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Abstract. The modern state of the mantle and its evolution
on geological timescales are of widespread importance for
the Earth sciences. For instance, it is generally agreed that
mantle flow is manifest in topographic and drainage network
evolution, glacio-eustasy, and the distribution of sediments.
There are now a variety of theoretical approaches to pre-
dict histories of mantle convection and its impact on surface
deflections. A general goal is to make use of observed de-
flections to identify Earth-like simulations and constrain the
history of mantle convection. Several important insights into
the role of radial and non-radial viscosity variations, gravi-
tation, and the importance of shallow structure already exist.
Here we seek to bring those insights into a single framework
to elucidate the relative importance of popular modeling
choices for predicted instantaneous vertical surface deflec-
tions. We start by comparing results from numeric and ana-
lytic approaches to solving the equations of motion that are
ostensibly parameterized to be as similar as possible. Deflec-
tions predicted by such numeric and analytic models can vary
by ∼ 10 %, and the difference increases to∼ 25 % when vis-
cosity is temperature-dependent. Including self-gravitation
and the gravitational potential of the deflected surface is a rel-
atively small source of discrepancy. However, spherical har-
monic correlations between model predictions decrease dra-
matically with the removal of shallow structure to increasing
depths and when radial viscosity structure is modified. The
results emphasize the sensitivity of instantaneous surface de-
flections to density and viscosity anomalies in the upper man-

tle. They reinforce the view that a detailed understanding of
lithospheric structure is crucial for relating mantle convective
history to observations of vertical motions at Earth’s surface.

1 Introduction

Mantle convection plays a crucial role in Earth’s evolution
(e.g., Hager and Clayton, 1989; Parsons and Daly, 1983;
Pekeris, 1935). It is well understood, for instance, that flow
in the mantle is fundamental in the transfer of heat and chem-
icals from the deep Earth to the surface, in driving horizontal
and vertical lithospheric motions (thus tectonic processes),
and in magnetism via interactions with the core (e.g., Big-
gin et al., 2012; Davies et al., 2023; Foley and Fischer, 2017;
Hoggard et al., 2016a; Holdt et al., 2022; Pekeris, 1935). In
turn, many processes operating at or close to Earth’s surface
are impacted, including glacio-eustasy, magmatism, climate,
sediment routing, natural resource distribution, drainage net-
work evolution, and development of biodiversity (e.g., Ba-
hadori et al., 2022; Ball et al., 2021; Braun, 2010; Chang and
Liu, 2021; Hazzard et al., 2022; O’Malley et al., 2021; Salles
et al., 2017; Stanley et al., 2021). Clearly, understanding the
physical and chemical evolution of the mantle has broad im-
plications. An important goal is to determine contributions
to surface processes from the modern mantle and its history
during, say, the last 100 million years.
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Residual oceanic age–depth measurements, potential field
data, seismic tomographic models, and melting histories of
young mafic rocks are providing increasingly coherent ob-
servational insights into the modern and recent state of the
mantle (e.g., Ball et al., 2022; Davies et al., 2023; Ficht-
ner et al., 2009, 2013; Fichtner and Villaseñor, 2015; French
and Romanowicz, 2015; Hoggard et al., 2016a; Holdt et al.,
2022; Kaula, 1963; Lekić and Fischer, 2014; Priestley and
McKenzie, 2013; Richards et al., 2023). Stratigraphic and
geomorphic observations as well as magmatic histories pro-
vide clues about the history of mantle convection on geo-
logic timescales (e.g., Al-Hajri et al., 2009; Czarnota et al.,
2013; Flament et al., 2015; Fernandes et al., 2019; Fernan-
des and Roberts, 2021; Galloway et al., 2011; Gunnell and
Burke, 2008; Gurnis et al., 2000; Hoggard et al., 2021; Lam-
beck et al., 1998; Morris et al., 2020; O’Malley et al., 2021;
Stanley et al., 2021). Despite these advances, observations
providing information about the history of mantle convec-
tion are sparse in places, especially within continental interi-
ors and back through geologic time (see, e.g., Hoggard et al.,
2021). Moreover, disentangling contributions from crustal,
lithospheric, and sub-lithospheric processes to surface de-
flections remains challenging and controversial (see, e.g.,
Hoggard et al., 2021; Wang et al., 2022).

Theoretical approaches that retrodict histories of mantle
convection can, in principle, be used to fill in spatiotempo-
ral gaps in the observational record and disentangle contri-
butions to surface observables from different geologic pro-
cesses (e.g., Baumgardner, 1985; Bunge and Baumgardner,
1995; Davies et al., 2013; Flament et al., 2015; Ghelichkhan
et al., 2021; Hager et al., 1985; Moucha and Forte, 2011;
Steinberger and Antretter, 2006). Increasingly realistic geo-
dynamic simulations can incorporate, for instance, plate mo-
tions; gravitation and deflection of gravitational potential
fields; complex rheologies; viscosity laws that can include
temperature, pressure, composition, grain size, and strain
rate dependence; and assimilation of seismic tomographic in-
formation into flow solutions – resulting in a diverse array
of retrodicted flow histories. Mineralogical phase changes,
compressibility, different surface and core–mantle boundary
slip conditions (e.g., no-slip, free-slip), chemical and ther-
mal buoyancy, and plate motion constraints on mantle struc-
ture can also generate diverse predictions of mantle con-
vection and resultant surface deflections (e.g., Baumgardner,
1985; Bunge et al., 2002, 2003; Corrieu et al., 1995; Crameri
et al., 2012; Dannberg et al., 2017; Flament et al., 2014;
Forte, 2007; Ghosh and Holt, 2012; Glišović and Forte, 2016;
Hager and Clayton, 1989; Heister et al., 2017; Liu and Gur-
nis, 2008; Panasyuk et al., 1996; Ribe, 2007; Ricard, 2007;
Tackley et al., 1993; Zhong et al., 2008; Zhou et al., 2018;
Liu and King, 2019a).

Aside from the fundamental choice of governing equations
and parameterizations underpinning simulations, mathemat-
ical and computational approaches to solve the equations of
motion generate different predictions of surface deflections.

These approaches sit within two broad families: numeric
simulations (e.g., ASPECT, CitcomS, TERRA; Bangerth
et al., 2023; Baumgardner, 1985; Zhong et al., 2000) and
propagator-matrix-based, quasi-analytic techniques that can
be solved in two or three dimensions, and, importantly for
our purposes, spherically and spectrally (e.g., Colli et al.,
2016; Hager and O’Connell, 1979; Parsons and Daly, 1983).

A challenge then is to establish whether observed sur-
face deflections can be used to discriminate between theo-
retical predictions of mantle convection, and, in turn, iden-
tify models that generate realistic and testable retrodictions.
In this study we are principally concerned with establishing
similarities and sensitivities of predicted instantaneous ver-
tical surface deflections. We focus on vertical motions for
two reasons. First, inventories of measurements of uplift and
subsidence – on timescales of mantle convection – now ex-
ist for most continents and could be compared to predic-
tions from global simulations in future work (e.g., Fernandes
and Roberts, 2021; Fernandes et al., 2024, and references
therein). Secondly, many geodynamic simulations incorpo-
rate horizontal motions of the lithosphere, which limits their
use as a comparator.

From an observational perspective, it would be useful
to establish rules of thumb that quantify the sensitivity of
surface deflections to choices made when predicting them.
Many such rules are already well known from analytic and
numeric solutions of the equations of motion (e.g., Colli
et al., 2016; Hager and O’Connell, 1979; Holdt et al., 2022;
Lees et al., 2020; Parsons and Daly, 1983). For instance, a
suite of benchmark studies exist that compare predictions
from numeric mantle convection simulations with analytic
solutions (see, e.g., Bauer et al., 2019; Kramer et al., 2021;
Zhong et al., 2008, and references therein). Those papers
tend to focus on establishing the fidelity of numeric models.
In contrast, our goals are to, first, understand how calculated
deflections are impacted by the choice of methodology used
to solve the equations of motion and, secondly, to establish
sensitivities to popular assumptions incorporated into simu-
lations. We want to know the extent to which an improved fit
between predictions and observations reflects a more Earth-
like density and viscosity structure versus modeling choices.
Our thesis is that performing all tests in a self-consistent
framework, as we do in this study, provides a straightfor-
ward way to collate insights into the sensitivities of predicted
surface deflections and to simplify the comparison of predic-
tions from different suites of models.

We start by exploring the consequences of solving the
equations of motion numerically, using the TERRA software,
and analytically, using the Ghelichkhan et al. (2021) prop-
agator matrix algorithms (see Fig. 1 and the Supplement).
We make use of the flexibility of numeric approaches by in-
corporating a variety of assumptions and parameterizations
that are not amenable to analytic attack (e.g., temperature-
dependent viscosity). All numeric simulations presented in
this paper were driven by the plate motion history of Merdith
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Figure 1. Examples of mantle densities and viscosity used to calculate stresses and surface deflections numerically and analytically. (a) Great-
circle slice (180°) through full-resolution, present-day density ρ, predicted by the numeric model TERRA with temperature-dependent
viscosity (Model 11a; see Table 2 and body text); see the globe to left for the location. White circles are 20° intervals, the filled black circle
indicates the orientation of the cross-section, the dashed line is the 660 km depth contour, the dotted line is the 1038 km depth contour at
which depth ρ is plotted on the globe, and the white–black curve is the numeric prediction of surface normal stress σrr from Model 11a.
(b) As (a) but the slice is through the spherical harmonic expansion of density structure to maximum degree l = 50 (λ≈ 792 km; Model 11b);
the black–white curve is surface deflection h, calculated using the (analytic) propagator matrix approach (Model 12). (c) As (a) but for a
slice through the full-resolution viscosity structure of numeric model. (d) As (c) but for the mean (radial) viscosity structure, used along with
the density structure shown in (b) to generate an analytic solution for surface deflection shown by the black–white curve atop (b). Panels (e)
and (f) are as panels (c) and (d), but viscosity is expressed as a percentage anomaly with respect to the layer (radial) mean. (g, h) Predicted
densities at 270 km depth at 0 and 100 Ma from the numeric model with viscosity independent of temperature (Model 1a). Extended results
are shown in Fig. S1 in the Supplement. Plate motions and paleo-coastlines are from Merdith et al. (2021).

et al. (2021, see Figs. 1g–h and S1). The models have a res-
olution of 60 km at their surface (see the Supplement for de-
tails of model setup and execution). We note that they do not
directly assimilate information about the mantle from tomo-
graphic models. Ensuring that numeric simulations are ac-
curate and stable means that computational burden is often

considerable, and hence systematic exploration of parameter
space remains challenging. In contrast, analytic approaches
can yield calculated surface deflections that are (mathemati-
cally) accurate, whilst including features such as radial grav-
itation, with much less computational cost. Consequently, we
make use of propagator matrix techniques to explore param-
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eter space, examine benchmarks, and reproduce results. We
establish the sensitivity of solutions to different parameteri-
zations and approaches to solving the equations of motion.

There are at least two important considerations when solv-
ing the equations of motion analytically. First, solutions are
only known to exist in the spherical harmonic domain for
fluid bodies with radial viscosity (i.e., toroidal variations in
viscosity cannot be included). Second, generating solutions
in the spherical harmonic domain places practical limits on
the spatial resolution of solutions. Consider that the num-
ber of spherical harmonic coefficients per degree is 2l+ 1,
where l is degree, so for a given maximum degree L, there
are (L+ 1)2 coefficients in total. For instance, when L= 50
there are 2601 coefficients for each model. Also consider that
spatial resolution increases approximately with the recipro-
cal of l (see Sect. 2.4). Incorporating all of the output from
the numeric models (60 km at the surface) would require
L≈ 880, with 776 161 coefficients, which is computation-
ally challenging. Furthermore, observational constraints on
mantle-related surface deflection are unlikely to be finer than
the flexural wavelength of the overlying lithosphere, l ≈ 50
(e.g., Holdt et al., 2022). With these limitations in mind, we
compared surface deflections predicted using different ap-
proaches at the same resolution up to l = 50 (see the Sup-
plement and Sect. 2.5).

Most of the tests in this paper compare surface deflections
calculated using the entirety of the model domains (i.e., from
the core–mantle boundary – CMB – to Earth’s surface). This
approach simplifies like-for-like comparisons of model pre-
dictions and comparisons to increasingly complex scenarios.
Since the central focus of this work is merely on quantify-
ing contrasts in predicted instantaneous surface deflections
that arise from choices made when simulating mantle con-
vection, we wish, here, to avoid post hoc modifications (e.g.,
lithospheric flexure and crustal isostasy). We stress that the
amplitudes of calculated deflections will then not necessarily
reflect the amplitudes of true dynamic topography estimated
from independent observations of, for example, oceanic age–
depth residuals. In subsequent tests we examine the conse-
quences of simply removing shallow structure, a widely used
approach for estimating dynamic support from simulations
(see, e.g., Flament et al., 2013; Wang et al., 2022).

With this framework in place we generate, compare, and
contrast predicted surface deflections. The first suite of tests
are purposefully simple, e.g., incompressible, constant gravi-
tational acceleration (no self-gravitation or radial variation in
gravitation) and have radial viscosity independent of temper-
ature. Results are compared to estimates of sub-plate support
from oceanic age–depth residuals with a view to quantifying
corrections necessary to convert predicted instantaneous sur-
face deflections into estimates of sub-plate support. We then
systematically examine the impact of incorporating radial
variations in gravitational acceleration, contribution to flow
from deflection of the gravitational potential field, removal
of shallow density structure, choice of surface and CMB

slip conditions, inclusion of temperature-dependent viscos-
ity, and amplification or reduction of viscosity and density
anomalies in the upper and lower mantle (Sect. 4; Tables 2
and 3). A closed-loop modeling strategy is explored in which
predicted surface deflections from these relatively complex
models are compared to results from simpler reference mod-
els. Finally, a methodology for assessing effective contribu-
tions to surface topography from mantle anomalies is pre-
sented.

2 Numeric and analytic calculations of surface
deflection

2.1 Equations governing predicted mantle convection

Theoretical predictions of surface displacements from man-
tle convection arise from the application of physical laws that
take the form of conservation equations for mass, momen-
tum, and energy (see, e.g., Hager and O’Connell, 1981; Par-
sons and Daly, 1983). Here, we solve those equations across
a 3D spherical domain using the finite-element code TERRA
(Baumgardner, 1985; Bunge and Baumgardner, 1995). Un-
der this formulation, theoretical convection in an incom-
pressible fluid can be expressed by the following three di-
mensionless equations (e.g., Baumgardner, 1985; Davies
et al., 2013; McKenzie et al., 1974; Parsons and Daly, 1983).
The first is the continuity condition for conservation of mass,

∇ ·u= 0, (1)

where u is the fluid velocity vector. Since the Prandtl number
is likely to always be extremely large in this system – mantle
viscosity is expected to be many orders of magnitude larger
than the product of density and thermal diffusivity – inertial
terms can be neglected (e.g., Parsons and Daly, 1983). The
second is the equation of motion,

∇σ =−ρ′g, (2)

where

ρ′ =−αρ0(T − Tref). (3)

σ is the 3× 3 stress tensor where the (radial) hydro-
static component balancing the reference density structure
has been subtracted, ρ′ is the density difference due to tem-
perature, α is the coefficient of thermal expansion; T is
temperature; Tref is a radially varying reference temperature
structure, which has a constant value in the mid-mantle and
joins a cold thermal boundary layer near the surface and a hot
one at the CMB, reaching the surface, Ts, and core–mantle
boundary, TCMB, temperatures at the respective boundaries;
and g is gravitational acceleration acting radially (see Ta-
ble 1). This stress tensor σij is decomposed into deviatoric
and lithostatic components:

σij = τij −pδij , (4)
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Table 1. Summary of model parameters.

Parameter Symbol Value Units

Surface temperature Ts 300 K
Core–mantle boundary temperature TCMB 3000 K
Internal heating rate H See text. Wkg−1

Thermal expansivity α 2.5× 10−5 K−1

Thermal conductivity K 4 Wm−1 K−1

Thermal diffusivity κ 8.08× 10−7 m2 s−1

Specific heat capacity Cp 1100 Jkg−1 K−1

Reference viscosity η0 4× 1021 Pas−1

Reference density ρ0 4500 kgm−3

Overlying fluid density ρw 1 or 1030 kgm−3

where τij is the deviatoric stress tensor, p is dynamic pres-
sure, and δij is the Kronecker delta function. The deviatoric
stress tensor and the strain rate tensor, ε̇ij , are related by

τij = 2ηε̇ij = η
(
∂ui

∂xj
+
∂uj

∂xi

)
, (5)

where η is viscosity, and ∂/∂xi is the spatial partial deriva-
tive. By combining Eqs. (2), (4), and (5) we solve the equa-
tion of motion:

∂(ηεij )

∂xj
−
∂p

∂xi
=−ρ′gδir, (6)

where g is the scalar value of g and δir is the Kronecker delta
selecting the radial direction r .

We first examine predictions from models in which vis-
cosity varies only with depth, i.e., η = η0× ηr, where η0 is
reference viscosity (see Table 1), and ηr is a scaling factor
dependent only on radius, plotted with model results as ap-
propriate throughout this paper. We then include the temper-
ature dependence of viscosity, i.e., η = η0× ηr× ηT, where

ηT = exp(z′− 2T ′). (7)

Dimensionless depth is z′ = z/d , where d = zsurface−

zCMB= 2890 km, and dimensionless temperature is T ′ =
(T − Ts)/(TCMB− Ts), where TCMB− Ts= 2700 K.

Finally, the heat transport equation is solved to ensure con-
servation of energy:

∂T

∂t
+u · ∇T = κ∇2T +

H

Cp
, (8)

where κ is thermal diffusivity, H is internal heat generation,
and Cp is specific heat capacity. See Table 1 for parame-
ter values and units. Heat generation within the mantle de-
pends on the distribution of radiogenic isotopes (e.g., Ricard,
2015). Concentrations of such elements can be tracked in
TERRA using particles varying as a consequence of flow and
melting (see, e.g., Panton et al., 2023; van Heck et al., 2016,
for a full explanation). The bulk composition field, C, which

varies between 0 and 1, is also tracked on particles and cal-
culated for each of the finite elements in the model. The end-
members represent completely depleted harzburgitic mate-
rial (C = 0) and fully enriched basaltic material (C = 1). As
a result, radiogenic heat production across the whole man-
tle volume varies, being ≈ 24 TW (5.8× 10−12 Wkg−1) at
1.2 Ga, and ∼ 18 TW (4.5× 10−12 Wkg−1) by 0 Ma. Simu-
lations are initialized such that the average mantle composi-
tion is C = 0.20 (Panton et al., 2023), and composition obeys
the conservation equation:

∂C

∂t
=−∇ · (Cu). (9)

2.2 Numerical modeling strategy

The Stokes equations described above are solved by the
finite-element method on a series of stacked spherical shells
composed of nodes based on a subdivision of a regular icosa-
hedron, with an identical geometry for each shell when pro-
jected onto the CMB (see, e.g., Fig. 1 of Baumgardner,
1985). The radial spacing of consecutive shells is 45 km,
which is the same as the mean horizontal spacing of the ele-
ments across the entire model domain. The stacking of iden-
tically partitioned shells leads to a finer mean horizontal res-
olution of ≈ 33 km at the CMB and a coarser resolution of
≈ 60 km at the surface. The surfaces of the uppermost ele-
ments in the shallowest shell lie at zero depth. To enable esti-
mates of stress from these models to be directly compared
with analytical solutions obtained from Green’s functions
across layer boundaries, the predicted values of deviatoric
stress were calculated using the calculated velocities from
the nearest shells using the interpolating linear shape func-
tions of the underlying finite elements, while the dynamic
pressure is calculated directly at the surface.

Each numerical model presented in this paper has two
computational stages: “spin-up”, which is used to initialize
the model, and the geologically more realistic “main” stage,
from which we generate predictions of surface deflections.
The spin-up stage includes 2.2 billion years of model run-
time. It has the following conditions imposed to avoid sharp
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velocity and temperature gradients, as well as sudden reorga-
nization of mantle flow when the main model starts. First, a
free-slip condition is imposed at the surface such that hor-
izontal velocities are free to vary. The radial (“vertical”’)
component of the mantle flow velocity at the surface, ur, is
set to zero. While the radial velocity boundary condition is
of the Dirichlet type, the horizontal free-slip boundary con-
dition has no tangential restriction imposed on the flow ve-
locity but rather on the tangential deviatoric stresses acting
on the boundary (τrθ and τrφ , where r , θ , and φ are the radial
and two tangential directions, respectively), which are zero.
Second, an initial, random white noise temperature field gen-
erated with power across spherical harmonic degrees 1–19 is
inserted. Mean mantle temperature is initially 2000 K. Man-
tle convection arises naturally over the first 2 billion years
of model runtime. A horizontal surface velocity condition is
then applied to the surface for 200 Myr. These velocities are
set to be equal to those at 1 Ga extracted from the reconstruc-
tions of Merdith et al. (2021). ur remains zero at the surface.
The resultant mantle structure is used as the initial condition
for the main model.

The main model routine predicts flow from 1 Ga to the
present day. It includes an isothermal condition imposed
at the surface, Ts= 300 K. Horizontal plate slip, applied
in 1 Myr long stages, is prescribed using the plate recon-
structions of Merdith et al. (2021); ur is still zero. Conse-
quently, stirring by plate drift and slab sinking plays a role
in driving mantle flow in these models. An isothermal con-
dition is also imposed at the core–mantle boundary such
that TCMB= 3000 K. A free-slip horizontal velocity bound-
ary condition is imposed there. The radial boundary condi-
tion is ur = 0. Horizontal components of slip are allowed
to naturally emerge and evolve subject to lowermost mantle
flow. Plume behavior is not artificially suppressed or insti-
gated.

To ensure numerical stability and computational accuracy
in these simulations, the reference viscosity, η0, is set to
4× 1021 Pas. This value is probably an order of magnitude
greater than the viscosity of the actual upper mantle (e.g.,
Forte, 2007; Ghelichkhan et al., 2021; Mitrovica and Forte,
2004, and references therein). Consequently, flow velocities
in the simulations are likely to be significantly slower than
in actuality. An obvious cause for concern is that using ac-
tual (comparatively fast) plate velocities as surface bound-
ary conditions atop a relatively slowly convecting “man-
tle” is likely to induce unrealistic flow. To address this is-
sue, imposed plate velocities are scaled such that the root
mean squared (rms) values of the actual applied velocities
(≈ 5 cmyr−1 unscaled) match the rms values of surface ve-
locities (≈ 2.5 cmyr−1) calculated during the spin-up phase
(before plate velocities are imposed on the model) when the
model mantle is convecting naturally and not being driven
by surface velocities. The applied surface plate velocities are
therefore scaled by a factor of 0.5 (i.e., 2.5/5) in the simula-
tions examined in this study. To ensure that volumetric fluxes

through ridges and subduction zones are realistic, simulation
runtimes are increased by a factor of 2; i.e., the 1 Myr long
plate stages are run for twice their elapsed time (2 Myr), but
at half the speed. All times stated throughout the rest of this
paper refer to times re-scaled for real-world comparison, i.e.,
the actual age of the respective plate stage.

For the reference case (Model 1), these conditions lead to
the density distributions shown in Fig. S1. Surface layer den-
sity anomalies occur only as a result of predicted composi-
tional variation, since the surface temperature, Ts, is constant
globally. This model represents the first of two reference nu-
merical models examined in this contribution. It has the ra-
dial viscosity structure shown in Fig. 2c. Later, we investi-
gate a second numerical model incorporating temperature-
dependent viscosity (Eq. 7). We describe numeric and ana-
lytic approaches that use output from these models to calcu-
late instantaneous surface deflections. Both approaches make
use of spherical harmonics.

2.3 Deflections calculated using radial stresses from
numeric simulations

Following Parsons and Daly (1983), surface deformation is
estimated from numeric simulations of mantle convection by
making use of the requirement that normal stress is con-
tinuous across the upper boundary of the solid Earth (see
also McKenzie, 1977; Ricard, 2015). In other words, radial
stresses generated by the solid Earth are required to be bal-
anced by stresses generated by the overlying (oceanic or
atmospheric) fluid. There are three contributions to normal
stress at this boundary from the mantle: hydrostatic stress
that would exist even in the absence of convection, dynamic
stress arising from convection, and viscous stress which op-
poses fluid motion (see Sect. 2.1). To satisfy the continuity
condition, these stresses must be balanced by those gener-
ated by the water (or air) column atop this boundary. If the
pressure from the overlying column is hydrostatic, the resul-
tant condition is

ρwgsh= ρmgsh+ σrr, (10)

where σrr incorporates deviatoric viscous stresses generated
by mantle convection and dynamic pressure (σrr = τrr−p),
obtained by solving Eq. (2). In practice, since values for this
term are obtained by subtracting radial lithostatic stress from
the total stress, values of σrr integrate to zero globally. gs is
gravitational acceleration at Earth’s surface, ρm is the mean
density for the surficial layer, and ρw is the density of the
overlying fluid (see Table 1). Note that we do not impose
additional oceanic plate cooling, e.g., due to hydrothermal
circulation at ridges. Cooling and subsequent subsidence, as
well as passive return flow at ridges, arise naturally from the
solution of the governing equations laid out in Sect. 2.1.

Geosci. Model Dev., 17, 9023–9049, 2024 https://doi.org/10.5194/gmd-17-9023-2024



C. P. B. O’Malley et al.: Reconciling mantle convection simulations 9029

Surface deflection arising in response to predicted convec-
tive flow, h, is approximated by rearranging Eq. (10),

h≈−
σrr

(ρm− ρw)gs
. (11)

Deflections are estimated from radial stresses at times
of interest (e.g., the present day) by rerunning one time
step of the TERRA model. During that time step, a free-
slip boundary condition, for which analytic approximations
for surface deflection exist, is imposed instead of the plate-
slip condition prescribed during the main model run routine
(see Sect. 2.5; Ricard, 2015). The numeric models them-
selves apply a quasi-rigid condition at the surface, whereby
flow is driven by estimates of real plate velocities (from
Merdith et al., 2021), so the surface layers behave as a se-
ries of rigid, laterally mobile plates rather than a single rigid
shell. We assess the accuracy of modifying boundary con-
ditions in this way by converting calculated deflections into
the spherical harmonic domain and comparing them to pre-
dictions generated using the analytic propagator matrix ap-
proach. The consistent boundary flux (CBF) method provides
an alternative means to accurately calculate normal stresses
(Zhong et al., 1993). Previous benchmarking with TERRA
has shown mean errors of a few percent or less for surface de-
flection predictions at low harmonic degrees, l ≤ 16 (Davies
et al., 2013).

2.4 Calculated surface deflections in the spherical
harmonic domain

Transforming stress, or surface deflections, calculated using
numeric approaches into the frequency domain provides a
straightforward means of comparing results to analytic solu-
tions and of quantifying spectral power, i.e., the magnitude
of the contribution to the total signal from different wave-
lengths. Since the models that we investigate are global in
scope, we do so using spherical harmonics.

Any real, square-integrable function over the surface of
the Earth can be described as a function of longitude θ and
latitude φ by a linear combination of spherical harmonics of
degree l and order m,

f (θ,φ)=

L∑
l=1

l∑
m=−l

flmYlm(θ,φ). (12)

The spherical harmonic functions Ylm make up the natural
orthogonal set of basis functions on the sphere, and flm rep-
resents the spherical harmonic coefficients. The spherical
harmonic coefficients, flm, are calculated following the reg-
ularized least-squares methodology described in Hoggard
et al. (2016a). The power at each degree, l, in the resultant
interpolating function is given by

Pl =

l∑
m=−l

f 2
lm. (13)

As an example, Fig. 2d shows a spherical harmonic expan-
sion of the surface stress field predicted by Model 1 at 0 Ma
(see Fig. 2a). We call this result Model 1b, and the original,
full-resolution numerical result is referred to as Model 1a.
The fidelity of the spherical harmonic expansion is demon-
strated by the similarity of the maps and histograms shown
in Fig. 2a–b and d–e.

Using the total power per degree convention, Hoggard
et al. (2016a) derived a rule of thumb for estimating the
power spectrum of dynamic topography (see their Support-
ing Information), PDT

l , using the Kaula (1963) approxima-
tion for the long-wavelength gravity field of Earth as a func-
tion of l:

PDT
l ≈

(
GM

ZR2

)2(2
l
−

3
l2
+

1
l4

)
, (14)

where G is the gravitational constant, M = 5.97× 1024 kg is
the mass of the Earth, and R ≈ 6370 km is Earth’s radius.
The value of admittance, Z, between gravity and topogra-
phy varies as a function of viscosity, as well as the depth
and wavelength of internal density anomalies because of the
depth and degree dependence of their respective sensitivity
kernels (see, e.g., Colli et al., 2016, and references therein).
However, in the upper mantle, which contributes most to sur-
face deflections, the topography and gravity kernels are ap-
proximately proportional to one another across all but the
lowest spherical harmonic degrees, even when this layer is
assumed to be of relatively low viscosity (see, e.g., Colli
et al., 2016, their Fig. 2). This behavior can explain why Hog-
gard et al. (2016a) found that assuming an average value of
Z= 12 mGalkm−1 provides a reasonable approximation of
observed residual topographic trends; thus, we make use of
that value in the remainder of the paper. Finally, it is useful to
note that Jeans (1923) related spherical harmonic degree to
wavelength λ, which at Earth’s surface can be approximated
via λ≈ 2πR/

√
l(l+ 1).

2.5 Surface deflections calculated analytically

The second methodology used to calculate surface deflec-
tion in response to mantle convection is the analytic prop-
agator matrix technique (e.g., Craig and McKenzie, 1987;
Gantmacher, 1959; Ghelichkhan et al., 2021; Parsons and
Daly, 1983; Richards and Hager, 1984). The approach we
take stems from the work of Hager and O’Connell (1981),
who used Green’s functions to solve the equations of mo-
tion in the spherical harmonic domain. Those solutions are
used to generate sensitivity kernels that straightforwardly re-
late, for example, density or temperature anomalies in the
mantle to surface deflections. The kernels are generated in
the frequency domain and constructed such that surface de-
flection sensitivity to mantle (e.g., density) anomalies is cal-
culated as a function of depth (or radius) and wavenumber.
A global spherical harmonic implementation introduced by
Hager et al. (1985) has been extended to include compress-
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ibility, the effect of warping of the gravitational potential by
subsurface density distributions, and radial gravity variations
calculated using radial mean density values (Corrieu et al.,
1995; Forte and Peltier, 1991; Hager and O’Connell, 1981;
Richards and Hager, 1984; Thoraval et al., 1994).

In this study, following Ghelichkhan et al. (2021), surface
deflection for each spherical harmonic coefficient, hlm, is cal-
culated in the spectral domain such that

hlm =
1

(ρm− ρw)

R∫
RCMB

Alδρlm(r) · dr. (15)

Products of the sensitivity kernel, Al, and density anoma-
lies, δρlm, of spherical harmonic degree l and orderm are in-
tegrated with respect to the radius r between the core–mantle
boundary and Earth’s surface radii, RCMB and R, respec-
tively. The sensitivity kernel is given by

Al =−

(
η0

RgR

)(
u1+

ρw

ρ0
u3

)
, (16)

where un(r) represents a set of poloidal variables, which are
posed for the solution of the set of simultaneous equations by
matrix manipulation such that

u(r)=

[
y1η0 y2η03 (y3+ ρ(r)y5)r y4r3

y5rρ03 y6r
2ρ0

]T
, (17)

where 3=
√
l(l+ 1), and y1 to y6 represent the spheri-

cal harmonic coefficients of radial velocity vr, lateral veloc-
ity vθ,φ , radial stress σrr, lateral stress σrθ,φ , gravitational
potential V , and gravitational potential gradient ∂V/∂r , re-
spectively (Hager and Clayton, 1989; Panasyuk et al., 1996).
ρ is the layer mean (l = 0) density. The kernel Al includes
both u1 and u3, two terms in the matrix solution to the
governing equations that affect surface topography. They di-
rectly exert stress on the surface boundary (u1) and change
the gravitational potential at the surface (u3). The functional
forms of calculated sensitivity kernels depend on chosen ra-
dial viscosity profiles and boundary conditions (e.g., free-slip
or no-slip; Parsons and Daly, 1983).

3 Spatial and spectral comparison of model predictions

To quantify impacts of modeling assumptions and ap-
proaches used to solve the equations of motion we compare
calculated surface deflections using the following metrics.

3.1 Euclidean comparisons of amplitudes

First, we calculate root mean squared difference, χ , between
predicted surface deflections in the spatial domain,

χ =

√√√√ 1
N

N∑
n=1

wφ

(
han −h

b
n

)2
, (18)

where han and hbn are predicted surface deflections from the
two models being compared. N is the number of points in
the 1°× 1° gridded maps being compared (e.g., Fig. 3b;
N = 65 341). The prefactor wφ is proportional to cosφ,
where φ is latitude and is included to correct biases in
cell size with latitude; mean wφ = 1. This metric is closely
associated with the mean vertical distance (L2-norm dis-
tance) between predicted and reference surfaces, i.e., 1h=
1/N

∑N
n=1wφ |h

a
n−h

b
n|. These metrics are sensitive to differ-

ences in amplitudes and locations of surface deflections.

3.2 Spectral correlation coefficients

Secondly, to aid comparisons of surface deflections as a
function of scale they are converted into the frequency do-
main using spherical harmonics. The degree correlation spec-
trum, rl, is calculated using pyshtools v4.10 (Wieczorek and
Meschede, 2018) such that

rl =
Sf1f2

√
Sf1f1 · Sf2f2

(19)

where f1 and f2 are the spherical harmonic coefficients of
the two estimates of surface deflection being compared. They
vary as a function of orderm and degree l; f = fml . Sfafb is
the cross-spectrum of the two functions fa and fb. We note
that −1≤ rl ≤ 1, and we calculate the mean value, rl =
1/L

∑L
l=1rl, where L is total number of degrees. Thirdly, the

correlation of the entirety of both functions can be estimated
following Forte et al. (2015) such that

r =

∑
f ∗1 f2√∑

f ∗1 f1
√∑

f ∗2 f2
, where

∑
=

+l∑
m=−l

, (20)

where ∗ indicates complex conjugation (see also Becker and
Boschi, 2002; O’Connell, 1971). This metric is not sensitive
to the amplitudes of surface deflections.

3.3 Comparing calculated power spectra

Finally, differences in power spectra between predicted and
independent surface deflections are calculated such that

χp =

√√√√ 1
L

L∑
l=1

(
log10Pl− log10P

K
l
)2

+

√√√√ 1
L

L∑
l=1

(
log10Pl− log10P

H
l
)2
, (21)
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Table 2. Summary of mantle convection simulations. The column labeled “Method” indicates surface deflections calculated using either
“numeric” (i.e., from surface normal stresses calculated using TERRA) or “analytic” (i.e., propagator matrix) approaches; “mixed” indicates
spherical harmonic fitting of surface stresses calculated using numeric code, enabling comparison with solutions to propagator matrix code.
η(r) indicates models with radial viscosity (e.g., independent of temperature; Models 1–10). η(r,T ) indicates models with temperature-
dependent (therefore laterally varying) viscosity (Models 11–20); note that analytic Models 12–20 incorporate radial viscosity calculated
using mean radial viscosity from Model 11a. An asterisk (∗) indicates with respect to Model 12. See Table 2, Sect. 4, and figures referred to
in column 5 for details.

Model Method Viscosity Parameterizations Figures

1a Numeric η(r) Unfiltered numeric model 1g and h, 2a–c, S1 and S2
1b Mixed η(r) Spherical harmonic fit to 1a 2d–i
2 Analytic η(r) Propagator matrix solutions 3, S3

3 Analytic η(r) Radial gravitation, g(r) 4a–c, S4
4 Analytic η(r) Gravitational potential terms 4d and e, S5

5 Analytic η(r) Removing upper 50 km of mantle 5a and-b, S7a–d
6 Analytic η(r) Removing upper 100 km of mantle 5c and d, S7e–h
7 Analytic η(r) Removing upper 200 km of mantle 5e and f, S7i–l

8 Analytic η(r) No-slip surface, free CMB 6a–d
9 Analytic η(r) Free surface, no-slip CMB 6e–h
10 Analytic η(r) No-slip surface, no-slip CMB 6i–l

11a Numeric η(r,T ) Unfiltered numeric model S8–S10, S12a–c
11b Mixed η(r,T ) Spherical harmonic fit to 11a 7, S8–S10, S12d–g
12 Analytic η(r) Mean radial η(r,T ) from Model 11a 7, S11, S12h and k

13 Analytic η(r) Decrease∗ radial upper mantle η 8a and b, S13a–d
14 Analytic η(r) Increase∗ radial upper mantle η 8c and d, S13e–h
15 Analytic η(r) Increase∗ radial upper mantle η 8e and f, S13i–l
16 Analytic η(r) Constant radial η 8g and h, S13m–p

17 Analytic η(r) Upper mantle densities ×2∗ 8i, S14a–c
18 Analytic η(r) Upper mantle densities ×1/2∗ 8j, S14d–f
19 Analytic η(r) Lower mantle densities ×2∗ 8k, S14g–i
20 Analytic η(r) Lower mantle densities ×1/2∗ 8l, S14j–l

where L is the number of spherical harmonic degrees be-
ing considered. Pl =

∑
f 2

lm is the total power per degree of
predicted surface deflections, where

∑
=
∑l
m=−l . P

K
l and

PH
l are total power per degree estimated independently from

Kaula’s law or residual oceanic age–depth measurements, re-
spectively (Eq. 14; Hoggard et al., 2016b; Holdt et al., 2022).
Once power spectra are calculated it is straightforward to
compare their spectral slopes, which can be used to assess
whether broad patterns of surface deflections are similar even
if their amplitudes are not.

4 Model parameterizations

The models examined in this paper are summarized in Ta-
ble 2. In terms of assumptions tested there are two families
of models: those with viscosity independent of temperature
(Models 1–10) and those with temperature-dependent vis-
cosity (Models 11–20). We note that Models 12–20 incorpo-
rate mean radial viscosity from numeric Model 11a in which
viscosity depends on temperature.

The two approaches used to solve the equations of motion
are denoted as “numeric” and “analytic” in Table 2, which
refers to solutions from the TERRA and propagator matrix
code, respectively. Numeric results are generated by the di-
rect conversion of TERRA-predicted surface stress to surface
deflection as described in Sect. 2.3. To calculate analytic sur-
face deflections, density and viscosity outputs from TERRA
were first converted to respective spherical harmonic or radi-
ally averaged representations, which were then used as input
for the propagator matrix code (Sect. 2.5). Results denoted
as “mixed” in Table 2 are the numeric surface deflections
calculated using the output from TERRA fit using spherical
harmonics (thus aiding comparison to the analytic solutions;
Sect. 2.4). We compare predicted deflections that arise from
flow across entire model domains, i.e., from the CMB to the
surface. Parameterizations of these models and resultant sur-
face deflections are discussed in the following sections, with
summary statistics given in Table 3.
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Figure 2. Surface stresses and deflections from numeric simulation of mantle convection with spherical harmonic expansion up to degree 50.
(a) Predicted present-day surface radial stress, σrr (Model 1a). (b) Histogram of values shown in (a). (c) The black line is the radial viscos-
ity, η, structure used to drive Model 1a and thus produce the grid shown in panel (a). Gray dashed lines show alternative viscosity profiles
of (from darkest to lightest) Mitrovica and Forte (2004) and Steinberger and Calderwood (2006), as well as µ1 and µ2 from Ghelichkhan
et al. (2021). (d) Model 1b: spherical harmonic fit to Model 1a (panel a) up to maximum degree l= 50 (minimum wavelength λ≈ 792 km).
(e) Histogram of values shown in panel (d). (f) Power spectrum – total power per degree – of the stress field shown in panel (d). (g) Spherical
harmonic fit to surface deflections (Model 1b; up to degree l= 50). (h) Histogram of values shown in panel (g). (i) The black curve is the
power spectrum of calculated water-loaded surface deflections (panel g), and the gray line and band show the expected dynamic topography
from Kaula’s rule using admittance Z= 12± 3 mGalkm−1 (Kaula, 1963). The dashed orange line is the expected power spectrum for water-
loaded residual topography (from Holdt et al., 2022) via the analytic solution of the special case in Eq. (15). χp is the root mean squared
difference between calculated (black) and independent (orange and gray) surface deflection power (see Eq. 20). All histograms are weighted
by latitude to correct to equal area. Figure S2 in the Supplement shows extended results including air-loaded deflections.

4.1 Models with viscosity independent of temperature

4.1.1 Reference models

Models 1 and 2 are the simplest explored in this paper. They
were designed to be as similar as possible, with a view to

quantifying differences and similarities arising solely from
the choice of numeric or analytic methodology used to solve
equations of motion and to calculate surface deflections.
Model 1 was parameterized with the radial viscosity struc-
ture shown in Fig. 2c. Radial viscosities used in other geo-
dynamic studies are shown alongside for comparison (Ghe-
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Table 3. Inter-model comparison of predicted surface deflections.
Models being compared are summarized in Table 2. Metrics: root
mean squared difference (χ , km), mean Euclidean (L2-norm) dif-
ference in predicted deflection (1h, km), and mean spherical har-
monic correlation between models (r l). The standard deviation of
rl distribution across degrees (sr) is also stated: note that r l ≤ 1.
All spherical harmonic representations of output from numeric code
and generated by the propagator matrix code are expanded up to
maximum degree, l = 50. See the body of the text, figures referred
to in column 6, and Table 2 for details.

Models χ 1h r l sr Figures

1b and 2 0.95 0.69 0.97 0.02 3
2 and 3 0.57 0.47 0.99 4× 10−4 4
2 and 4 0.13 0.11 0.99 2× 10−5 4
2 and 5 0.67 0.48 0.93 0.04 5a and b
2 and 6 1.03 0.74 0.87 0.06 5c and d
2 and 7 1.57 1.12 0.63 0.15 5e and f
2 and 8 1.26 1.04 0.99 1× 10−3 6a–d
2 and 9 1.09 0.97 0.99 0.04 6e–h
2 and 10 1.00 0.74 0.96 0.28 6i–l
1a and 11a 1.51 1.04 – – S12a–c
1b and 11b 1.44 0.98 0.79 0.26 S12d–g
11b and 12 1.20 0.80 0.95 0.02 7
2 and 12 0.92 0.64 0.85 0.27 S12h–k
12 and 13 0.31 0.20 0.99 9× 10−3 8a and b, S13a–d
12 and 14 0.17 0.10 0.99 3× 10−3 8c and d, S13e–h
12 and 15 0.32 0.20 0.98 0.01 8e and f, S13i–l
12 and 16 0.38 0.23 0.98 0.01 8g and h, S13m–p
12 and 17 0.97 0.64 0.98 7× 10−3 8i, S14a–c
12 and 18 0.48 0.32 0.98 6× 10−3 8j, S14d–f
12 and 19 0.43 0.29 0.99 3× 10−3 8k, S14g–i
12 and 20 0.22 0.14 0.99 1× 10−3 8l, S14j–l

lichkhan et al., 2021; Mitrovica and Forte, 2004; Stein-
berger and Calderwood, 2006). Surface densities at 0 Ma are
shown in Figs. 1 and S1. The mean uppermost density, ρm,
at 0 Ma used to convert radial stresses into surface deflec-
tions (Eq. 11) is 4578 kgm−3. Note that this model is incom-
pressible, and hence the reference density, ρ0 (Table 1), for
the entire domain must approximate the average density of
the whole mantle, which results in densities close to the sur-
face tending to be larger than in actuality. Water loading is
assumed (ρw= 1030 kgm−3). Figure 2d shows the spherical
harmonic expansion of the surface stress field predicted by
Model 1 at 0 Ma (see Fig. 2a). We call this result Model 1b.
The original full-resolution numerical result is referred to as
Model 1a.

Model 2 is the analytic model parameterized to be as simi-
lar as possible to Model 1. Its sensitivity kernel, generated as-
suming water loading, free-slip surface and CMB boundary
conditions, and the radial viscosity profile shown in Fig. 2c,
is shown in Fig. 3a. Values of the other parameters used to
generate these kernels are stated in Table 1. Similar to many
previous studies, the kernel indicates that surface deflections
will be especially sensitive (across all degrees incorporated,
l ≤ 50) to density anomalies in the upper mantle (Parsons and

Daly, 1983; Hager and Clayton, 1989; Ghelichkhan et al.,
2021; Colli et al., 2016). Models 1 and 2 are used as points
of reference for other more complex models explored in the
remainder of this paper.

4.1.2 Gravitation

We start by incorporating more complex parameterizations of
gravitation. Analytic Model 3 was parameterized in the same
way as Model 2 with the addition of radial gravitation (fol-
lowing Hager and Clayton, 1989; Panasyuk et al., 1996, see
Eq. 16). The solid curve in Fig. 4b shows the radial gravity
function used to calculate surface deflections. It was gener-
ated using the density distribution produced by (the numeri-
cal) Model 1a (see Fig. S1) by calculating

g(r)=
4πG
r2

 r∫
RCMB

ρ(r ′) r ′
2 dr ′

+Fcore, (22)

where ρ(r) is layer mean density and Fcore is a factor chosen
to account for core mass such that g= 9.8 ms−2 at the sur-
face. This formulation is derived from Gauss’s law assuming
spherically symmetric density, combined with Newton’s law
of universal gravitation (Turcotte and Schubert, 2002).

Analytic Model 4 incorporates stress perturbations in-
duced by deflections of the gravitational potential field. This
model assumes g= 10 ms−2 everywhere, even within the de-
flected surface layer, as was the case for Models 1–2. Follow-
ing Hager and Clayton (1989) and Panasyuk et al. (1996),
when solving for surface deflection using propagator matri-
ces, the effect on flow of the perturbation of gravitational
potential is included via the u3 term in Eq. (17) (see also
Ribe, 2007; Ricard, 2015). Sensitivity kernels for Models 3
and 4 are shown in Fig. S6 in the Supplement. TERRA sim-
ulations do not include this component in flow calculations
(see Sect. 2.1).

4.1.3 Discarding shallow structure

The uppermost few hundred kilometers of geodynamic sim-
ulations are often not included in predictions of dynamic
topography (see, e.g., Flament et al., 2013; Flament, 2019;
Davies et al., 2019, and references therein). To quantify the
impact of discarding shallow structure on our calculations,
we examine differences in calculated surface deflections in
the spatial and spherical harmonic domains. We present three
tests, resulting in Models 5, 6, and 7, where structure shal-
lower than 50, 100, and 200 km is removed from Model 2.

4.1.4 Changing boundary conditions

Up to now, we have only considered instantaneous analytic
and numeric solutions for surface deflection where both the
surface and CMB have free-slip conditions imposed (i.e., ver-
tical component of flow velocity ur = 0; horizontal compo-
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nents are allowed to freely vary). No gradient or Neumann
constraint (e.g., on ∂u/∂z) is imposed. This condition is gen-
erally deemed appropriate for the surface of the convecting
mantle and CMB, since at both boundaries, cohesion within
convecting mantle is thought to be much stronger than adhe-
sion to the boundary. Analytic solutions for sensitivity ker-
nels for propagator matrices also exist for no-slip Dirichlet
boundary conditions, where horizontal components of u= 0,
which may be more appropriate when the Earth’s lithosphere
is implicitly included in mantle convection models, as is the
case here (Parsons and Daly, 1983; Thoraval and Richards,
1997). Therefore, we test the effect of changing the surface
boundary condition to no-slip on predicted surface deflec-
tions (Model 8). Although there is little reason to believe the
adhesion of the CMB would be strong, for completeness, we
test scenarios in which no- and free-slip conditions are as-
sumed for the CMB and the surface, respectively (Model 9),
and both have no-slip conditions (Model 10).

4.2 Models with temperature-dependent viscosity

We investigate the impact of including the temperature de-
pendence of viscosity, η(r,T ), on predicted global man-
tle flow in numeric models and on subsequent estimates of
surface deflection. We do so by first generating numeric
Model 11, which is identical to Model 1 in terms of all
boundary conditions, initialization, and physical parameters,
except for the fact that viscosity depends on temperature in
the manner described by Eq. (7). In this model, ρm at 0 Ma
is 4579 kgm−3, which is very similar to Model 1 (i.e., when
viscosity is independent of temperature; Sect. 4.1.1).

The radial distribution of viscosity, but not its absolute
value, plays a crucial role in determining the sensitivity of in-
stantaneous solutions for surface deflections to density (and
thermal) anomalies in the mantle (e.g., Parsons and Daly,
1983; Hager, 1984). Consequently, to assess the sensitivity
of surface deflections to arbitrary changes to radial viscos-
ity, η(r), we performed a suite of analytic tests. Since the an-
alytic approaches require viscosity to only vary as a function
of radius, we first test the impact of inserting layer mean vis-
cosity from the present-day 3D temperature-dependent vis-
cosity structure predicted by numeric Model 11 (Fig. S8 in
the Supplement). This parameterization is used to generate
(analytic) Model 12. The sensitivity kernel for Model 12 is
shown in Fig. S11a in the Supplement.

We stress that the analytic solutions for instantaneous
surface deflection for Models 3–10 (with adjusted parame-
ters and boundary conditions) were simply compared with
Model 2; no new numeric models were generated using
TERRA. In contrast, the additional tests examined here cor-
respond to a new TERRA model (Model 11) in which the
temperature dependence of viscosity affects mantle flow
across the entire runtime.

The sensitivity of surface deflections to arbitrary mod-
ification of upper and lower mantle viscosity and densi-

ties was then examined. Mean upper and lower mantle (ra-
dial) temperature-dependent viscosity was decreased or in-
creased by an order of magnitude from that used to generate
Model 12 (see the solid black curve in Fig. 8). The resul-
tant impact on calculated surface deflections (Models 13–16)
was quantified by comparison with results generated using
reference Model 12 (Fig. S11). Figures 8i–l and S14 in the
Supplement show the amplitudes of density anomalies in the
upper and lower mantle that were systematically increased
or decreased to generate Models 17–20. Similar to the tests
shown in Figs. 8a–h and S13 in the Supplement, densities
are amplified relative to Model 12. Radial viscosity is con-
stant for each of these tests (black curve in Fig. 8a; i.e., the
same as that used to generate Model 12).

5 Results

5.1 Models with viscosity independent of temperature

5.1.1 Reference models: comparing numeric and
analytic solutions

We first compare solutions generated from numeric
Model 1a, with its spherical harmonic representation
(Model 1b), and analytic Model 2, which were designed to be
as similar as possible. Figure 1g and h show calculated den-
sities that arise in Model 1a at 0 and 100 Ma (see Fig. S1 for
extended results). The history of plate motions used to drive
these models is also indicated in these figures. The resultant
normal stresses, σrr, calculated at the surface of Model 1, and
associated statistics are shown in Fig. 2a and b. By conven-
tion, positive stresses imply compression and hence down-
ward surface deflection, which could manifest as lithospheric
drawdown, i.e., subsidence. Prominent regions of positive
stress anomalies in this model include locations atop im-
posed collision zones, where subduction naturally results,
e.g., along the Pacific margin of South America. Negative
stresses imply dilation and hence positive lithospheric sup-
port (i.e., surface uplift). Figure 2a shows dilatational stresses
beneath southern Africa, for example, and along mid-oceanic
ridges in the Indian Ocean and Atlantic Ocean.

Surface stresses calculated by fitting radial stresses from
Model 1a with a global spherical harmonic interpolation up
to maximum degree l = 50, i.e., minimum wavelength of
≈ 800 km, are shown in Fig. 2d and e. The resultant power
spectrum in terms of total power at each degree is shown in
Fig. 2f. Aside from the lack of structure at degree 0, ampli-
tudes decrease steadily with increasing degree (i.e., decreas-
ing wavelength) and can be approximated by red noise. The
spherical harmonic representation of deflections calculated
by converting stress using Eq. (11), assuming water load-
ing, is shown in Figs. 2g and S2. A comparison of calculated
power spectra, expected surface deflection from Kaula’s rule
(Eq. 14), and spectra generated from observed residual ocean
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age–depth measurements is also included in Figs. 2 and S2
(Kaula, 1963; Hoggard et al., 2016a; Holdt et al., 2022).
For completeness, surface deflections calculated assuming
air loading are shown in Fig. S2f–j.

Surface deflections predicted by Model 2 and its associ-
ated sensitivity kernel are shown in Fig. 3a and b. An ex-
panded set of results including sensitivity kernels for water
and air loading, as well as histograms of deflection and asso-
ciated power spectra, are included in Fig. S3.

Deflections predicted from these numeric and analytic
models are visually similar (see Figs. 2g and 3b). Absolute
differences in amplitudes are greatest close to subduction
zones (e.g., in South America and Asia; Fig. 3c). The dif-
ferences are broadly normally distributed and centered on 0
(Fig. 3d). The spherical harmonic correlation between these
models is high (close to 1 for all degrees; see Forte, 2007,
Fig. 3e). The ratios between surface deflection values in these
predictions indicate that analytic solutions tend to be damped
compared to numeric solutions. This result is emphasized by
the histogram shown in Fig. 3g. Multiplying amplitudes of
deflections from the propagator matrix solutions by a factor
of 1.1 brings them in line with the numeric solutions. These
results indicate that the propagator matrix approach damp-
ens solutions by ≈ 10 %. We note that power spectral slopes
between Model 1b and 2 are similar (see Figs. 2i and S3d).
These and all other results are discussed in Sect. 6.

5.1.2 Incorporating self-gravitation and gravitational
potential of the deflected surface

Differences in deflections predicted by Model 2, which as-
sumes constant g= 10 ms−2 across all radii, and Model 3,
which incorporates self-consistent radial gravity profiles, are
shown in Fig. 4a and c. Deviations in predicted instantaneous
deflections are ∼ 10 % of maximum amplitudes predicted by
Model 2 (see Table 3). Note that, for the viscosity structure
used in these models, changing g in this way impacts sensi-
tivity kernels most at low degrees l . 10 in the mid-mantle
(see Figs. 2c, 3a, and S6).

We suggest that the broadly hemispherical differences in
calculated deflections arise from three contributing factors.
First, deviations in g between the two models are greatest in
the mid-mantle, which, secondly, results in subtly different
sensitivity kernels (see Fig. S6). In general, surface deflection
sensitivity to mid-mantle structure is highest at low degrees
(l= 1–3) and is almost negligible at higher degrees com-
pared to contributions from near the surface. Thus it seems
likely that differences between these kernels would manifest
in low-degree (e.g., hemispherical) differences in surface de-
flections. Third, in the final time step, which is used to calcu-
late deflections, a greater proportion of negative and positive
deflections occurs in the Northern and Southern Hemisphere,
respectively.

We note that incorporating radially varying gravitation
into numeric simulations, which is not trivial, might mate-

rially impact calculated mantle flow fields and hence predic-
tions of surface deflections (see, e.g., Zhong et al., 2008; Liu
and King, 2019a).

As expected, induced differences in surface displacement
predictions are much lower in magnitude when the gravita-
tional potential of the deflected surface is included compared
to when radial gravitation is incorporated (see Fig. 4a and d).
We note that they are of the same order of magnitude as
the geoid height anomalies predicted by these models. The
mean Euclidean distance between the two predicted surfaces
in Models 2 and 4 is only ∼ 110 m (compared to maximum
amplitudes > 8 km), and the spherical harmonic correlation
is very high across all degrees (see Table 3). Similar to the
results for Model 3, the differences are concentrated at low
spherical harmonic degree l. We stress that this test investi-
gates the effect of the u3 term on the instantaneous solution
for surface deflection (Eq. 5). It cannot be ruled out from
this test that inclusion of the effect of gravitational potential
field perturbation would result in greater differences across
the entire model runtime of a numeric model, although it is
unlikely (Zhong et al., 2008).

5.1.3 Excising shallow structure

As expected from examination of surface deflection sensi-
tivity kernels (e.g., Fig. 3a), removal of shallow structure
(Models 4–6) results in significantly reduced amplitudes of
surface deflections (Fig. 5). Doing so results in amplitudes
of power spectra that more closely align with independent
estimates (Fig. 5a, c, and e). The reduction in differences is
largely due to the fact that reference Model 2 has surface de-
flections that are much larger than independent estimates of
dynamic topographic power across all degrees. We note that
power spectral slopes for predicted surface deflection from
Model 2 are close to those generated from Kaula’s rule and
observed oceanic residual depths (Figs. 2i, S2, and S3). Re-
moving shallow structure steepens spectral slopes (i.e., re-
duces power at high degrees) beyond those expected from
theoretical considerations (Kaula’s rule) or observed from
oceanic residual depths, akin to results from other work that
excised shallow structure (e.g., Flament et al., 2013; Moucha
et al., 2008; Steinberger, 2007). This result is emphasized
by calculated spectral coherence, r , between deflections with
and without shallow structure removed (see Fig. 5b, d, and f).
While degree 1 and 2 structure remains coherent, coherence
across degrees & 20 decreases from ∼ 0.9 to as low as 0.5,
which is the largest discrepancy between any models exam-
ined in this study (Fig. S7).

5.1.4 Adjusting boundary conditions

Figure 6a, e, and i show predicted sensitivity kernels as
a function of depth and degree for no-slip/free-slip, free-
slip/no-slip, and no-slip/no-slip boundaries, respectively,
where the first condition is the surface slip condition and
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Figure 3. Comparisons of numeric (Model 1b) and analytic (Model 2) estimations of surface deflections from models with identical param-
eterization. (a) Surface deflection sensitivity kernel Al as a function of spherical harmonic degree, l, and depth (Model 2). (b) Propagator
matrix (analytic) solution for water-loaded surface deflection calculated using the sensitivity kernel shown in panel (a). Figure S3 in the
Supplement shows extended results including power spectra and air-loaded deflections. (c) Difference, 1h, of surface deflections in Mod-
els 1b and 2. (d) Histogram of difference values shown in (c). (e) Spectral correlation coefficient, rl, between Models 1b and 2; Eq. (20).
(f) Comparison of predicted surface deflections; χ is the root mean squared difference between predictions (Eq. 18), and the dashed gray line
shows the 1 : 1 ratio. (g) The black bar is a histogram of ratios between analytic and numeric solutions for surface deflection as in (f). The
dashed gray line is 1 (i.e., identical values). Gray bars are as the black bars, but for propagator matrix solution amplitudes scaled up by the
optimal factor to fit the numeric solution (10 %). All histograms are weighted by latitude to correct to equal area.

the second the CMB slip condition. Differences in the sen-
sitivity kernel for Model 2 (free-slip/free-slip; Fig. 3a) are
shown in Fig. 6b, f, and j. Those panels, and Fig. 6c, g, and k,
demonstrate that when the surface boundary condition is “no-
slip”, there is decreased sensitivity to short-wavelength shal-
low structure and increased sensitivity to long-wavelength
(low degree) structure across all depths. Figure 6d, h, and l
reveal that induced misfit in the spatial domain is impacted
to a greater degree than in tests of gravitation (Models 3
and 4), but not necessarily more severely than for removal
of, say, the upper 200 km of density structure from surface

deflection calculations. Spectral correlation with Model 2 is
most severely impacted when both surface and CMB bound-
aries are no-slip, which is probably physically unrealistic
(Model 7; see Table 3; Sect. 4.1.4).

5.2 Adjusting viscosity and density anomaly
amplitudes

5.2.1 Temperature-dependent viscosity

Slices through the three-dimensional viscosity and den-
sity structure of Model 11, which incorporates temperature-
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Figure 4. Impact of self-gravitation (a–c) and gravitational potential of deflected surfaces (d–e) on surface deflections calculated analyt-
ically. In these tests surface deflections from models with different gravity parameterizations are compared to predictions from Model 2.
(a) Difference between water-loaded surface deflections,1h, calculated using the propagator matrix technique incorporating self-gravitation
(Model 3; black curve in panel b) and g= 10 ms−2 (dashed line in panel b; Model 2). (c) Histogram of values in panel (a). (d, e) Differences
in surface deflection from models with (Model 4) and without (Model 2) stress perturbations induced by the gravitational potential of the
deflected surface. All histograms are weighted by latitude to correct to equal area, and they show the full extent of the results. Figures S4
and S5 in the Supplement show extended results including maps of calculated surface deflections.

dependent viscosity, are shown in Fig. 1a, c, and e. Density
anomalies in the models parameterized with temperature-
dependent viscosity are more localized (“sharper”) than in
the models with viscosity independent of temperature (e.g.,
Model 1; see Figs. 7 and S8–S10 in the Supplement). This
result is unsurprising since temperature-dependent viscos-
ity provides stronger mechanical contrasts between cooler
subducting regions and surrounding asthenosphere (see
Figs. 1g–h and S9 in the Supplement; Zhong et al., 2000).
Nonetheless, power spectra of calculated surface deflections
are very similar (see Figs. S10j and 2i). This result empha-
sizes the relatively small impact incorporating temperature-
dependent viscosity has on surface deflections compared to,
say, excising shallow structure.

Calculated power spectra from analytic Model 12, which
was generated using layer mean (radial) viscosity from
Model 11a, reinforces this view (see Figs. S3a–d and S11a–
d). Similar to the results obtained for models without
temperature-dependent viscosity (Fig. 3), deflections calcu-
lated analytically are damped relative to numeric solutions
(see Fig. 7f). The best-fit amplification factor to align propa-
gator matrix and numeric solutions is 1.24 (24 %). The effect
is greater than that seen when comparing Models 1b and 2
because of increased short-wavelength structure in Model 11
(see also Zhong et al., 2000). Nonetheless, spherical har-
monic correlations, rl, are > 0.75 for all degrees examined
(l ≤ 50) and> 0.85 for most degrees. Cell-to-cell differences

in surface deflections are broadly normally distributed and
centered on zero (Fig. 7d).

A summary of comparisons between models with
and without temperature-dependent viscosity is shown in
Fig. S12 in the Supplement. Discrepancies in cell-to-cell de-
flections are broadly normally distributed and centered on
zero, clustering along the 1 : 1 relationship with maximum
χ = 1.51 for unfiltered (numeric) models (Fig. S12b and c;
see Table 3). Unsurprisingly, spherical harmonic fits and an-
alytic results have tighter normal distributions and lower
χ values. Correlation coefficients are > 0.75 for nearly all
degrees in all comparisons.

5.2.2 Sensitivity to upper and lower mantle viscosity
and density anomalies

In order to explore the consequences of modified viscos-
ity and density for calculated deflections we also system-
atically increased and decreased contrasts in the upper and
lower mantle (Models 13–20) with respect to Model 12. Fig-
ure 8 summarizes the results, which include decreasing up-
per mantle viscosity by an order of magnitude, and shows
the impact of using increasingly simple radial viscosity in
analytic calculations. Calculated sensitivity kernels for the
adjusted viscosity profiles demonstrate that decreasing upper
mantle viscosity reduces the sensitivity of surface deflections
to long-wavelength density structure, especially in the lower
mantle (Figs. S13 and 8d, f, and h). Models 13–16 have broad
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Figure 5. Effect of removing shallow structure on surface deflections calculated analytically. Surface deflections in models with shallow
structure removed are compared to those predicted by Model 2. (a) The black line shows the power spectra of predicted water-loaded surface
deflection from the propagator matrix solution for Model 2 (Fig. 3b), but with the effect of the upper 50 km of the density anomaly structure
ignored in the calculation (Model 5). The gray line and band show the expected dynamic topography from Kaula’s rule using admittance
Z= 12± 3 mGalkm−1 (Kaula, 1963). The dashed orange line is the expected power spectrum for water-loaded residual topography from
Holdt et al. (2022) via the analytic solution of the special case in Eq. (15). χp is the root mean squared difference between calculated (black)
and independent (orange and gray) surface deflection power (see Eq. 20). (b) Spectral correlation coefficient, rl, of surface deflections in
Models 5 and 2 (see Eq. 19). Inset: χ is the root mean squared difference in surface deflections of Models 5 and 2 (see Eq. 18). Panels (c)
and (d) as well as (e) and (f) are as panels (a) and (b) but for depth cut-offs of 100 (Model 6) and 200 km (Model 7), respectively. Figure S7
in the Supplement shows extended results including maps of calculated surface deflections and differences with Model 2.

similarities to reference Model 12 even when η(r) is drasti-
cally varied: average χ misfit= 0.17–0.38 km and rl> 0.97
across all degrees. These results emphasize that the viscosity
adjustments we examined exert a relatively minor control on
the amplitudes of instantaneous surface deflection (Table 3;
see, e.g., Ghosh et al., 2010; Moucha et al., 2007; Lu et al.,
2020). Of course changes in viscosity might impact the his-
tory of mantle convection and thus surface deflections.

In contrast, increasing (Model 17) or decreasing
(Model 18) upper mantle densities is much more im-
pactful on amplitudes of calculated surface deflections (see

Figs. 8i–l and S14). For instance, increasing or decreasing
upper mantle densities by a factor of 2 (relative to Model 12)
results in χ values of 0.97 and 0.48, respectively. Modifying
lower mantle densities has a much smaller impact on
amplitudes of deflection (Models 18 and 19). Spherical
harmonic correlation between models is approximately as
good as for the radial viscosity tests (Models 13–16), which
is to be expected since we do not vary locations of density
anomalies here, only their amplitudes, and rl is insensitive
to the amplitudes of the two results being compared. It is
significant that mean vertical differences between Mod-
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Figure 6. Impact of free- and no-slip surface and core–mantle boundary conditions on surface deflections. This figure shows comparisons
of surface deflections from models with different assumed boundary conditions and Model 2. (a) Water-loaded surface deflection sensitivity
kernel Al for Model 8, which has a no-slip surface boundary condition but is otherwise parameterized the same as Model 2. l is the spherical
harmonic degree. (b) Sensitivity kernel of Model 8 minus the sensitivity kernel of Model 2. Note that a positive difference implies reduced
sensitivity compared to Model 2, and vice versa, sinceAl is negative. (c) Predicted water-loaded surface deflection for Model 8. (d) Difference
between surface deflection predictions,1h, for Model 8 and Model 2. Panels (e)–(h) are as (a)–(d) but for Model 9: free-slip surface boundary
and no-slip CMB. Panels (i)–(l) are as (a)–(d) but for Model 10: no-slip surface and CMB boundaries.

els 17–20 and 12 (i.e., χ and 1h) are higher than those
calculated for Models 13–16 (in which viscosity is varied;
see Table 3).

These results emphasize the relative sensitivity of instan-
taneous surface deflections to upper mantle density anoma-
lies compared to, say, radial viscosity or lower mantle den-
sities. Even quite large uncertainties in lower mantle den-
sity anomalies have relatively little impact on instantaneous
surface deflections. These results reinforce the view that ac-
counting for shallow (e.g., lithospheric and asthenospheric)
densities is crucial when estimating surface deflection and
dynamic topography from mantle convection simulations
(e.g., Colli et al., 2016; Flament et al., 2013; Holdt et al.,
2022; Wang et al., 2022).

6 Discussion

6.1 Similarities of analytic and numeric solutions

In this paper we compare numeric and analytic predictions of
instantaneous surface deflections generated by mantle con-
vection simulations. First, we simply compared predictions
from numeric and analytic approaches parameterized to be
as similar as possible. In this test, the models were purpose-
fully simple: viscosity is radial, models are incompressible,
and models do not include self-gravitation or radial varia-
tion in g. Numeric solutions were transformed into the fre-
quency (spherical harmonic) domain so that they could be
compared with analytic solutions and so that power spectra
could be directly compared at appropriate scales. The results
show that, for parameterizations that are as similar as possi-
ble, amplitudes of analytic solutions are ≈ 10 % lower than
numeric solutions (Fig. 3). If the numeric model incorporates
temperature-dependent viscosity, this discrepancy increases
to 25 % (Fig. 7). We interpret these results in two ways. First,
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Figure 7. Comparison of surface deflections calculated numerically (Model 11b) and analytically (Model 12) using results from a simulation
with temperature-dependent viscosity. (a) Model 11b: spherical harmonic expansion of predicted present-day water-loaded surface deflection
converted from stress output from the numeric model TERRA (Model 11a) to maximum degree l= 50. (b) Model 12: as (a) but for predictions
made using the propagator matrix method. (c) Difference, 1h, between Models 11b and 12 (panels a and b). (d) Histogram of difference
values shown in (c), weighted by latitude to correct to equal area. (e) Spectral correlation coefficient, rl, between predictions shown in
panels (a) and (b); Eq. (19). (f) Numeric (Model 11b) versus analytic (Model 12) predictions of surface deflection; χ is the root mean
squared difference between predictions (Eq. 18), and the dashed gray line is the 1 : 1 ratio. (g) Histogram of ratios between analytic and
numeric solutions for surface deflection as in (f), weighted by latitude. The dashed gray line is 1 (i.e., identical values). Gray bars are as the
black bars, but for propagator matrix solution amplitudes scaled up by the optimal factor to fit the numeric solution (24 %).

once armed with viscosity and density fields, numeric and an-
alytic approaches broadly yield similar estimates of surface
deflections. Second, the relatively damped analytic solutions
are a consequence of smoothing steps in the propagator ma-
trix approach.

The smoothness of analytic solutions, and subsequent
damping of topographic amplitudes, is perhaps surprising,
given the fact that they are being compared with numeric
models expanded into the spherical harmonic domain to
the same maximum degree, l = 50. However, the surface
stresses used to generate Model 1a have full horizontal reso-
lution (≈ 45 km) across depths, and only the surface layer is

smoothed by spherical harmonic fitting to generate Model 1b.
Therefore, Model 1b inherently contains some contribution
from degrees ≥ 50 in the sense that finer-resolution density
structure at depth could affect longer-wavelength flow nearer
to the surface. In contrast, to generate the analytic solution
(Model 2), the density structure of each layer of the model
is smoothed, by expansion to maximum l = 50, before inte-
gration of their contributions to surface deflection. The ana-
lytic solution would provide a better match to stress estimates
from numeric models if such estimates were calculated using
density structure smoothed to the same maximum l across all
depths, which is currently challenging (see Sect. 1).
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Figure 8. Sensitivity of calculated analytic surface deflection to adjusted radial viscosity (a–h) and density anomalies (i–l). This figure shows
comparisons of surface deflections calculated in models with modified viscosity and density to the results from Model 12 (see Table 1).
(a) The black curve is the unadjusted prediction of present-day radial mean viscosity from Model 11, the red line is the adjusted radial profile
with viscosity decreased by a factor of 10 between depths of ∼ 300–500 km (Model 13), and dashed gray lines show the viscosity profiles
used in other studies (see Fig. 2). (b) Sensitivity kernel for the viscosity profile indicated by the red curve in panel (a); l is the spherical
harmonic degree. The value of the root mean squared difference, χ , between calculated surface deflections for unadjusted and adjusted
viscosity is stated (see Eq. 7). (c–h) Results from testing alternative radial viscosity (Models 14–16). Figure S13 shows extended results
including maps of surface deflections and their differences. (i–l) Density anomalies (red line) adjusted by directly scaling spherical harmonic
coefficients (l > 0) up or down by a factor of 2 (Models 17 and 19: panels e and g) or 0.5 (Models 18 and 20: panels f and h). Viscosity
structure applied in each case is the same as that used to generate Fig. 7b. Sensitivity kernels for surface deflections are not shown since
they are invariant with respect to density anomalies,1ρ, depending only on viscosity structure. Figure S14 shows extended results including
maps of surface deflections and their differences.

Nonetheless, the similarity of results indicates that the
relatively low-cost propagator matrix approach can be used
to explore the consequences of including additional model
complexity. A systematic sweep of parameters, including
radial gravitation (Fig. 4a–c) and gravitational potential
field effects (Fig. 4d and e), indicates that their effects on
surface deflection are relatively modest. A useful rule of
thumb is that self-gravitation perturbs instantaneous sur-

face deflections by O(1–10) % when compared to models
with constant gravitational acceleration, and even less dif-
ference is observed at high degree (e.g., Ricard, 2015, their
Sect. 7.02.2.5.2). Incorporating the effect of deflections of
the gravitational potential field on flow has a modest impact
on amplitudes of surface deflections at degrees 1–2, but over-
all it contributes even less than radial variation in g to surface
deflections across the scales of interest. We note that incorpo-
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rating full 3D self-gravitation in numeric simulations is chal-
lenging (see, e.g., Zhong et al., 2008; Liu and King, 2019b).
Nonetheless, establishing its impact on the flow field over
time, and the resultant impact on surface deflections, would
be useful.

6.2 Importance of viscosity and shallow density
anomalies for isolating dynamic support

Figure 8 demonstrates that even quite large (order of magni-
tude) variations in viscosity do not have much impact on in-
stantaneous surface deflections when compared to, say, mod-
ified upper mantle density anomalies, which appears to agree
with the results of Davies et al. (2019) (see also Flament,
2019; Steinberger et al., 2019). Assuming no-slip boundary
conditions at Earth’s surface may be appropriate for driving
near-surface (lithospheric) flow throughout the main model
runtime, but it less clear whether no- or free-slip boundary
conditions are most appropriate for calculating instantaneous
dynamic topography (see, e.g., Forte and Peltier, 1994; Tho-
raval and Richards, 1997). Nonetheless, all calculated sen-
sitivity kernels in this study indicate that shallow density
anomalies make significant contributions to surface topog-
raphy regardless of viscosity profile or boundary conditions
chosen (e.g., Fig. 3a; see also Colli et al., 2016; Parsons and
Daly, 1983).

It is well known that disentangling contributions to Earth’s
surface topography from mantle convection, lithospheric
isostasy, and flexure is important but not trivial (see, e.g.,
Davies et al., 2019; Cao and Liu, 2021; Fernandes and
Roberts, 2021; Hoggard et al., 2021; Steinberger, 2016;
Stephenson et al., 2021; Zhou and Liu, 2019; Wang et al.,
2022). Previous studies simulating mantle convection have
addressed this issue by discarding density anomalies in ra-
dial shells shallower than specified depths before calculat-
ing surface stresses (e.g., Spasojevic and Gurnis, 2012; Fla-
ment et al., 2013; Molnar et al., 2015). Similarly, analytic
approaches have isolated contributions from the convecting
mantle by only incorporating information from deep shells
(e.g., Colli et al., 2018). This method has the advantage of ef-
fectively removing the effect of lithospheric cooling through
time from surface deflection estimates. It also avoids the need
to incorporate, say, realistic crustal or depleted lithospheric
layers within the viscous flow parameterization. However,
uncertain oceanic and continental lithospheric thicknesses
mean that choosing appropriate cut-off depths is not simple.

Out of all the tests performed in this study, removing shal-
low structure resulted in the largest impact on predicted sur-
face deflections. It modifies amplitudes of deflections, loca-
tions of uplift and subsidence, and degrees over which they
are resolved, and it hence modifies power spectral scalings
(Table 3, Fig. 5). Making quantitative predictions of dynamic
topography from such an approach is fraught for at least
two reasons. First, if the chosen depth is shallower than the
lithosphere–asthenosphere boundary in places, plate and sub-

plate contributions to topography will be entangled. Second,
discarding deeper layers to ensure that all plate contribution
is definitely avoided means that some contributions from as-
thenospheric flow will be missed. Thus, such a step is un-
likely to be desirable if mantle flow models are to be used to
understand, say, lithospheric vertical motions, or vice versa
(see, e.g., Fig. 3a; Davies et al., 2019; Hoggard et al., 2016a).
Given the calculated sensitivity kernels, excising layers in the
upper few hundred kilometers is likely to result in predictions
of surface deflections that are especially inaccurate at short
wavelengths, i.e., high spherical harmonic degree. An alter-
native approach, which may be fruitful for future work, is the
removal of structure based on appropriately calibrated plate
models or globally averaged age-dependent density trends
(e.g., Richards et al., 2020, 2023).

6.3 Assessing “effective” contributions to
instantaneous deflections

The results emphasize the importance of considering the
sensitivities of instantaneous vertical surface deflections to
the location and scale of flow in the mantle. Taking inspi-
ration from Hager and O’Connell (1981) and Parsons and
Daly (1983), we calculate the net contributions from density
anomaly structure to deflections as a function of radius, lat-
itude, and longitude across all spherical harmonic degrees
considered (i.e., l = 1 to 50). Contributions to deflections
from densities at particular radii r across all spherical har-
monic degrees and orders for each latitude and longitude,
(θ,φ), are calculated such that

he(θ,φ,r)=

L∑
l=1

m=l∑
m=−l

[Ylm(θ,φ) · δρlm(r) ·Al(r) ·1r] , (23)

where 1r is the radial width of the spherical shell included
in the calculation (≈ 45 km for all shells from the surface to
the CMB; see the Supplement) and Ylm represents spherical
harmonic coefficients. Mean density anomalies, δρlm, within
each shell at each latitude and longitude, as well as sensitiv-
ities Al at the top of each shell, are used to calculate he (see
Sect. 2.5). Contributions at specific locations to surface de-
flections as a function of latitude and longitude, as well as
spherical shell depth, are shown in Fig. 9 for Model 12 for
1≤ l ≤ 50. Results for lower maximum degrees are shown
in the Supplement. Figure 9a–d show slices through effec-
tive density in the upper (at 45, 135, 360 km) and lower man-
tle (1445 km). A 180° cross-section showing effective den-
sities from the core–mantle boundary to the surface beneath
the Pacific to the Indian Ocean encompassing South America
and southern Africa (the same transect as shown in Fig. 1) is
shown in Fig. 9e. This figure again emphasizes the contri-
bution of density anomalies in the upper mantle to surface
deflections and the risks associated with discarding shallow
structure when predicting dynamic topography.
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Figure 9. Effective density and contributions from density anomalies to surface deflection. (a–d) Maps of the net contribution to present-day
water-loaded surface deflection calculated using the propagator matrix approach (Model 12; see body text for details). Depth slices, z, at 45,
135, 360, and 1445 km depth incorporating all spherical harmonic degrees l and orders m, up to l= 50. (e) Great-circle slice (180°) showing
contributions to surface deflection; the globe to the right shows the transect location and calculated surface deflection (Model 12). White
circles indicate 20° intervals – note the filled black circle for orientation; the dashed line is the 660 km depth contour. (f) The white–black
curve is the total surface deflection along the transect shown atop the globe in panel (e); the abscissa is aligned with panel (g), and the
dashed orange line is the same but for maximum l= 10 (see Fig. S18 in the Supplement). The dashed red curve is the surface deflection from
Model 2. (g) Cartesian version of panel (e); ordinate aligned with panel (h). (h) The dashed gray curve is the mean absolute value of density
anomalies in Model 12 – see top axis for values. The black curve is the global mean amplitude (modulus) of the contribution from density
structure in Model 12 to total surface deflection h across all l and m values; the orange line is the same but for maximum l= 10, and the
dashed red line shows the results for Model 2 (see Sect. 6.3). See Figs. S15–S19 in the Supplement for extended results, demonstrating the
sensitivity of surface deflections to the maximum spherical harmonic degree.

6.4 Summary and future work

Encouragingly, although instantaneous surface deflections
predicted by numeric and analytic solutions to the man-
tle convection equations of motion are sensitive to spe-
cific parameterizations, broadly coherent patterns emerge in
similarly parameterized models. Calculated deflections are
shown to be relatively insensitive to the methodologies used
to solve the equations of motion. For instance, choosing
to solve the equations of motion analytically or numeri-
cally changes calculated deflections by < 25 %, even when
temperature-dependent viscosity is included throughout the
duration of a simulation. Incorporated gravitational potential

of deflected surfaces, self-gravitation, and viscosity anoma-
lies each generate subtly different instantaneous surface de-
flections at the present day.

In contrast, removal of shallow structure produces much
larger discrepancies between predicted deflections. For in-
stance, surface deflections calculated using the entire mod-
eling domain (core–mantle boundary to surface) have spec-
tral slopes consistent with those of oceanic age–depth resid-
uals; however, amplitudes are overpredicted by 1–2 orders
of magnitude. In contrast, by not including the shallow-
est 200 km, calculated power spectra more closely match
observed amplitudes, especially at spherical harmonic de-
grees> 10 (Fig. 5). However, the spectral slopes of predicted
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deflections are redder than for the oceanic residuals, which
implies that a different approach to removing the contribu-
tion of lithospheric structure is required.

An obvious next step for accurately predicting modern dy-
namic support from mantle convection simulations is to in-
corporate accurate information about lithospheric structure
from, for instance, tomographic models (e.g., Priestley and
McKenzie, 2013; Richards et al., 2020). Another useful next
step is to establish the sensitivity of surface deflections to
time-dependent parameters that impact predicted flow histo-
ries, including plate motions. The results in this paper indi-
cate that comparing predicted and observed surface deflec-
tions, combined with knowledge of lithospheric structure,
could be used to identify optimal models.

Finally, the body of geologic and geomorphologic ob-
servations that could be used to test predicted histories of
surface deflections from mantle convection simulations has
grown substantially in the last decade (e.g., uplift and subsi-
dence histories; Sect. 1; see, e.g., Hoggard et al., 2021, and
references therein). A suite of other geologic and geophysi-
cal observables are also predicted by, or can be derived from,
such simulations (e.g., mantle temperatures, heat flux, geoid,
seismic velocities, true polar wander). Using them alongside
histories of surface deflections to identify optimal simula-
tions is an obvious avenue for future work (e.g., Ball et al.,
2021; Lau et al., 2017; Panton et al., 2023; Richards et al.,
2023). Using such data and the methodologies explored in
this paper may be a fruitful way of identifying optimal simu-
lations from the considerable inventory that already exists.

7 Conclusions

This study is concerned with quantifying sensitivities and un-
certainties of Earth’s surface deflections that arise in simu-
lations of mantle convection. Calculated sensitivities of in-
stantaneous deflection of Earth’s surface to mantle density
structure emphasize the importance of accurate mapping of
the upper mantle. Surface deflections are somewhat sensitive
to the distribution of viscosity throughout the mantle, espe-
cially to the locations and scales of density anomalies in the
upper mantle. The largest discrepancies between predicted
deflections seen in this study are generated when upper man-
tle structure is excised or altered. Doing so changes both the
amplitude and distribution of calculated deflections, modify-
ing their power spectral slopes. These results emphasize the
importance of incorporating accurate models of lithospheric
structure in the calculation of sub-plate support of topogra-
phy and also the need to accurately determine plate contri-
butions to topography. In contrast, the choices of methodol-
ogy to estimate surface deflections – analytic or numeric –
or boundary conditions are relatively small sources of uncer-
tainty. Similarly, assumed gravitational profiles and temper-
ature dependence of viscosity are relatively minor contribu-
tors to uncertainty given reasonable, Earth-like parameteriza-

tions. Nonetheless, these parameterizations may impact sur-
face deflections through their role in determining how upper
mantle flow evolves through geologic time. A fruitful next
step could be to use the approaches developed in this paper,
in combination with careful isolation of plate cooling signa-
tures from surface deflection predictions, to test mantle con-
vection simulations using the existing and growing body of
geologic, geomorphologic, and geophysical observations.
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it has a CC BY 4.0 license. Radial stresses, spherical harmonic
coefficients for density fields, full density fields, and viscosity
profiles generated using the TERRA mantle convection simu-
lation code are archived on Zenodo with the following DOI:
https://doi.org/10.5281/zenodo.12704925 (Roberts et al., 2024).
The TERRA version and system architecture used are as follows:
branch – volatiles/branch, commit number 4c3ce53, system archi-
tecture – HPE Cray EX, 128 cores, 64× dual AMP EPYC 7742
64-core. TERRA is a Fortran code built with G-Fortran. The origin
of TERRA predates now widely accepted software licensing pro-
cedures; it cannot be made open-source. Nonetheless, the TERRA
development team welcomes collaboration and advises interested
parties to contact J. Huw Davies (daviesjh2@cardiff.ac.uk) or
H.-Peter Bunge (bunge@lmu.de).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-9023-2024-supplement.

Author contributions. Conceptualization: GGR. Formal analy-
sis: CPBO’M, VMF, JP. Funding acquisition: GGR, JHD. Inves-
tigation: CPBO’M, GGR, JP, FDR, JHD, VMF, SG. Methodol-
ogy: CPBO’M, GGR, JHD, SG, JP, SG. Supervision: GGR, JHD.
Validation: CPBO’M, GGR. Visualization: CPBO’M, GGR. Writ-
ing (original draft preparation): GGR, CPBO’M. Writing (review
and editing): GGR, CPBO’M, JHD, FDR, JP, VMF, SG.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank Andrew Biggin, Hamish Brown,
Christopher Davies, Ana Ferreira, Megan Holdt, Peter Japsen, Paula
Koelemeijer, Fergus McNab, Robert Myhill, and Jamie Ward for
helpful discussions. We also thank Nicolas Flament and Bernhard

Geosci. Model Dev., 17, 9023–9049, 2024 https://doi.org/10.5194/gmd-17-9023-2024

https://doi.org/10.5281/zenodo.12696774
https://doi.org/10.5281/zenodo.12704925
https://doi.org/10.5194/gmd-17-9023-2024-supplement


C. P. B. O’Malley et al.: Reconciling mantle convection simulations 9045

Steinberger for helping us to clarify our thesis. Figures were pro-
duced using GMT6 (Wessel et al., 2019).

Financial support. Conor P. B. O’Malley, James Panton, and Vic-
toria M. Fernandes were supported by the Natural Environment Re-
search Council (grant nos. NE/T012501/1 and NE/T012633/1).

Review statement. This paper was edited by Boris Kaus and re-
viewed by Nicolas Flament and Bernhard Steinberger.

References

Al-Hajri, Y., White, N., and Fishwick, S.: Scales of transient
convective support beneath Africa, Geology, 37, 883–886,
https://doi.org/10.1130/G25703A.1, 2009.

Bahadori, A., Holt, W. E., Feng, R., Austermann, J., Loughney,
K. M., Salles, T., Moresi, L., Beucher, R., Lu, N., Flesch, L. M.,
Calvelage, C. M., Rasbury, E. T., Davis, D. M., Potochnik, A. R.,
Ward, W. B., Hatton, K., Haq, S. S. B., Smiley, T. M., Wooton,
K. M., and Badgley, C.: Coupled influence of tectonics, climate,
and surface processes on landscape evolution in southwestern
North America, Nat. Commun., 13, 1–18, 2022.

Ball, P. W., White, N. J., Maclennan, J., and Stephenson,
S. N.: Global Influence of Mantle Temperature and Plate
Thickness on Intraplate Volcanism, Nat. Commun., 12, 1–13,
https://doi.org/10.1038/s41467-021-22323-9, 2021.

Ball, P. W., Duvernay, T., and Davies, D. R.: A coupled
geochemical–geodynamic approach for predicting mantle melt-
ing in space and time, Geochem. Geophy. Geosy., 23, 1–31,
https://doi.org/10.1029/2022gc010421, 2022.

Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum,
A., Heister, T., Myhill, R., and Naliboff, J.: ASPECT v2.5.0, Zen-
odo [code], https://doi.org/10.5281/zenodo.8200213, 2023.

Bauer, S., Huber, M., Ghelichkhan, S., Mohr, M., Rüde, U., and
Wohlmuth, B.: Large-scale simulation of mantle convection
based on a new matrix-free approach, J. Comput. Sci.-Neth, 31,
60–76, https://doi.org/10.1016/j.jocs.2018.12.006, 2019.

Baumgardner, J. R.: Three-dimensional treatment of convec-
tive flow in the Earth’s mantle, J. Stat. Phys., 39, 501–511,
https://doi.org/10.1007/BF01008348, 1985.

Becker, T. W. and Boschi, L.: A comparison of tomographic and
geodynamic mantle models, Geochem. Geophy. Geosy., 3, 1–48,
https://doi.org/10.1029/2001GC000168, 2002.

Biggin, A. J., Steinberger, B., Aubert, J., Suttie, N., Holme, R.,
Torsvik, T. H., Van Der Meer, D. G., and Van Hinsbergen, D. J.:
Possible links between long-term geomagnetic variations and
whole-mantle convection processes, Nat. Geosci., 5, 526–533,
https://doi.org/10.1038/ngeo1521, 2012.

Braun, J.: The many surface expressions of mantle dynamics, Nat.
Geosci., 3, 825–833, https://doi.org/10.1038/ngeo1020, 2010.

Bunge, H.-P. and Baumgardner, J. R.: Mantle convection model-
ing on parallel virtual machines, Comput. Phys., 9, 207–215,
https://doi.org/10.1063/1.168525, 1995.

Bunge, H.-P., Richards, M. A., and Baumgardner, J. R.:
Mantle-circulation models with sequential data assimila-
tion: Inferring present-day mantle structure from plate-

motion histories, Philos. T. R. Soc. A, 360, 2545–2567,
https://doi.org/10.1098/rsta.2002.1080, 2002.

Bunge, H.-P., Hagelberg, C. R., and Travis, B. J.: Mantle cir-
culation models with variational data assimilation: inferring
past mantle flow and structure from plate motion histories
and seismic tomography, Geophys. J. Int., 152, 280–301,
https://doi.org/10.1046/j.1365-246X.2003.01948.x, 2003.

Cao, Z. and Liu, L.: Origin of Three-Dimensional Crustal Stress
Over the Conterminous United States, J. Geophys. Res.-Sol. Ea.,
126, e2021JB022137, https://doi.org/10.1029/2021JB022137,
2021.

Chang, C. and Liu, L.: Investigating the formation of the Cretaceous
Western Interior Seaway using landscape evolution simulations,
GSA Bulletin, 133, 347–361, https://doi.org/10.1130/B35653.1,
2021.

Colli, L., Ghelichkhan, S., and Bunge, H.-P.: On the ra-
tio of dynamic topography and gravity anomalies in
a dynamic Earth, Geophys. Res. Lett., 43, 2510–2516,
https://doi.org/10.1002/2016GL067929, 2016.

Colli, L., Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Retrodic-
tions of Mid Paleogene mantle flow and dynamic topography
in the Atlantic region from compressible high resolution adjoint
mantle convection models: Sensitivity to deep mantle viscos-
ity and tomographic input model, Gondwana Res., 53, 252–272,
https://doi.org/10.1016/j.gr.2017.04.027, 2018.

Corrieu, V., Thoraval, C., and Ricard, Y.: Mantle dynamics
and geoid Green functions, Geophys. J. Int., 120, 516–523,
https://doi.org/10.1111/j.1365-246X.1995.tb01835.x, 1995.

Craig, C. H. and McKenzie, D.: Surface deformation, gravity
and the geoid from a three-dimensional convection model at
low Rayleigh numbers, Earth Planet. Sc. Lett., 83, 123–136,
https://doi.org/10.1016/0012-821X(87)90056-2, 1987.

Crameri, F., Schmeling, H., Golabek, G. J., Duretz, T., Orendt,
R., Buiter, S. J., May, D. A., Kaus, B. J., Gerya, T. V.,
and Tackley, P. J.: A comparison of numerical surface to-
pography calculations in geodynamic modelling: An evalua-
tion of the ‘sticky air’ method, Geophys. J. Int., 189, 38–54,
https://doi.org/10.1111/j.1365-246X.2012.05388.x, 2012.

Czarnota, K., Hoggard, M. J., White, N., and Winterbourne, J.:
Spatial and temporal patterns of Cenozoic dynamic topogra-
phy around Australia, Geochem. Geophy. Geosy., 14, 634–658,
https://doi.org/10.1029/2012GC004392, 2013.

Dannberg, J., Eilon, Z., Faul, U., Gassmöller, R., Moulik, P., and
Myhill, R.: The importance of grain size to mantle dynamics
and seismological observations, Geochem. Geophy. Geosy., 18,
3034–3061, https://doi.org/10.1002/2017GC006944, 2017.

Davies, D. R., Davies, J. H., Bollada, P. C., Hassan, O., Morgan,
K., and Nithiarasu, P.: A hierarchical mesh refinement technique
for global 3-D spherical mantle convection modelling, Geosci.
Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-
2013, 2013.

Davies, D. R., Valentine, A. P., Kramer, S. C., Rawlinson, N., Hog-
gard, M. J., Eakin, C. M., and Wilson, C. R.: Earth’s multi-scale
topographic response to global mantle flow, Nat. Geosci., 12,
845–850, https://doi.org/10.1038/s41561-019-0441-4, 2019.

Davies, D. R., Ghelichkhan, S., Hoggard, M. J., Valentine, A. P., and
Richards, F. D.: Observations and Models of Dynamic Topogra-
phy: Current Status and Future Directions, chap. 11, in: Dynam-
ics of Plate Tectonics and Mantle Convection, edited by: Duarte,

https://doi.org/10.5194/gmd-17-9023-2024 Geosci. Model Dev., 17, 9023–9049, 2024

https://doi.org/10.1130/G25703A.1
https://doi.org/10.1038/s41467-021-22323-9
https://doi.org/10.1029/2022gc010421
https://doi.org/10.5281/zenodo.8200213
https://doi.org/10.1016/j.jocs.2018.12.006
https://doi.org/10.1007/BF01008348
https://doi.org/10.1029/2001GC000168
https://doi.org/10.1038/ngeo1521
https://doi.org/10.1038/ngeo1020
https://doi.org/10.1063/1.168525
https://doi.org/10.1098/rsta.2002.1080
https://doi.org/10.1046/j.1365-246X.2003.01948.x
https://doi.org/10.1029/2021JB022137
https://doi.org/10.1130/B35653.1
https://doi.org/10.1002/2016GL067929
https://doi.org/10.1016/j.gr.2017.04.027
https://doi.org/10.1111/j.1365-246X.1995.tb01835.x
https://doi.org/10.1016/0012-821X(87)90056-2
https://doi.org/10.1111/j.1365-246X.2012.05388.x
https://doi.org/10.1029/2012GC004392
https://doi.org/10.1002/2017GC006944
https://doi.org/10.5194/gmd-6-1095-2013
https://doi.org/10.5194/gmd-6-1095-2013
https://doi.org/10.1038/s41561-019-0441-4


9046 C. P. B. O’Malley et al.: Reconciling mantle convection simulations

J., Elsevier, Amsterdam (Netherlands), Oxford (UK), Cam-
bridge (MA, USA), https://doi.org/10.1016/B978-0-323-85733-
8.00017-2, pp. 223–269, 2023.

Fernandes, V. M. and Roberts, G. G.: Cretaceous to Re-
cent net continental uplift from paleobiological data: In-
sights into sub-plate support, GSA Bulletin, 133, 1–20,
https://doi.org/10.1130/b35739.1, 2021.

Fernandes, V. M., Roberts, G. G., White, N., and Whittaker,
A. C.: Continental-Scale Landscape Evolution: A History of
North American Topography, J. Geophys. Res.-Earth, 124, 1–34,
https://doi.org/10.1029/2018jf004979, 2019.

Fernandes, V. M., Roberts, G. G., and Richards, F.: Testing
Mantle Convection Simulations With Paleobiology and Other
Stratigraphic Observations: Examples From Western North
America, Geochem. Geophy. Geosy., 25, e2023GC011381,
https://doi.org/10.1029/2023GC011381, 2024.

Fichtner, A. and Villaseñor, A.: Crust and upper mantle
of the western Mediterranean – Constraints from full-
waveform inversion, Earth Planet. Sc. Lett., 428, 52–62,
https://doi.org/10.1016/j.epsl.2015.07.038, 2015.

Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P.: Full
seismic waveform tomography for upper-mantle structure in the
Australasian region using adjoint methods, Geophys. J. Int., 179,
1703–1725, https://doi.org/10.1111/j.1365-246X.2009.04368.x,
2009.

Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Tay-
maz, T., Capdeville, Y., and Villaseñor, A.: Multiscale
full waveform inversion, Geophys. J. Int., 194, 534–556,
https://doi.org/10.1093/gji/ggt118, 2013.

Flament, N.: Present-day dynamic topography and lower-
mantle structure from palaeogeographically constrained
mantle flow models, Geophys. J. Int., 216, 2158–2182,
https://doi.org/10.1093/gji/ggy526, 2019.

Flament, N., Gurnis, M., and Muller, R. D.: A review of observa-
tions and models of dynamic topography, Lithosphere, 5, 189–
210, https://doi.org/10.1130/L245.1, 2013.

Flament, N., Gurnis, M., Williams, S., Seton, M., Skogseid, J.,
Heine, C., and Dietmar Müller, R.: Topographic asymmetry
of the South Atlantic from global models of mantle flow and
lithospheric stretching, Earth Planet. Sc. Lett., 387, 107–119,
https://doi.org/10.1016/j.epsl.2013.11.017, 2014.

Flament, N., Gurnis, M., Müller, R. D., Bower, D. J.,
and Husson, L.: Influence of subduction history on South
American topography, Earth Planet. Sc. Lett., 430, 9–18,
https://doi.org/10.1016/j.epsl.2015.08.006, 2015.

Foley, S. F. and Fischer, T. P.: An essential role for continental rifts
and lithosphere in the deep carbon cycle, Nat. Geosci., 10, 897–
902, https://doi.org/10.1038/s41561-017-0002-7, 2017.

Forte, A. M.: Constraints on Seismic Models from Other Disci-
plines – Implications for Mantle Dynamics and Composition,
chap. 1.23, in: Seismology and the Structure of the Earth, edited
by: Romanowicz, B. and Dziewonski, A., Elsevier B. V., Ams-
terdam, https://doi.org/10.1016/B978-044452748-6.00027-4, pp.
805–858, 2007.

Forte, A. M. and Peltier, R.: Viscous Flow Models of Global Geo-
physical Observables 1. Forward Problems, J. Geophys. Res., 96,
20131–20159, https://doi.org/10.1029/91JB01709, 1991.

Forte, A. M. and Peltier, W. R.: The Kinematics and Dy-
namics of Poloidal-Toroidal Coupling in Mantle Flow: The

Importance of Surface Plates and Lateral Viscosity Varia-
tions, Adv. Geophys., 36, 1–119, https://doi.org/10.1016/S0065-
2687(08)60537-3, 1994.

Forte, A. M., Simmons, N. A., and Grand, S. P.: Constraints on Seis-
mic Models from Other Disciplines – Constraints on 3-D Seismic
Models from Global Geodynamic Observables: Implications for
the Global Mantle Convective Flow, in: Treatise on Geophysics,
Second Edition, vol. 1, Elsevier, https://doi.org/10.1016/B978-0-
444-53802-4.00028-2, pp. 853–907, 2015.

French, S. W. and Romanowicz, B.: Broad plumes rooted at the
base of the Earth’s mantle beneath major hotspots, Nature, 525,
95–99, https://doi.org/10.1038/nature14876, 2015.

Galloway, W. E., Whiteaker, T. L., and Ganey-Curry, P.: History
of Cenozoic North American drainage basin evolution, sediment
yield, and accumulation in the Gulf of Mexico basin, Geosphere,
7, 938–973, https://doi.org/10.1130/GES00647.1, 2011.

Gantmacher, F. R.: The Theory of Matrices, Chelsea Publishing
Company, New York, ISBN 9780821813935, 1959.

Ghelichkhan, S.: Propagator Matrix Code for Calculat-
ing Dynamic Topography (v0.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.12696774, 2024.

Ghelichkhan, S., Bunge, H.-P., and Oeser, J.: Global mantle flow
retrodictions for the early Cenozoic using an adjoint method:
Evolving dynamic topographies, deep mantle structures, flow
trajectories and sublithospheric stresses, Geophys. J. Int., 226,
1432–1460, https://doi.org/10.1093/gji/ggab108, 2021.

Ghosh, A. and Holt, W. E.: Plate Motions and Stresses
from Global Dynamic Models, Science, 335, 838–843,
https://doi.org/10.1126/science.1214209, 2012.

Ghosh, A., Becker, T. W., and Zhong, S. J.: Effects of lateral vis-
cosity variations on the geoid, Geophys. Res. Lett., 37, 2–7,
https://doi.org/10.1029/2009GL040426, 2010.
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