Articles | Volume 16, issue 9
https://doi.org/10.5194/gmd-16-2495-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-2495-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Hui Gao
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Xinming Wu
CORRESPONDING AUTHOR
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Jinyu Zhang
Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78758, USA
Xiaoming Sun
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Zhengfa Bi
School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Related authors
No articles found.
Zhengfa Bi, Xinming Wu, Zhaoliang Li, Dekuan Chang, and Xueshan Yong
Geosci. Model Dev., 15, 6841–6861, https://doi.org/10.5194/gmd-15-6841-2022, https://doi.org/10.5194/gmd-15-6841-2022, 2022
Short summary
Short summary
We present an implicit modeling method based on deep learning to produce a geologically valid and structurally compatible model from unevenly sampled structural data. Trained with automatically generated synthetic data with realistic features, our network can efficiently model geological structures without the need to solve large systems of mathematical equations, opening new opportunities for further leveraging deep learning to improve modeling capacity in many Earth science applications.
Related subject area
Solid Earth
Addressing challenges in uncertainty quantification: the case of geohazard assessments
DeepISMNet: three-dimensional implicit structural modeling with convolutional neural network
Towards automatic finite-element methods for geodynamics via Firedrake
MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems
A global, spherical finite-element model for post-seismic deformation using Abaqus
SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D
CliffDelineaTool v1.2.0: an algorithm for identifying coastal cliff base and top positions
Capturing the interactions between ice sheets, sea level and the solid Earth on a range of timescales: a new “time window” algorithm
Structural, petrophysical, and geological constraints in potential field inversion using the Tomofast-x v1.0 open-source code
Spatial agents for geological surface modelling
RHEA v1.0: Enabling fully coupled simulations with hydro-geomechanical heterogeneity
Modelling of faults in LoopStructural 1.0
PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries
LoopStructural 1.0: time-aware geological modelling
Sub3DNet1.0: a deep-learning model for regional-scale 3D subsurface structure mapping
Analytical solutions for mantle flow in cylindrical and spherical shells
Towards a model for structured mass movements: the OpenLISEM hazard model 2.0a
GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0)
PLUME-MoM-TSM 1.0.0: a volcanic column and umbrella cloud spreading model
HydrothermalFoam v1.0: a 3-D hydrothermal transport model for natural submarine hydrothermal systems
Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
A new open-source viscoelastic solid earth deformation module implemented in Elmer (v8.4)
CobWeb 1.0: machine learning toolbox for tomographic imaging
pygeodyn 1.1.0: a Python package for geomagnetic data assimilation
IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches
A multilayer approach and its application to model a local gravimetric quasi-geoid model over the North Sea: QGNSea V1.0
Development of an automatic delineation of cliff top and toe on very irregular planform coastlines (CliffMetrics v1.0)
Bayesian inference of earthquake rupture models using polynomial chaos expansion
Geodynamic diagnostics, scientific visualisation and StagLab 3.0
SaLEM (v1.0) – the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution
Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies
Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
Open-source modular solutions for flexural isostasy: gFlex v1.0
FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation
PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting
r.randomwalk v1, a multi-functional conceptual tool for mass movement routing
Improving the global applicability of the RUSLE model – adjustment of the topographical and rainfall erosivity factors
PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments
Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance
On the sensitivity of 3-D thermal convection codes to numerical discretization: a model intercomparison
Verification of an ADER-DG method for complex dynamic rupture problems
A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets
Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges
A hierarchical mesh refinement technique for global 3-D spherical mantle convection modelling
Ibsen Chivata Cardenas, Terje Aven, and Roger Flage
Geosci. Model Dev., 16, 1601–1615, https://doi.org/10.5194/gmd-16-1601-2023, https://doi.org/10.5194/gmd-16-1601-2023, 2023
Short summary
Short summary
We discuss challenges in uncertainty quantification for geohazard assessments. The challenges arise from limited data and the one-off nature of geohazard features. The challenges include the credibility of predictions, input uncertainty, and assumptions’ impact. Considerations to increase credibility of the quantification are provided. Crucial tasks in the quantification are the exhaustive scrutiny of the background knowledge coupled with the assessment of deviations of assumptions made.
Zhengfa Bi, Xinming Wu, Zhaoliang Li, Dekuan Chang, and Xueshan Yong
Geosci. Model Dev., 15, 6841–6861, https://doi.org/10.5194/gmd-15-6841-2022, https://doi.org/10.5194/gmd-15-6841-2022, 2022
Short summary
Short summary
We present an implicit modeling method based on deep learning to produce a geologically valid and structurally compatible model from unevenly sampled structural data. Trained with automatically generated synthetic data with realistic features, our network can efficiently model geological structures without the need to solve large systems of mathematical equations, opening new opportunities for further leveraging deep learning to improve modeling capacity in many Earth science applications.
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
Short summary
Firedrake is a state-of-the-art system that automatically generates highly optimised code for simulating finite-element (FE) problems in geophysical fluid dynamics. It creates a separation of concerns between employing the FE method and implementing it. Here, we demonstrate the applicability and benefits of Firedrake for simulating geodynamical flows, with a focus on the slow creeping motion of Earth's mantle over geological timescales, which is ultimately the engine driving our dynamic Earth.
Federico Brogi, Simone Colucci, Jacopo Matrone, Chiara Paola Montagna, Mattia De' Michieli Vitturi, and Paolo Papale
Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022, https://doi.org/10.5194/gmd-15-3773-2022, 2022
Short summary
Short summary
Computer simulations play a fundamental role in understanding volcanic phenomena. The growing complexity of these simulations requires the development of flexible computational tools that can easily switch between sub-models and solution techniques as well as optimizations. MagmaFOAM is a newly developed library that allows for maximum flexibility for solving multiphase volcanic flows and promotes collaborative work for in-house and community model development, testing, and comparison.
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022, https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
Short summary
We present a finite-element model of post-seismic solid Earth deformation built in the software package Abaqus for the purpose of calculating post-seismic deformation in the far field of major earthquakes. The model is benchmarked against an existing open-source post-seismic model demonstrating good agreement. The advantage over existing models is the potential for simple modification to include 3-D Earth structure, non-linear rheologies and alternative or multiple sources of stress change.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022, https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Zuzanna M. Swirad and Adam P. Young
Geosci. Model Dev., 15, 1499–1512, https://doi.org/10.5194/gmd-15-1499-2022, https://doi.org/10.5194/gmd-15-1499-2022, 2022
Short summary
Short summary
Cliff base and top lines that delimit coastal cliff faces are usually manually digitized based on maps, aerial photographs, terrain models, etc. However, manual mapping is time consuming and depends on the mapper's decisions and skills. To increase the objectivity and efficiency of cliff mapping, we developed CliffDelineaTool, an algorithm that identifies cliff base and top positions along cross-shore transects using elevation and slope characteristics.
Holly Kyeore Han, Natalya Gomez, and Jeannette Xiu Wen Wan
Geosci. Model Dev., 15, 1355–1373, https://doi.org/10.5194/gmd-15-1355-2022, https://doi.org/10.5194/gmd-15-1355-2022, 2022
Short summary
Short summary
Interactions between ice sheets, sea level and the solid Earth occur over a range of timescales from years to tens of thousands of years. This requires coupled ice-sheet–sea-level models to exchange information frequently, leading to a quadratic increase in computation time with the number of model timesteps. We present a new sea-level model algorithm that allows coupled models to improve the computational feasibility and precisely capture short-term interactions within longer simulations.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Eric A. de Kemp
Geosci. Model Dev., 14, 6661–6680, https://doi.org/10.5194/gmd-14-6661-2021, https://doi.org/10.5194/gmd-14-6661-2021, 2021
Short summary
Short summary
This is a proof of concept and review paper of spatial agents, with initial research focusing on geomodelling. The results may be of interest to others working on complex regional geological modelling with sparse data. Structural agent-based swarming behaviour is key to advancing this field. The study provides groundwork for research in structural geology 3D modelling with spatial agents. This work was done with NetLogo, a free agent modelling platform used mostly for teaching complex systems.
José M. Bastías Espejo, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021, https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Short summary
The hydraulic and mechanical properties of the subsurface are inherently heterogeneous. RHEA is a simulator that can perform couple hydro-geomechanical processes in heterogeneous porous media with steep gradients. RHEA is able to fully integrate spatial heterogeneity, allowing allocation of distributed hydraulic and geomechanical properties at mesh element level. RHEA is a valuable tool that can simulate problems considering realistic heterogeneity inherent to geologic formations.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Zhenjiao Jiang, Dirk Mallants, Lei Gao, Tim Munday, Gregoire Mariethoz, and Luk Peeters
Geosci. Model Dev., 14, 3421–3435, https://doi.org/10.5194/gmd-14-3421-2021, https://doi.org/10.5194/gmd-14-3421-2021, 2021
Short summary
Short summary
Fast and reliable tools are required to extract hidden information from big geophysical and remote sensing data. A deep-learning model in 3D image construction from 2D image(s) is here developed for paleovalley mapping from globally available digital elevation data. The outstanding performance for 3D subsurface imaging gives confidence that this generic novel tool will make better use of existing geophysical and remote sensing data for improved management of limited earth resources.
Stephan C. Kramer, D. Rhodri Davies, and Cian R. Wilson
Geosci. Model Dev., 14, 1899–1919, https://doi.org/10.5194/gmd-14-1899-2021, https://doi.org/10.5194/gmd-14-1899-2021, 2021
Short summary
Short summary
Computational models of Earth's mantle require rigorous verification and validation. Analytical solutions of the underlying Stokes equations provide a method to verify that these equations are accurately solved for. However, their derivation in spherical and cylindrical shell domains with physically relevant boundary conditions is involved. This paper provides a number of solutions. They are provided in a Python package (Assess) and their use is demonstrated in a convergence study with Fluidity.
Bastian van den Bout, Theo van Asch, Wei Hu, Chenxiao X. Tang, Olga Mavrouli, Victor G. Jetten, and Cees J. van Westen
Geosci. Model Dev., 14, 1841–1864, https://doi.org/10.5194/gmd-14-1841-2021, https://doi.org/10.5194/gmd-14-1841-2021, 2021
Short summary
Short summary
Landslides, debris flows and other types of dense gravity-driven flows threaten livelihoods around the globe. Understanding the mechanics of these flows can be crucial for predicting their behaviour and reducing disaster risk. Numerical models assume that the solids and fluids of the flow are unstructured. The newly presented model captures the internal structure during movement. This important step can lead to more accurate predictions of landslide movement.
Andrzej Górszczyk and Stéphane Operto
Geosci. Model Dev., 14, 1773–1799, https://doi.org/10.5194/gmd-14-1773-2021, https://doi.org/10.5194/gmd-14-1773-2021, 2021
Short summary
Short summary
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the workflow designed to implement all of its components. The model contains different geological structures of various scales and complexities. It is intended to serve as a tool for the geophysical community to validate imaging approaches, design acquisition techniques, estimate uncertainties, benchmark computing approaches, etc.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Zhikui Guo, Lars Rüpke, and Chunhui Tao
Geosci. Model Dev., 13, 6547–6565, https://doi.org/10.5194/gmd-13-6547-2020, https://doi.org/10.5194/gmd-13-6547-2020, 2020
Short summary
Short summary
We present the 3-D hydro-thermo-transport model HydrothermalFoam v1.0, which we designed to provide the marine geosciences community with an easy-to-use and state-of-the-art tool for simulating mass and energy transport in submarine hydrothermal systems. HydrothermalFoam is based on the popular open-source platform OpenFOAM, comes with a number of tutorials, and is published under the GNU General Public License v3.0.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020, https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Loïc Huder, Nicolas Gillet, and Franck Thollard
Geosci. Model Dev., 12, 3795–3803, https://doi.org/10.5194/gmd-12-3795-2019, https://doi.org/10.5194/gmd-12-3795-2019, 2019
Short summary
Short summary
The pygeodyn package is a geomagnetic data assimilation tool written in Python. It gives access to the Earth's core flow dynamics, controlled by geomagnetic observations, by means of a reduced numerical model anchored to geodynamo simulation statistics. It aims to provide the community with a user-friendly and tunable data assimilation algorithm. It can be used for education, geomagnetic model production or tests in conjunction with webgeodyn, a set of visualization tools for geomagnetic models.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, Giacomo Lari, and Alvaro Aravena
Geosci. Model Dev., 12, 581–595, https://doi.org/10.5194/gmd-12-581-2019, https://doi.org/10.5194/gmd-12-581-2019, 2019
Short summary
Short summary
Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones) and fountaining during moderately explosive eruptions. We present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. Benchmark cases and preliminary application to the simulation of the 11 February pyroclastic avalanche at Mt. Etna (Italy) are shown.
Yihao Wu, Zhicai Luo, Bo Zhong, and Chuang Xu
Geosci. Model Dev., 11, 4797–4815, https://doi.org/10.5194/gmd-11-4797-2018, https://doi.org/10.5194/gmd-11-4797-2018, 2018
Short summary
Short summary
A multilayer approach is parameterized for model development, and the multiple layers are located at different depths beneath the Earth’s surface. This method may be beneficial for gravity/manget field modeling, which may outperform the traditional single-layer approach.
Andres Payo, Bismarck Jigena Antelo, Martin Hurst, Monica Palaseanu-Lovejoy, Chris Williams, Gareth Jenkins, Kathryn Lee, David Favis-Mortlock, Andrew Barkwith, and Michael A. Ellis
Geosci. Model Dev., 11, 4317–4337, https://doi.org/10.5194/gmd-11-4317-2018, https://doi.org/10.5194/gmd-11-4317-2018, 2018
Short summary
Short summary
We describe a new algorithm that automatically delineates the cliff top and toe of a cliffed coastline from a digital elevation model (DEM). The algorithm builds upon existing methods but is specifically designed to resolve very irregular planform coastlines with many bays and capes, such as parts of the coastline of Great Britain.
Hugo Cruz-Jiménez, Guotu Li, Paul Martin Mai, Ibrahim Hoteit, and Omar M. Knio
Geosci. Model Dev., 11, 3071–3088, https://doi.org/10.5194/gmd-11-3071-2018, https://doi.org/10.5194/gmd-11-3071-2018, 2018
Short summary
Short summary
One of the most important challenges seismologists and earthquake engineers face is reliably estimating ground motion in an area prone to large damaging earthquakes. This study aimed at better understanding the relationship between characteristics of geological faults (e.g., hypocenter location, rupture size/location, etc.) and resulting ground motion, via statistical analysis of a rupture simulation model. This study provides important insight on ground-motion responses to geological faults.
Fabio Crameri
Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, https://doi.org/10.5194/gmd-11-2541-2018, 2018
Short summary
Short summary
Firstly, this study acts as a compilation of key geodynamic diagnostics and describes how to automatise them for a more efficient scientific procedure. Secondly, it outlines today's key pitfalls of scientific visualisation and provides means to circumvent them with, for example, a novel set of fully scientific colour maps. Thirdly, it introduces StagLab 3.0, a software that applies such fully automated diagnostics and state-of-the-art visualisation in the blink of an eye.
Michael Bock, Olaf Conrad, Andreas Günther, Ernst Gehrt, Rainer Baritz, and Jürgen Böhner
Geosci. Model Dev., 11, 1641–1652, https://doi.org/10.5194/gmd-11-1641-2018, https://doi.org/10.5194/gmd-11-1641-2018, 2018
Short summary
Short summary
We introduce the Soil and
Landscape Evolution Model (SaLEM) for the prediction of soil parent material evolution following a lithologically differentiated approach. The GIS tool is working within the software framework SAGA GIS. Weathering, erosion and transport functions are calibrated using extrinsic and intrinsic parameter data. First results indicate that our approach shows evidence for the spatiotemporal prediction of soil parental material properties.
Karthik Iyer, Henrik Svensen, and Daniel W. Schmid
Geosci. Model Dev., 11, 43–60, https://doi.org/10.5194/gmd-11-43-2018, https://doi.org/10.5194/gmd-11-43-2018, 2018
Short summary
Short summary
Igneous intrusions in sedimentary basins have a profound effect on the thermal structure of the hosting sedimentary rocks. In this paper, we present a user-friendly 1-D FEM-based tool, SILLi, that calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The motivation is to make a standardized numerical toolkit openly available that can be widely used by scientists with different backgrounds to test the effects of magmatic bodies in a wide variety of settings.
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017, https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary
Short summary
Rivers control the movement of sediment and nutrients across Earth's surface. Understanding how rivers change through time is important for mitigating natural hazards and predicting Earth's response to climate change. We develop a new computer model for predicting how rivers cut through sediment and rock. Our model is designed to be joined with models of flooding, landslides, vegetation change, and other factors to provide a comprehensive toolbox for predicting changes to the landscape.
Diego Takahashi and Vanderlei C. Oliveira Jr.
Geosci. Model Dev., 10, 3591–3608, https://doi.org/10.5194/gmd-10-3591-2017, https://doi.org/10.5194/gmd-10-3591-2017, 2017
Short summary
Short summary
Ellipsoids are the only bodies for which the self-demagnetization can be treated analytically. This property is useful for modelling compact orebodies having high susceptibility. We present a review of the magnetic modelling of ellipsoids, propose a way of determining the isotropic susceptibility above which the self-demagnetization must be considered, and discuss the ambiguity between confocal ellipsoids, as well as provide a set of routines to model the magnetic field produced by ellipsoids.
Hein J. van Heck, J. Huw Davies, Tim Elliott, and Don Porcelli
Geosci. Model Dev., 9, 1399–1411, https://doi.org/10.5194/gmd-9-1399-2016, https://doi.org/10.5194/gmd-9-1399-2016, 2016
Short summary
Short summary
Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. We have implemented a new way to track both bulk compositions and concentrations of trace elements in a mantle convection code. In our model, chemical fractionation happens at evolving melting zones. We compare our results to a semi-analytical theory relating observed arrays of correlated Pb isotope compositions to melting age distributions.
J. Florian Wellmann, Sam T. Thiele, Mark D. Lindsay, and Mark W. Jessell
Geosci. Model Dev., 9, 1019–1035, https://doi.org/10.5194/gmd-9-1019-2016, https://doi.org/10.5194/gmd-9-1019-2016, 2016
Short summary
Short summary
We often obtain knowledge about the subsurface in the form of structural geological models, as a basis for subsurface usage or resource extraction. Here, we provide a modelling code to construct such models on the basis of significant deformational events in geological history, encapsulated in kinematic equations. Our methods simplify complex dynamic processes, but enable us to evaluate how events interact, and finally how certain we are about predictions of structures in the subsurface.
A. D. Wickert
Geosci. Model Dev., 9, 997–1017, https://doi.org/10.5194/gmd-9-997-2016, https://doi.org/10.5194/gmd-9-997-2016, 2016
Short summary
Short summary
Earth's lithosphere bends beneath surface loads, such as ice, sediments, and mountain belts. The pattern of this bending, or flexural isostatic response, is a function of both the loads and the spatially variable strength of the lithosphere. gFlex is an easy-to-use program to calculate flexural isostastic response, and may be used to better understand how ice sheets, glaciers, large lakes, sedimentary basins, volcanoes, and other surface loads interact with the solid Earth.
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, https://doi.org/10.5194/gmd-9-431-2016, 2016
Short summary
Short summary
We present FPLUME-1.0, a steady-state 1-D cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice.
M. Dumon and E. Van Ranst
Geosci. Model Dev., 9, 41–57, https://doi.org/10.5194/gmd-9-41-2016, https://doi.org/10.5194/gmd-9-41-2016, 2016
Short summary
Short summary
This paper presents a FOSS model called PyXRD used to improve the quantification of complex mixed-layer phyllosilicate assemblages using X-ray diffraction. The novelty of this model is the ab initio incorporation of the multi-specimen method, making it possible to share phases and their parameters across multiple specimens. We present results from a comparison of PyXRD with Sybilla v2.2.2 and a number of theoretical experiments illustrating the use of the multi-specimen set-up.
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, https://doi.org/10.5194/gmd-8-4027-2015, 2015
Short summary
Short summary
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the propagation of mass movements. Mass points are routed from given release pixels through a digital elevation model until a defined break criterion is reached. In contrast to existing tools, r.randomwalk includes functionalities to account for parameter uncertainties, and it offers built-in functions for validation and visualization. We show the key functionalities of r.randomwalk for three test areas.
V. Naipal, C. Reick, J. Pongratz, and K. Van Oost
Geosci. Model Dev., 8, 2893–2913, https://doi.org/10.5194/gmd-8-2893-2015, https://doi.org/10.5194/gmd-8-2893-2015, 2015
Short summary
Short summary
We adjusted the topographical and rainfall erosivity factors that are the triggers of erosion in the Revised Universal Soil Loss Equation (RUSLE) model to make the model better applicable at coarse resolution on a global scale. The adjusted RUSLE model compares much better to current high resolution estimates of soil erosion in the USA and Europe. It therefore provides a basis for estimating past and future global impacts of soil erosion on climate with the use of Earth system models.
M. de' Michieli Vitturi, A. Neri, and S. Barsotti
Geosci. Model Dev., 8, 2447–2463, https://doi.org/10.5194/gmd-8-2447-2015, https://doi.org/10.5194/gmd-8-2447-2015, 2015
Short summary
Short summary
In this paper a new mathematical model of volcanic plume, named Plume-MoM, is presented. The model is based on the method of moments and it is able to describe the continuous variability in the grain size distribution (GSD) of the pyroclastic mixture ejected at the vent, crucial to characterize the source conditions of ash dispersal models. Results show that the GSD at the top of the plume is similar to that at the base and that plume height is weakly affected by the parameters of the GSD.
A. P. S. Selvadurai, A. P. Suvorov, and P. A. Selvadurai
Geosci. Model Dev., 8, 2167–2185, https://doi.org/10.5194/gmd-8-2167-2015, https://doi.org/10.5194/gmd-8-2167-2015, 2015
Short summary
Short summary
The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach.
P.-A Arrial, N. Flyer, G. B. Wright, and L. H. Kellogg
Geosci. Model Dev., 7, 2065–2076, https://doi.org/10.5194/gmd-7-2065-2014, https://doi.org/10.5194/gmd-7-2065-2014, 2014
C. Pelties, A.-A. Gabriel, and J.-P. Ampuero
Geosci. Model Dev., 7, 847–866, https://doi.org/10.5194/gmd-7-847-2014, https://doi.org/10.5194/gmd-7-847-2014, 2014
S. Carcano, L. Bonaventura, T. Esposti Ongaro, and A. Neri
Geosci. Model Dev., 6, 1905–1924, https://doi.org/10.5194/gmd-6-1905-2013, https://doi.org/10.5194/gmd-6-1905-2013, 2013
P. Machetel and C. J. Garrido
Geosci. Model Dev., 6, 1659–1672, https://doi.org/10.5194/gmd-6-1659-2013, https://doi.org/10.5194/gmd-6-1659-2013, 2013
D. R. Davies, J. H. Davies, P. C. Bollada, O. Hassan, K. Morgan, and P. Nithiarasu
Geosci. Model Dev., 6, 1095–1107, https://doi.org/10.5194/gmd-6-1095-2013, https://doi.org/10.5194/gmd-6-1095-2013, 2013
Cited articles
Adams, E. W. and Schlager, W.: Basic types of submarine slope curvature, J. Sediment. Res., 70, 814–828, https://doi.org/10.1306/2DC4093A-0E47-11D7-8643000102C1865D, 2000. a
Araya-Polo, M., Jennings, J., Adler, A., and Dahlke, T.: Deep-learning tomography, The Leading Edge, 37, 58–66, 2018. a
Asquith, D.: Depositional topography and major marine environments, Late Cretaceous, Wyoming, AAPG Bull., 54, 1184–1224, 1970. a
Athy, L. F.: Density, porosity, and compaction of sedimentary rocks, AAPG Bull., 14, 1–24, 1930. a
Bates, C. C.: Rational theory of delta formation, AAPG Bull., 37, 2119–2162, 1953. a
Bergen, K., Johnson, P., De Hoop, M., and Beroza, G.: Machine learning for data-driven discovery in solid earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Biot, M. A.: General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164, 1941. a
Bird, K. J. and Molenaar, C. M.: The North Slope Foreland Basin, Alaska, American Association of Petroleum Geologists, 363–393, https://doi.org/10.1306/M55563C14, 1992. a
Carcione, J. M., Helle, H. B., and Hydro, N.: Rock physics of geopressure and prediction of abnormal pore fluid pressures using seismic data, CSEG Recorder, 27, 8–32, 2002. a
Cummings, D. I. and Arnott, R. W. C.: Growth-faulted shelf-margin deltas: a new (but old) play type, offshore Nova Scotia, Bull. Can. Petrol. Geol., 53, 211–236, 2005. a
Di, H., Shafiq, M., and AlRegib, G.: Patch-level MLP classification for improved fault detection, in: SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, 2211–2215, https://doi.org/10.1190/segam2018-2996921.1, 2018. a
Di, H., Li, Z., Maniar, H., and Abubakar, A.: Seismic stratigraphy interpretation by deep convolutional neural networks: A semisupervised workflow, Geophysics, 85, WA77–WA86, 2020. a
Ding, X., Salles, T., Flament, N., and Rey, P.: Quantitative stratigraphic analysis in a source-to-sink numerical framework, Geosci. Model Dev., 12, 2571–2585, https://doi.org/10.5194/gmd-12-2571-2019, 2019. a, b, c, d
Dixit, A. and Mandal, A.: Detection of gas chimney and its linkage with deep-seated reservoir in poseidon, NW shelf, Australia from 3D seismic data using multi-attribute analysis and artificial neural network approach, J. Nat. Gas Sci. Eng., 83, 103586, https://doi.org/10.1016/j.jngse.2020.103586, 2020. a
Fehmers, G. C. and Höcker, C. F.: Fast structural interpretation with structure-oriented filtering, Geophysics, 68, 1286–1293, 2003. a
Gao, H., Wu, X., Zhang, J., Sun, X., and Bi, Z.: huigcig/ClinoformNet: ClinoformNet-1.0, Zenodo [code], https://doi.org/10.5281/zenodo.7123934, 2022a. a
Gao, H., Wu, X., Zhang, J., Sun, X., and Bi, Z.: The synthetic and field siesmic datasets for “ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation”, Zenodo [data set], https://doi.org/10.5281/zenodo.7122471, 2022b. a
Goldberg, I. and Gurevich, B.: A semi-empirical velocity-porosity-clay model for petrophysical interpretation of P- and S-velocities [Link], Geophys. Prospect., 46, 271–285, 2008. a
Guo, J., Li, Y., Jessell, M. W., Giraud, J., Li, C., Wu, L., Li, F., and Liu, S.: 3D geological structure inversion from Noddy-generated magnetic data using deep learning methods, Comput. Geosci., 149, 104701, https://doi.org/10.1016/j.cageo.2021.104701, 2021. a
Hale, D.: Structure-oriented smoothing and semblance, CWP report, 635, 2009. a
Harris, A. D., Covault, J. A., Madof, A. S., Sun, T., Sylvester, Z., and Granjeon, D.: Three-dimensional numerical modeling of eustatic control on continental-margin sand distribution, J. Sediment. Res., 86, 1434–1443, 2016. a
Hawie, N., Barrois, A., Marfisi, E., Murat, B., Hall, J., El-Wazir, Z., Al-Madani, N., and Aillud, G.: Forward stratigraphic modelling, deterministic approach to improve carbonate heterogeneity prediction; Lower Cretaceous, Abu Dhabi, in: Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 9–12 November 2015, OnePetro, https://doi.org/10.2118/177519-MS, 2015. a, b, c
Holgate, N. E., Jackson, C. A.-L., Hampson, G. J., and Dreyer, T.: Sedimentology and sequence stratigraphy of the middle–upper jurassic krossfjord and fensfjord formations, Troll Field, northern North Sea, Petrol. Geosci., 19, 237–258, https://doi.org/10.1144/petgeo2012-039, 2013. a
Holgate, N. E., Hampson, G. J., Jackson, C. A.-L., and Petersen, S. A.: Constraining uncertainty in interpretation of seismically imaged clinoforms in deltaic reservoirs, Troll field, Norwegian North Sea: Insights from forward seismic models of outcrop analogsCharacterization of Seismically Imaged Clinoforms Using Forward Seismic Models of Outcrop Analogs, AAPG Bull., 98, 2629–2663, 2014. a
Houseknecht, D. W., Bird, K. J., and Schenk, C. J.: Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope, Basin Res., 21, 644–654, 2009. a
Huang, L., Dong, X., and Clee, T. E.: A scalable deep learning platform for identifying geologic features from seismic attributes, The Leading Edge, 36, 249–256, 2017. a
Jessell, M., Guo, J., Li, Y., Lindsay, M., Scalzo, R., Giraud, J., Pirot, G., Cripps, E., and Ogarko, V.: Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications, Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, 2022. a
Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., and Kumar, V.: Machine learning for the geosciences: Challenges and opportunities, IEEE T. Knowl. Data En., 31, 1544–1554, 2018. a
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 2014. a
Lee, M. W.: Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones, US Department of the Interior, US Geological Survey, https://doi.org/10.3133/sir20055119, 2005. a, b
Liu, Z.: Seismic geomorphology of continental margin evolution in the late Cretaceous to Neogene of the Browse Basin, northwest Australia, Colorado School of Mines, 2018. a
Lorensen, W. E. and Cline, H. E.: Marching cubes: A high resolution 3D surface construction algorithm, ACM Siggraph Computer Graphics, 21, 163–169, 1987. a
Lowell, J. and Paton, G.: Application of deep learning for seismic horizon interpretation, in: 2018 SEG International Exposition and Annual Meeting, Anaheim, California, USA, 14–19 October 2018, OnePetro, https://doi.org/10.1190/segam2018-2998176.1, 2018. a
Martin, J., Paola, C., Abreu, V., Neal, J., and Sheets, B.: Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level, AAPG Bull., 93, 503–533, 2009. a
Muto, T. and Steel, R. J.: Principles of regression and transgression; the nature of the interplay between accommodation and sediment supply, J. Sediment. Res., 67, 994–1000, 1997. a
Nanda, N. C.: Seismic data interpretation and evaluation for hydrocarbon exploration and production, Springer, https://doi.org/10.1007/978-3-319-26491-2, 2021. a
Neal, J. E., Abreu, V., Bohacs, K. M., Feldman, H. R., and Pederson, K. H.: Accommodation succession ( ) sequence stratigraphy: observational method, utility and insights into sequence boundary formation, J. Geol. Soc. London, 173, 803–816, 2016. a
Patruno, S., Reid, W., Jackson, C. A., and Davies, C.: New insights into the unexploited reservoir potential of the Mid North Sea High (UKCS quadrants 35–38 and 41–43): a newly described intra-Zechstein sulphate–carbonate platform complex, in: Geological Society, London, Petroleum Geology Conference Series, vol. 8, 87–124, Geological Society of London, https://doi.org/10.1144/PGC8.9, 2018. a
Pirmez, C., Pratson, L. F., and Steckler, M. S.: Clinoform development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems, J. Geophys. Res.-Sol. Ea., 103, 24141–24157, 1998. a
Puzyrev, V., Salles, T., Surma, G., and Elders, C.: Geophysical model generation with generative adversarial networks, Geoscience Letters, 9, 1–9, 2022. a
Schlager, W.: Accommodation and supply – a dual control on stratigraphic sequences, Sediment. Geol., 86, 111–136, 1993. a
Shi, Y., Wu, X., and Fomel, S.: SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network, Interpretation, 7, SE113–SE122, 2019. a
Steel, R. and Olsen, T.: Clinoforms, Clinoform Trajectories and Deepwater Sands, in: Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories, SEPM Society for Sedimentary Geology, ISBN 978-0-9836096-8-1, https://doi.org/10.5724/gcs.02.22, 2002. a, b
Sydow, J. C., Finneran, J., and Bowman, A. P.: Stacked shelf-edge delta reservoirs of the Columbus Basin, Trinidad, West Indies, SEPM Society for Sedimentary Geology, https://doi.org/10.5724/gcs.03.23.0441, 2013. a
Sylvester, Z., Cantelli, A., and Pirmez, C.: Stratigraphic evolution of intraslope minibasins: Insights from surface-based model, AAPG Bull., 99, 1099–1129, 2015. a
Van Vliet, L. J. and Verbeek, P. W.: Estimators for orientation and anisotropy in digitized images, in: ASCI Imaging Workshop, Venray, NL, 25–27 October, 1995. a
Wu, H. and Zhang, B.: A deep convolutional encoder-decoder neural network in assisting seismic horizon tracking, arXiv [preprint], https://doi.org/10.48550/arXiv.1804.06814, 2018. a
Wu, X., Liang, L., Shi, Y., and Fomel, S.: FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation, Geophysics, 84, IM35–IM45, 2019. a
Wu, X., Geng, Z., Shi, Y., Pham, N., Fomel, S., and Caumon, G.: Building realistic structure models to train convolutional neural networks for seismic structural interpretationBuilding realistic structure models, Geophysics, 85, WA27–WA39, 2020. a
Wu, X., Ma, J., Si, X., Bi, Z., Yang, J., Gao, H., Xie, D., Guo, Z., and Zhang, J.: Sensing prior constraints in deep neural networks for
solving exploration geophysical problems, P. Natl. Acad. Sci., in press, 2023. a
Zhao, T. and Mukhopadhyay, P.: A fault detection workflow using deep learning and image processing, in: 2018 SEG international exposition and annual meeting, Anaheim, California, USA, 14–19 October 2018, OnePetro, https://doi.org/10.1190/segam2018-2997005.1, 2018. a
Short summary
We propose a workflow to automatically generate synthetic seismic data and corresponding stratigraphic labels (e.g., clinoform facies, relative geologic time, and synchronous horizons) by geological and geophysical forward modeling. Trained with only synthetic datasets, our network works well to accurately and efficiently predict clinoform facies in 2D and 3D field seismic data. Such a workflow can be easily extended for other geological and geophysical scenarios in the future.
We propose a workflow to automatically generate synthetic seismic data and corresponding...