. L. and Schubert, G.: Geodynamics, 2nd edn., Cambridge University Press, Cambridge, ISBN 9780521186230, 2002. a
van Heck, H. J., Davies, J. H., Elliott, T., and Porcelli, D.: Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA, Geosci. Model Dev., 9, 1399–1411, https://doi.org/10.5194/gmd-9-1399-2016, 2016. a
Wang, Y., Liu, L., and Zhou, Q.: Topography and Gravity Reveal Denser Cratonic Lithospheric Mantle Than Previously Thought, Geophys. Res. Lett., 49, e2021GL096844, https://doi.org/10.1029/2021GL096844, 2022. a, b, c, d
Wessel, P., Luis, J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy. Geosy., 20, 1–9, https://doi.org/10.1029/2019gc008515, 2019. a
Wieczorek, M. A. and Meschede, M.: SHTools: Tools for Working with Spherical Harmonics, Geochem. Geophy. Geosy., 19, 1–19, https://doi.org/10.1029/2018GC007529, 2018. a
Zhong, S., Gurnis, M., and Hulbert, G.: Accurate determination of surface normal stress in viscous flow from a consistent boundary flux method, Phys. Earth Planet. In., 78, 1–8, https://doi.org/10.1016/0031-9201(93)90078-N, 1993. a
Zhou, Q. and Liu, L.: Topographic evolution of the western United States since the early Miocene, Earth Planet. Sc. Lett., 514, 1–12, https://doi.org/10.1016/j.epsl.2019.02.029, 2019. a
Zhou, Q., Liu, L., and Hu, J.: Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs, Nat. Geosci., 11, 70–76, https://doi.org/10.1038/s41561-017-0035-y, 2018. a
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modeling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
We wish to understand how the history of flowing rock within Earth's interior impacts deflection...