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Abstract. Random and spatial cross-validation (CV) meth-
ods are commonly used to evaluate machine-learning-based
spatial prediction models, and the performance values ob-
tained are often interpreted as map accuracy estimates. How-
ever, the appropriateness of such approaches is currently
the subject of controversy. For the common case where no
probability sample for validation purposes is available, in
Milà et al. (2022) we proposed the nearest-neighbour dis-
tance matching (NNDM) leave-one-out (LOO) CV method.
This method produces a distribution of geographical nearest-
neighbour distances (NNDs) between test and training loca-
tions during CV that matches the distribution of NNDs be-
tween prediction and training locations. Hence, it creates pre-
dictive conditions during CV that are comparable to what is
required when predicting a defined area. Although NNDM
LOO CV produced largely reliable map accuracy estimates
in our analysis, as a LOO-based method, it cannot be applied
to the large datasets found in many studies.

Here, we propose a novel k-fold CV strategy for map accu-
racy estimation inspired by the concepts of NNDM LOO CV:
the k-fold NNDM (kNNDM) CV. The kNNDM algorithm
tries to find a k-fold configuration such that the empirical cu-
mulative distribution function (ECDF) of NNDs between test
and training locations during CV is matched to the ECDF of
NNDs between prediction and training locations.

We tested kNNDM CV in a simulation study with differ-
ent sampling distributions and compared it to other CV meth-
ods including NNDM LOO CV. We found that kNNDM CV
performed similarly to NNDM LOO CV and produced rea-
sonably reliable map accuracy estimates across sampling pat-

terns. However, compared to NNDM LOO CV, kNNDM re-
sulted in significantly reduced computation times. In an ex-
periment using 4000 strongly clustered training points, kN-
NDM CV reduced the time spent on fold assignment and
model training from 4.8 d to 1.2 min. Furthermore, we found
a positive association between the quality of the match of the
two ECDFs in kNNDM and the reliability of the map accu-
racy estimates.

kNNDM provided the advantages of our original NNDM
LOO CV strategy while bypassing its sample size limita-
tions.

1 Introduction

Spatial predictive modelling using machine learning meth-
ods is commonly used in ecology and environmental sci-
ences to predict the values of variables sampled at a limited
set of locations at new, unobserved locations (see, for ex-
ample, van den Hoogen et al., 2019; Sabatini et al., 2022;
Moreno-Martínez et al., 2018, and Hengl et al., 2017, for
global studies). A key step in the spatial prediction work-
flow is map accuracy assessment, i.e. the process whereby
the quality of a prediction of a spatially indexed variable in a
finite and defined geographical area (e.g. a set of pixels form-
ing a continuous surface) is estimated (Stehman et al., 2021;
Wadoux et al., 2021). Although map accuracy assessment
should ideally be done via design-based inference based on
probability sampling (Wadoux et al., 2021), this is frequently
not possible due to limited access to certain areas or expen-
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sive sampling methods (Martin et al., 2012). Instead, cross-
validation (CV) methods are commonly used to estimate map
accuracy. Previous studies, however, have shown significant
differences in map accuracy estimates depending on the type
of CV being used, which has led to discussions on the appro-
priateness of these strategies (Wadoux et al., 2021; Meyer
and Pebesma, 2022; Milà et al., 2022; Roberts et al., 2017;
Ploton et al., 2020). Since CV is also typically used dur-
ing model development (i.e. during hyperparameter tuning
– Schratz et al., 2019 – and feature selection – Meyer et al.,
2019), reliable estimates of map accuracy are crucial to de-
veloping suitable prediction models.

Traditional CV methods that ignore the spatial structure
of the data such as leave-one-out (LOO) or random k-fold
CV (Hastie et al., 2009) have been found to provide reliable
estimates of map accuracy when samples are randomly dis-
tributed within the entire prediction area but not when they
are clustered (Milà et al., 2022; Wadoux et al., 2021) or
only cover parts of the prediction area (Meyer and Pebesma,
2021). As an alternative, spatial CV methods such as block
CV (Wenger and Olden, 2012; Valavi et al., 2019; Roberts
et al., 2017) or buffered-LOO CV (Telford and Birks, 2009;
Le Rest et al., 2014; Brenning, 2022) are often used. Spa-
tial CV methods are designed for geographical model trans-
ferability assessment, i.e. to test the ability of the model
to make predictions for new geographic entities far away
from the sampling areas by designing a CV where indepen-
dence between training and test data is sought (Roberts et al.,
2017). Such strategies, however, have been found to under-
estimate map accuracy when reference data are regularly
or randomly distributed within the entire prediction area. In
some cases, this has even been reported for clustered samples
(Wadoux et al., 2021; Milà et al., 2022). Recent proposals
of methods for map accuracy estimation include sampling-
intensity-weighted CV, as well as model-based geostatistical
approaches (de Bruin et al., 2022). However, the results of
de Bruin et al. (2022) showed that these methods are not
universal solutions and, depending on the sampling design,
showed considerable over- or underestimation of the true
map accuracy.

In our past work, we argued that the design of a CV
method to provide a reliable estimate for map accuracy
should be prediction-oriented; i.e. predictive conditions cre-
ated during CV should resemble the conditions found when
the trained model is applied to the prediction area (Milà et al.,
2022; Meyer and Pebesma, 2022; Ludwig et al., 2023). Fol-
lowing this idea, in Milà et al. (2022) we considered pre-
dictive conditions in terms of geographical distances, and
proposed the nearest-neighbour distance matching (NNDM)
LOO CV method, a prediction-oriented CV method based on
spatial point pattern concepts. Briefly, NNDM aims to match
the empirical cumulative distribution function (ECDF) of
nearest-neighbour distances (NNDs) between test and train-
ing locations in the CV to the ECDF of NNDs between pre-
diction and training locations found during prediction.

In Milà et al. (2022) we showed that when standard LOO
CV is used for reference data randomly distributed within
the prediction area, the distribution of NNDs between test
and training locations during CV is similar to the distribu-
tion of NNDs between prediction and training locations (see
Meyer and Pebesma, 2022, for similar results for random k-
fold CV). In the case of clustered sampling designs, NNDs
during LOO CV were generally much shorter than predic-
tion NNDs, which led to significant error underestimation
(see also Ludwig et al., 2023). For regular samples, NNDs
during LOO CV were found to be slightly longer than dur-
ing prediction, leading to slight error overestimation. With
the newly developed NNDM LOO CV, we could produce
comparable NND distributions in most sampling designs and
provide more reliable estimates of map accuracy that can be
used during model development or to indicate the accuracy
of the predictions.

Even though NNDM LOO CV showed promising results
across different sampling designs, prediction areas, and land-
scape autocorrelation ranges, the fact that it is a LOO-based
CV method hinders its broader application given its high
computational cost in medium and large datasets. To over-
come this limitation, our aim is to extend the idea of NNDM
LOO CV to a k-fold NNDM CV, hereafter kNNDM, that can
be applied to larger datasets commonly found in ecology and
the environmental sciences.

This article is organised as follows: after presenting our
algorithm in Sect. 2, in Sect. 3 we reproduce the simulation
study included in Milà et al. (2022) to assess the performance
and run-time of kNNDM compared to other CV methods in-
cluding NNDM LOO. In this simulation, we also explore the
influence of the number of folds k and the relationship be-
tween the quality of the match and the quality of the estima-
tion of the map accuracy. As supplementary material (Ap-
pendix A), we provide a second simulation study, which we
also briefly describe in Sect. 3. Finally, Sect. 4 discusses the
strengths and limitations of our method and suggests future
lines of work.

2 Algorithm description

The objective of kNNDM is to find a k-fold configuration
such that the distribution of NNDs between test and training
locations during CV matches as closely as possible the dis-
tribution of NNDs between prediction and training locations.
In other words, kNNDM aims to create predictive conditions
in terms of geographical distances that resemble those found
when using the model to predict a certain area. To do so, we
use a clustering approach to create a set of candidate fold
configurations with different degrees of spatial clustering, of
which we choose the one that offers the best match between
the two distributions. Before explaining the algorithm in de-
tail, we define the different NND distribution functions used
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in kNNDM, as well as the statistic used to evaluate the dif-
ferent fold candidates.

As in the original NNDM LOO algorithm, in kNNDM we
define nearest-neighbour distance distribution functions by
means of their NND ECDF, where j is the index for training
points, i is the index for prediction points, and r is a distance
(Euclidean for projected coordinates and spherical for geo-
graphical coordinates).

– Ĝj (r) is the NND ECDF between test and training lo-
cations during LOO CV and expresses the proportion
of training points that have another training point at a
distance less than or equal to r:

Ĝj (r)=
1
nj

∑
j

1{dj ≤ r}, where dj =min
k 6=j
‖ x

(j)
j −x

(j)
k ‖ .

– Ĝij (r) is the NND ECDF between prediction and train-
ing locations and expresses the proportion of prediction
points that have a sampling point at a distance less than
or equal to r:

Ĝij (r)=
1
ni

∑
i

1{dij ≤ r}, where dij =min ‖ x
(i)
i −x(j)

‖ .

– Ĝ∗j (r,L) is the NND ECDF between test and training
locations during a CV defined in L and expresses the
proportion of test points that have a training point at
a distance less than or equal to r during a given CV
strategy. Note that L= {l1, l2, . . ., lnj

} is a list of sets lj
containing the indices of the samples to fit the model
to when holding out observation j during CV. Note that
since in kNNDM we leave out data points in folds rather
than one by one, lj will be exactly the same for all sam-
ples belonging to the same fold:

Ĝ∗j (r,L)=
1
nj

∑
j

1{d∗j ≤ r}, where d∗j =min
k∈lj
‖ x

(j)
j −x

(j)
k ‖ .

Another important component of our approach is how
to measure the quality of the match between Ĝ∗j (r,L) and

Ĝij (r) given a fold configuration. We do that using the
Wasserstein statistic (Dowd, 2020; Vaserstein, 1969), which
compares the distribution of two samples by calculating the
integral of the absolute value differences between the two
ECDFs. In our case, we define W as the integral over the ge-
ographical distances r of the absolute value differences be-
tween Ĝ∗j (r,L) and Ĝij (r):

W =

∫
|Ĝ∗j (r,L)− Ĝij (r)|dr.

Small values of W indicate that the two ECDFs are sim-
ilar, while W will be larger if they differ. To illustrate this
point, we show the calculation of the W statistic between

Ĝ∗j (r,L) and Ĝij (r) for a random 10-fold CV and different
sampling patterns (Fig. 1). As shown in Meyer and Pebesma
(2022), when samples are randomly distributed within the
prediction area, the distribution of NNDs during the random
10-fold CV Ĝ∗j (r,L) resembles the distribution of NNDs dur-

ing prediction Ĝij (r), and therefore the value of W is small.
However, in the presence of clustered samples, random k-
fold CV NNDs are shorter than prediction NNDs, and thus
Ĝ∗j (r,L) > Ĝij (r), resulting in a large W value. The oppo-
site occurs when training samples follow a regular sampling
pattern, also leading to a larger W statistic compared to ran-
dom sampling.

Now that the definitions of the NND functions and the W

statistic have been stated, we proceed with the explanation
of the kNNDM algorithm (Fig. 2). The required inputs in-
clude the georeferenced training and prediction points, the
desired number of folds k, and the clustering algorithm to
be used. The first step is to test whether the training points
are clustered with respect to the prediction points; to do that
we compute Ĝj (r) and Ĝij (r) and then test the null hy-
pothesis H0, i.e. Gj (r)≤Gij (r), vs. the alternative hypoth-
esis H1, i.e. Gj (r) > Gij (r), with a one-sided Kolmogorov–
Smirnov (KS) two-sample test (Conover, 1999). If the null
hypothesis is not rejected, the algorithm returns a random k-
fold CV, since it is the appropriate option for random and
regular samples (Meyer and Pebesma, 2022; Wadoux et al.,
2021; de Bruin et al., 2022). If, however, the null hypoth-
esis is rejected (p value < 0.05), we proceed to cluster the
training points based on their coordinates into a series of
q ∈Q clusters, where Q is defined as an integer sequence
of length 100 ranging between k and N (the total number
of training points) equally spaced on a logarithmic scale and
back-transformed, to try configurations with a small num-
ber of clusters more intensively. Currently, hierarchical and
k-means clustering methods are implemented.

Next, for every configuration where q > k, we merge the
resulting q clusters into the final k folds along the first prin-
cipal component of the coordinates of the training points
to prevent contiguous clusters in space to be in the same
fold. Briefly, we compute the first principal component of the
training points’ coordinates to capture the direction with the
most spatial variability, project the q cluster centroids into
that first component and order them according to it, and fi-
nally merge q clusters into k folds by giving different fold
levels to contiguous clusters in that dimension. Large clus-
ters with a proportion greater than 1/k of the training data
are not merged to keep fold balance. Once this procedure is
completed, we compute Ĝ∗j (r,L) and W for each fold config-
uration candidate and select the one with the smallest W , i.e.
the one that provides the best match between Ĝ∗j (r,L) and

Ĝij (r). As outputs, the algorithm returns the fold indices of
the selected configuration, as well as their respective NND
functions, W statistic, and intermediate number of folds q.
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Figure 1. (a–c) Prediction points (regular grid) and training points with different spatial distributions (bold), simulated for visualisation
purposes only. (d–f) NND ECDF between training and test locations during 10-fold random CV (Ĝ∗

j
(r,L), orange) and NND ECDF between

prediction and training locations (Ĝij (r), black) corresponding to each of the sampling distributions in the top row. The shaded grey area
corresponds to the W statistic, whose value is printed in the plots.

Figure 2. Workflow of the kNNDM algorithm.

As an illustration of how kNNDM works in cases where
samples are clustered within the prediction area, Fig. 3 shows
a 2-fold kNNDM CV configuration for different numbers of
clusters q, their respective NND ECDFs, and the W statis-
tic between Ĝ∗j (r,L) and Ĝij (r) assessing the match. A low
number of clusters leads to a strong partition of the geograph-
ical space and long NNDs between test and training points
during CV, which are actually longer than NNDs encoun-

tered when predicting from all reference data. As the number
of clusters increases, Ĝ∗j (r,L) gets closer to Ĝj (r), i.e. the
NND ECDF encountered during LOO CV. In this example,
the kNNDM algorithm would select the configuration with
q = 21, since it minimises the W statistic, i.e. provides the
best match.

As practical considerations, in our implementation we
have provided the possibility, as an alternative to the predic-
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Figure 3. Top row: kNNDM with k = 2 (red and blue points) for several clusters q. Prediction points consist of a regular grid (not shown)
spanning the whole polygon. Points were simulated for visualisation purposes only. Bottom row: NND ECDF between training locations
during LOO CV (Ĝj (r), blue), between test and training locations during kNNDM CV (Ĝ∗

j
(r,L), orange), and between prediction and

training locations (Ĝij (r), black) corresponding to each CV configuration in the top row.

tion points’ input, of supplying a polygon defining the pre-
diction area, from which prediction points are sampled in-
ternally. Moreover, we have included a balancing parameter
for the maximum single fold size allowed that discards non-
compliant fold candidates. Regarding computational perfor-
mance, our algorithm benefits from using projected coordi-
nates since fast nearest-neighbourhood searches in Euclidean
space can be performed using the FNN package (Beygelz-
imer et al., 2022). Finally, when using kNNDM we recom-
mend computing accuracy statistics such as the coefficient of
determination (R2), the root mean square error (RMSE), or
the mean absolute error (MAE) in the stacked out-of-sample
predictions rather than performing an average of the statistics
computed in each of the folds, since the resulting folds can
be unbalanced and Ĝ∗j (r,L) is constructed using all CV folds
simultaneously (Meyer et al., 2023).

3 Simulation studies

3.1 Algorithm performance for map accuracy
estimation

To investigate the performance of kNNDM CV and how it
compares to the original NNDM LOO CV, we used the same
simulation as in our previous work (see Milà et al., 2022,
for a complete description). Briefly, we generated a virtual
response surface, i.e. a spatially indexed continuous vari-
able between 0 and 1, using a selection of WorldClim bio-
climatic variables for the Iberian Peninsula (Fig. 4a) and the
virtualspecies R package (Leroy et al., 2015). Next,
we simulated training locations with five different distribu-
tions and a sample size of 100 (Fig. 4b). We performed 100

iterations of the sampling simulation, and, in each of them,
we extracted the predictor (bioclimatic variables) and re-
sponse data at the sampling points’ locations and fitted ran-
dom forest (RF) regression models, resulting in a total of 500
fitted models. RF hyperparameters were not tuned, and de-
fault values were used in all simulations to shorten computa-
tion time.

Each fitted RF model was used to predict the response
in the entire prediction area, from which the true map ac-
curacy was calculated (RMSE, MAE, and R2). Addition-
ally, we used the following CV methods: (1) random 10-fold
CV, (2) spatial 10-fold CV via k-means clustering (Brenning,
2012), (3) the original NNDM LOO CV, and (4) 10-fold kN-
NDM CV. In contrast to the original simulation in Milà et al.
(2022), here we matched all distances in the prediction area
during NNDM rather than up to a certain range estimated
from the data. In order to interpret results, we subtracted the
true map accuracy metrics from each of the CV estimates to
assess their performance (Fig. 5).

The kNNDM CV yielded reliable error estimates across
all sampling patterns we considered, which were similar and
in some cases even more accurate than those estimated via
NNDM LOO CV (Fig. 5). Variability in the differences was
larger in kNNDM than in NNDM LOO CV for strongly clus-
tered samples. Random 10-fold CV produced reliable esti-
mates under random sampling patterns but failed for clus-
tered data. The spatial 10-fold CV overestimated the map-
ping error except for the RMSE in the strong clustering sce-
nario and had the largest variability.
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Figure 4. Data used in the simulation: (a) bioclimatic covariates and response (all linearly stretched to [0,1] for visualisation purposes) and
(b) an example of one iteration of the sample simulation. Figure reproduced from Milà et al. (2022).

3.2 Relationship between the quality of the match and
the quality of the map accuracy estimate

In order to investigate the relationship between the quality of
the match in kNNDM and the quality of the map accuracy
metrics, we performed a second simulation using the same
response and predictors and 100 iterations of our first sim-
ulation (Sect. 3.1). However, in this second simulation, we
(1) added two more extremely clustered sample configura-
tions to extend the range of possible W values; (2) only used
kNNDM CV; (3) did not check for clustering as a first step in
kNNDM, i.e. applied the clustering approach to all samples
regardless of their distribution; and (4) kept all candidate fold
configurations considered within kNNDM, qi ∈Q, and their
respective values of the W statistic, rather than just the one
yielding the lowest W . We used all of these candidate CV
splits to calculate CV map accuracy statistics, and we com-
puted the absolute value difference with respect to the true
value of the map accuracy statistic. We then plotted these ab-
solute value differences against the corresponding W statistic
and fitted a linear regression to summarise the trend (Fig. 6).

The relationship between the absolute value differences
between CV and true map accuracy statistics (Fig. 6) and
W showed that, for all three statistics considered, a poor
match between Ĝ∗j (r,L) and Ĝij (r) indicated by a greater
W statistic led to poor estimates of the true map accuracy,
while the true map accuracy could be better estimated for

well-matching functions. This positive association was linear
for all three statistics with at least 60 % explained variance.

3.3 Influence of the number of folds

The choice of k can influence the performance of kNNDM
to a certain extent since it dictates the maximum cluster-
ing that can be achieved. To investigate the influence of k,
we repeated the workflow described in Sect. 3.1 but only
employed kNNDM CV using an even integer sequence k ∈

{2,4,6, . . .,20}. In each of the 100 iterations, we calculated
the true and estimated error metrics, as well as the quality
of the match between the ECDF of NNDs between CV folds
(Ĝ∗j (r,L)) and the ECDF of NNDs between prediction points

and sample points (Ĝij (r)) as measured by the Wasserstein
statistic (W ). With the resulting statistics, we plotted the dis-
tribution of the differences between the estimated and true
RMSE, MAE, and R2 as well as the W statistic for each
k value (Fig. 7).

Our results indicated that a larger number of folds resulted
in better matches for regular and random samples but worse
matches for strongly clustered designs. While, for regular
and random samples, this translated into increasingly accu-
rate map accuracy estimates for a larger number of folds,
for clustered data, the number of folds with the smallest W

value, i.e. k = 2, was overly pessimistic and k = 4 or 6 actu-
ally performed better.
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Figure 5. Differences between cross-validated and true RMSE, R2, and MAE by sampling distribution and CV method for the simulated
virtual response variable.

Figure 6. Relationship in 10-fold kNNDM between the absolute value difference between the CV and true map accuracy statistics (y axis)
and W statistic (x axis) for the RMSE (a), R2 (b), and MAE (c) statistics. Colour represents the data point density. The black line shows the
linear regression fit. The R2 values of the regression models are 0.66, 0.6, and 0.73 for the RMSE, R2, and MAE, respectively.

3.4 Run-time analysis

Since our goal was to propose a computationally feasible
alternative to NNDM LOO CV for large datasets, we per-
formed a run-time analysis to quantify the speed gains of

kNNDM CV compared to NNDM LOO CV. We separately
quantified the time spent on (1) finding the optimal CV split
(i.e. running the NNDM LOO and kNNDM algorithms);
(2) repetitively fitting the model according to the CV con-
figuration; and (3) the total run-time, i.e. the sum of (1) and

https://doi.org/10.5194/gmd-17-5897-2024 Geosci. Model Dev., 17, 5897–5912, 2024
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Figure 7. CV error estimates for kNNDM CV with different values of k (first three rows). The respective W statistic is shown in the fourth
row. Points indicate median values, while error bars show the first and third quartile.

(2). We did that using the same simulation framework as in
Sect. 3.1 but with 50 different sample sizes, ranging from 100
to 4000 training points. We only used the strongly clustered
and the random sampling designs for computational reasons.
We used a maximum of 4000 training points, since the com-
putational time exceeded 1 week per run for NNDM LOO
CV. The analysis was carried out using a high-performance
computation cluster utilising up to 1.5 GB of RAM for each
run using the Intel® Xeon® Gold 6140 CPU.

The run-time analysis showed large speed gains of kN-
NDM CV compared to NNDM LOO CV under all tested
sample designs (Fig. 8). For the random sampling design,
the kNNDM algorithm was especially fast due to the prior
test for clustering in the training data. This test returns a sim-
ple random k-fold CV when no clustering is detected and is
much faster than running the entire kNNDM algorithm (see
Sect. 2). Only in four cases did the test not return a random
CV, and in those four cases the computational times were
longer (red outliers in Fig. 8).

NNDM LOO was slower compared to kNNDM when the
training data were randomly distributed and much slower
when they were clustered (Fig. 8). For a sample size of 4000,
kNNDM CV reduced the time spent on fold assignment and
model training from 3.2 h to 30 s for random samples and

from 4.8 d to 1.2 min for clustered samples as compared to
NNDM LOO CV. Furthermore, the computational time of
NNDM LOO CV increased exponentially with increasing
sample size. This pattern arises from both the architecture
of the NNDM LOO CV algorithm (Fig. 8, left column) and
from the difference between LOO CV and k-fold CV in terms
of model fitting, since NNDM LOO CV requires training
k =N models, while the number of models trained during k-
fold CV is usually much smaller, in this case k = 10 (Fig. 8,
middle column).

3.5 Additional simulation study

To test the robustness of our results, we tested the perfor-
mance of kNNDM CV in a second simulation using a real-
world dataset described in detail in Appendix A and used
in the study by de Bruin et al. (2022). Briefly, we mod-
elled above-ground biomass in Europe using different sam-
pling distributions ranging from regular to strongly clustered
(Fig. A1).

Results for the second simulation broadly agreed with the
first simulation, although we observed some differences that
are worth pointing out. The 10-fold kNNDM reliably esti-
mated the true RMSE in all designs except in the strongly
clustered one, where, similarly to spatial CV, it resulted in

Geosci. Model Dev., 17, 5897–5912, 2024 https://doi.org/10.5194/gmd-17-5897-2024
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Figure 8. Differences in computational time (log-scaled) between 10-fold kNNDM CV (red) and NNDM LOO CV (blue) for two different
sample designs (rows).

overly optimistic estimates (Fig. A2). The relationship be-
tween the absolute value difference between CV and true
RMSE was positive but only explained 28 % of the total vari-
ance (Fig. A3). While large numbers of folds resulted in a
better match as expressed by W and more accurate RMSE
for regular and random designs (Fig. A4), in strongly clus-
tered designs the opposite was observed. For weak clustered
results, k = 4 had the lowest W statistic although RMSEs
were also estimated well for larger values of k.

4 Discussion

In this work, we propose a new prediction-oriented CV strat-
egy for map accuracy estimation named kNNDM, which
takes into account the geographical prediction space of the
model. The kNNDM approach extends the ideas of NNDM
LOO CV to a k-fold CV strategy that can be used for medium
and even large reference datasets to estimate map accuracy in
the absence of probability sampling test data. In the simula-
tion study, kNNDM performed similarly to NNDM LOO CV
and produced reasonably reliable map accuracy estimates for
most sampling patterns. Thus, kNNDM provided the advan-
tages of our original NNDM LOO strategy while bypass-
ing its sample size limitations. Small differences between
NNDM LOO and kNNDM CV can be attributed to the dif-
ferent ways to match the distributions as well as the different
hold-out sample size.

Similarly to other studies (e.g. Wadoux et al., 2021;
de Bruin et al., 2022), we observed that random k-fold

CV returned reliable estimates of map accuracy with ran-
domly distributed samples within the prediction area, while it
was overly optimistic when samples were clustered. Also in
agreement with other studies, we found that spatial CV meth-
ods that do not take into account the geographical prediction
space tended to be overly pessimistic even with clustered
samples within the prediction area (Wadoux et al., 2021;
de Bruin et al., 2022; Milà et al., 2022), for example as a
result of block sizes that do not match the prediction task.
A unique finding of our study that deserves special attention
is the positive association we found between the W statis-
tic measuring the quality of the match of the NND ECDFs
during CV and prediction and the quality of the estimation
of the map accuracy statistics. This association was strong in
our first simulation, which had a national scale, supporting
our suggestion to design CV strategies that try to match the
predictive conditions of the models in terms of geographical
NNDs. That said, this relationship was weaker in the sec-
ond simulation, where the study area had a continental scale.
This suggests that other factors such as distances in the fea-
ture space may also play a role in the performance of CV
map accuracy estimates.

Our experiments showed that the number of folds can have
an impact on the performance of kNNDM. For randomly and
regularly distributed samples, k needs to be sufficiently large
(k ≥ 10) to provide accurate estimates of map accuracy. The
same finding applies to random k-fold CV, to which kNNDM
generalises for random and regular samples. We attribute this
to the fact that, when the number of clusters is small, neigh-
bouring samples can be put in the same fold with a probabil-
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ity that increases with smaller k values. On the other hand, for
severely clustered samples, a smaller number of folds may
be beneficial as k determines the maximum clustering that
can be achieved when the geographical space is partitioned
into k contiguous blocks. The suitability of a smaller num-
ber of folds was indicated by a higher quality of the match
shown by the Wasserstein statistic. Comparing the suitability
of different fold configurations via the Wasserstein statistic
can be used for guidance when choosing the number of folds.
Nonetheless, in clustered settings where W indicates that the
best match is achieved by setting a very low k such as k = 2
(see Fig. 7), we recommend taking a larger fold size such as
4 or 5 since the amount of bias expected with two folds due
to large parts of the training data being left out is expected
to be large (Kohavi, 1995) and is likely the reason that we
observe better results for k = 4 or 6 in our experiments.

Even though kNNDM overcomes the sample size limita-
tions of NNDM LOO CV, there are still limitations of the
approach. First, the flexibility of the matching in kNNDM
is lower than in NNDM LOO CV, since every observation
must be assigned to a fold. Moreover, it is also possible that
the range of NNDs observed during prediction is different
than the range of NND between training points, which might
make the match impossible for some distances. This is espe-
cially the case when the prediction area is different from the
training area (i.e. complete model transfer). For these rea-
sons, the match between CV and prediction NND ECDF in
kNNDM may not always be possible and an inspection of the
NND ECDF like in Fig. 1 should always be conducted. Sim-
ilarly, if training data are very clustered within the prediction
area as in the strongly clustered design of the second simula-
tion, kNNDM may still fail to offer a CV configuration that
matches the predictive conditions. In that case, we recom-
mend users allow for a greater maximum fold size or ask for a
lower fold number k to account for potentially larger clusters.
Furthermore, in cases where this is still not sufficient, we rec-
ommend restricting the prediction area to the area of appli-
cability (AOA) of the model (Meyer and Pebesma, 2021) to
limit the effects of feature extrapolation. Secondly, both kN-
NDM and NNDM LOO CV algorithms are currently solely
based on the geographical space; therefore, if the feature dis-
tribution between the training and prediction locations is very
different, a feature-based CV strategy might be more appro-
priate (Roberts et al., 2017). For example, Wang et al. (2023)
recently developed a CV method that considers both the ge-
ographic and the feature space, although it does not consider
the prediction domain and predictive conditions of the model.
Thirdly, NNDM-based CV methods do not address the small
error overestimation for regular samples that we found in
our simulations, so map accuracy estimates will tend to be
slightly conservative in such cases. Fourthly, NNDM-based
methods are purely based on geographical distances and ig-
nore the location of the training points or the direction of
the distances, which can be problematic if non-stationarity or
anisotropy of the errors is present (Brenning, 2022). Fifthly,

the CV error estimate obtained by kNNDM is only reason-
able if the prediction area does not change when the model
is deployed. If the prediction area changes significantly, re-
evaluation might be required. Also, when the prediction area
is unknown prior to model training, kNNDM cannot be used.

Possible future points for investigation regarding kN-
NDM include (1) conducting a simulation study comparing
newly proposed CV-based map accuracy estimation methods
(de Bruin et al., 2022) as well as feature-based CV meth-
ods (Roberts et al., 2017) in a larger variety of scenarios,
also including classification problems; (2) implementing a
genetic algorithm that minimises the W statistic directly as
a function of CV folds; (3) exploring the extension of kN-
NDM to feature space (an experimental version is already
implemented in the CAST package; evaluation via simula-
tion studies still pending); and (4) investigating how kNNDM
CV can affect feature selection (Meyer et al., 2019), hyper-
parameter tuning (Schratz et al., 2019), and model applica-
bility (Meyer and Pebesma, 2021). A further possible ex-
tension to the kNNDM algorithm is the exclusion of train-
ing points during CV, which might help to achieve a bet-
ter match in strongly clustered designs without the need to
increase fold sizes. Furthermore, it might be beneficial to
develop and integrate a one-sided Wasserstein test instead
of using the Kolmogorov–Smirnov two-sample test to test
whether the training points are clustered as the first step of
the algorithm, since the Wasserstein test has a greater power
than the Kolmogorov–Smirnov one (Dowd, 2020) and would
also be more consistent with the rest of the algorithm, which
uses the Wasserstein statistic as well.

Finally, we would like to emphasise again that NNDM
and kNNDM CV do not replace established strategies to
estimate map accuracy via design-based inference (as out-
lined in Wadoux et al., 2021), which should always be pre-
ferred. Nonetheless, prediction-oriented CV methods such as
NNDM LOO or kNNDM CV that consider the prediction ob-
jectives of the model can be used to implement a measure of
map accuracy during model development or, in the absence
of a probability sample, to estimate the map accuracy of a
given model.

Appendix A: Additional simulation study

This appendix describes a second simulation study used to
assess the robustness of our findings. We used the example
presented in de Bruin et al. (2022), where a set of 22 predic-
tor variables (see Appendix A of de Bruin et al., 2022, for
a list of the predictor variables and data sources) was used
to predict above-ground biomass (AGB; Santoro and Cartus,
2021) in Europe using different sampling designs (Fig. A1).
This dataset was used to test the same hypotheses as in our
main simulation with the following specific objectives: (1) to
test the ability of kNNDM to estimate true map accuracy,
(2) to assess the relationship between the quality of the match
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and the quality of the map accuracy estimate, and (3) to ex-
plore the impact of the number of folds on the performance
of kNNDM. All methods and visualisations follow our main
simulation as much as possible to allow for comparison.

To test the ability of kNNDM to estimate the map accu-
racy (first objective), random forest (RF) models with fixed
default hyperparameters were trained on 5000 sample points
generated by five sampling designs ranging from regular to
clustered (Fig. A1) as in de Bruin et al. (2022). Then, their
predictive performance (measured as the root mean square
error, RMSE) was estimated using different types of cross-
validation (CV) and was compared to the true RMSE for the
entire surface. Namely, we assessed the performance of ran-
dom 10-fold CV, spatial 10-fold CV based on k-means clus-
tering of the geographical coordinates (Brenning, 2012), and
10-fold kNNDM CV. We did not include NNDM LOO CV,
since it was computationally not feasible (see Fig. 7 in the
main paper for a run-time analysis). While in the original
study by de Bruin et al. (2022) the CV split was repeated 100
times per sample distribution and CV error estimates were
averaged, we only used one repetition to shorten computa-
tional times. For a more detailed description of the simula-
tion, we refer the reader to de Bruin et al. (2022). We sub-
tracted the estimated and the true RMSE and plotted the dis-
tribution of these differences by CV method (Fig. A2).

To assess the relationship between the quality of the match
and the quality of the map accuracy estimate (second objec-
tive), we repeated the workflow described in the first objec-
tive but (1) only used kNNDM CV; (2) did not check for
clustering as a first step in kNNDM, i.e. applied the clus-
tering approach to all samples regardless of their distribu-
tion; and (3) kept all candidate fold configurations consid-
ered within kNNDM, qi ∈Q , and their respective values of
the W statistic, rather than just the one yielding the lowest
W . We used all of these CV configurations to estimate map
accuracy, and we computed the absolute value difference be-
tween the estimates and the true value. We then plotted these
differences against the corresponding W statistic and fitted a
linear regression to estimate the relationship between the two
(Fig. A3).

To explore the impact of the number of folds on the perfor-
mance of kNNDM (third objective), we repeated the work-
flow described in the first objective but employed kNNDM
CV using an even integer sequence k ∈ {2,4,6, . . .,20}. In
each of the 100 iterations, we calculated the true and esti-
mated RMSE, as well as the quality of the match as measured
by the Wasserstein statistic (W ). With the resulting statistics,
we plotted the distribution of the differences between the es-
timated and true RMSE as well as the W statistics (Fig. A4).
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Figure A1. Data used in the AGB simulation. Panel (a) shows a subset of the 22 predictors, as well as the response raster. Rasters were
linearly stretched to [0,1] for visualisation purposes. Panel (b) shows one iteration of the different sampling designs. Data from de Bruin
et al. (2022).

Figure A2. Differences between cross-validated and true RMSE; “kNNDM [tuned]” refers to the kNNDM split that yielded the lowest W

statistic among different numbers of folds k ∈ {2,4,6, . . .,20}.
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Figure A3. Relationship between the absolute value difference between the CV and true RMSE (y axis) with the W statistic (x axis). Here,
W explained 28 % of the variation in the absolute value RMSE differences.

Figure A4. The influence of different numbers of k on the difference between the cross-validated and true RMSE (upper row) and on the W

statistic (lower row). Points indicate median values, while error bars show the first and third quartile. Note that the values of the W statistic
are log-scaled.
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Code and data availability. All simulations were carried out in R
version 4.2.1 (R Core Team, 2022). The most important packages
used include twosamples (Dowd, 2022) for efficient calculation
of the W statistic, doParallel (Corporation and Weston, 2022)
for parallelisation, tidyverse (Wickham et al., 2019) for data
manipulation, and ggplot2 (Wickham, 2016) for data visuali-
sation. We used sf (Pebesma, 2018) for vector data operations,
terra (Hijmans, 2023) for raster data operations, and caret
(Kuhn, 2022) for model fitting. NNDM LOO and the newly sug-
gested kNNDM algorithms are implemented in the CAST package
version 0.7.2 (Meyer et al., 2023). The code to perform the anal-
ysis and generate the figures included in the article is available at
https://doi.org/10.6084/m9.figshare.23514135.v4 (Linnenbrink and
Milà, 2024), where the packages and the versions used for the sim-
ulations are listed. The data from simulation 1 are generated by the
code stored in the figshare repository. The data from the additional
simulation study were obtained from de Bruin et al. (2022), as de-
scribed in Appendix A.
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Peet, R. K., Petřík, P., Pillar, V. D., Sandel, B., Schmidt, M., Tang,
Z., van Bodegom, P., Vassilev, K., Violle, C., Alvarez-Davila, E.,
Davidar, P., Dolezal, J., Hérault, B., Galán-de Mera, A., Jiménez,
J., Kambach, S., Kepfer-Rojas, S., Kreft, H., Lezama, F., Linares-
Palomino, R., Monteagudo Mendoza, A., N’Dja, J. K., Phillips,
O. L., Rivas-Torres, G., Sklenář, P., Speziale, K., Strohbach,
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