Articles | Volume 17, issue 15
https://doi.org/10.5194/gmd-17-5897-2024
https://doi.org/10.5194/gmd-17-5897-2024
Methods for assessment of models
 | 
07 Aug 2024
Methods for assessment of models |  | 07 Aug 2024

kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation

Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer

Model code and software

kNNDM: k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation Jan Linnenbrink and Carles Milà, https://doi.org/10.6084/m9.figshare.23514135.v4

Download
Short summary
Estimation of map accuracy based on cross-validation (CV) in spatial modelling is pervasive but controversial. Here, we build upon our previous work and propose a novel, prediction-oriented k-fold CV strategy for map accuracy estimation in which the distribution of geographical distances between prediction and training points is taken into account when constructing the CV folds. Our method produces more reliable estimates than other CV methods and can be used for large datasets.