Articles | Volume 17, issue 15
https://doi.org/10.5194/gmd-17-5897-2024
https://doi.org/10.5194/gmd-17-5897-2024
Methods for assessment of models
 | 
07 Aug 2024
Methods for assessment of models |  | 07 Aug 2024

kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation

Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer

Related authors

Estimation of local training data point densities to support the assessment of spatial prediction uncertainty
Fabian Lukas Schumacher, Christian Knoth, Marvin Ludwig, and Hanna Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2730,https://doi.org/10.5194/egusphere-2024-2730, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
DEVELOPING TRANSFERABLE SPATIAL PREDICTION MODELS: A CASE STUDY OF SATELLITE BASED LANDCOVER MAPPING
M. Ludwig, J. Bahlmann, E. Pebesma, and H. Meyer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 135–141, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-135-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-135-2022, 2022
AntAir: satellite-derived 1 km daily Antarctic air temperatures since 2003
Hanna Meyer, Marwan Katurji, Florian Detsch, Fraser Morgan, Thomas Nauss, Pierre Roudier, and Peyman Zawar-Reza
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-215,https://doi.org/10.5194/essd-2019-215, 2019
Preprint withdrawn
Short summary
Satellite-based high-resolution mapping of rainfall over southern Africa
Hanna Meyer, Johannes Drönner, and Thomas Nauss
Atmos. Meas. Tech., 10, 2009–2019, https://doi.org/10.5194/amt-10-2009-2017,https://doi.org/10.5194/amt-10-2009-2017, 2017
Short summary

Related subject area

Earth and space science informatics
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
Remote sensing-based high-resolution mapping of the forest canopy height: some models are useful, but might they be even more if combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Agnès Pellissier-Tanon, Gabriel Destouet, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-95,https://doi.org/10.5194/gmd-2024-95, 2024
Revised manuscript accepted for GMD
Short summary
Consistency-Checking 3D Geological Models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1326,https://doi.org/10.5194/egusphere-2024-1326, 2024
Short summary

Cited articles

Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., and Li, S.: FNN: Fast Nearest Neighbor Search Algorithms and Applications, r package version 1.1.3.1, https://CRAN.R-project.org/package=FNN (last access: 29 July 2024), 2022. a
Brenning, A.: Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest, in: 2012 IEEE Int. Geosci. Remote, 5372–5375, https://doi.org/10.1109/IGARSS.2012.6352393, 2012. a, b
Brenning, A.: Spatial machine-learning model diagnostics: a model-agnostic distance-based approach, Int. J. Geograph. Inf. Sci., 37, 584–606, https://doi.org/10.1080/13658816.2022.2131789, 2022. a, b
Conover, W. J.: Practical nonparametric statistics, vol. 350, John wiley & sons, ISBN 978-0-471-16068-7, 1999. a
Corporation, M. and Weston, S.: doParallel: Foreach Parallel Adaptor for the “parallel” Package, r package version 1.0.17, https://CRAN.R-project.org/package=doParallel (last access: 29 July 2024), 2022. a
Download
Short summary
Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.