Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2495-2023
https://doi.org/10.5194/gmd-16-2495-2023
Development and technical paper
 | 
09 May 2023
Development and technical paper |  | 09 May 2023

ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation

Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi

Related authors

DeepISMNet: three-dimensional implicit structural modeling with convolutional neural network
Zhengfa Bi, Xinming Wu, Zhaoliang Li, Dekuan Chang, and Xueshan Yong
Geosci. Model Dev., 15, 6841–6861, https://doi.org/10.5194/gmd-15-6841-2022,https://doi.org/10.5194/gmd-15-6841-2022, 2022
Short summary

Related subject area

Solid Earth
Addressing challenges in uncertainty quantification: the case of geohazard assessments
Ibsen Chivata Cardenas, Terje Aven, and Roger Flage
Geosci. Model Dev., 16, 1601–1615, https://doi.org/10.5194/gmd-16-1601-2023,https://doi.org/10.5194/gmd-16-1601-2023, 2023
Short summary
DeepISMNet: three-dimensional implicit structural modeling with convolutional neural network
Zhengfa Bi, Xinming Wu, Zhaoliang Li, Dekuan Chang, and Xueshan Yong
Geosci. Model Dev., 15, 6841–6861, https://doi.org/10.5194/gmd-15-6841-2022,https://doi.org/10.5194/gmd-15-6841-2022, 2022
Short summary
Towards automatic finite-element methods for geodynamics via Firedrake
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022,https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems
Federico Brogi, Simone Colucci, Jacopo Matrone, Chiara Paola Montagna, Mattia De' Michieli Vitturi, and Paolo Papale
Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022,https://doi.org/10.5194/gmd-15-3773-2022, 2022
Short summary
A global, spherical finite-element model for post-seismic deformation using Abaqus
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022,https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary

Cited articles

Adams, E. W. and Schlager, W.: Basic types of submarine slope curvature, J. Sediment. Res., 70, 814–828, https://doi.org/10.1306/2DC4093A-0E47-11D7-8643000102C1865D, 2000. a
Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T.: Deep-learning tomography, The Leading Edge, 37, 58–66, 2018. a
Asquith, D.: Depositional topography and major marine environments, Late Cretaceous, Wyoming, AAPG Bull., 54, 1184–1224, 1970. a
Athy, L. F.: Density, porosity, and compaction of sedimentary rocks, AAPG Bull., 14, 1–24, 1930. a
Badrinarayanan, V., Kendall, A., and Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE T. Pattern Anal., 39, 2481–2495, 2017. a, b
Download
Short summary
We propose a workflow to automatically generate synthetic seismic data and corresponding stratigraphic labels (e.g., clinoform facies, relative geologic time, and synchronous horizons) by geological and geophysical forward modeling. Trained with only synthetic datasets, our network works well to accurately and efficiently predict clinoform facies in 2D and 3D field seismic data. Such a workflow can be easily extended for other geological and geophysical scenarios in the future.