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Abstract. Deep learning has been widely used for various
kinds of data-mining tasks but not much for seismic strati-
graphic interpretation due to the lack of labeled training
datasets. We present a workflow to automatically generate
numerous synthetic training datasets and take the seismic cli-
noform delineation as an example to demonstrate the effec-
tiveness of using the synthetic datasets for training. In this
workflow, we first perform stochastic stratigraphic forward
modeling to generate numerous stratigraphic models of cli-
noform layers and corresponding porosity properties by ran-
domly but properly choosing initial topographies, sea level
curves, and thermal subsidence curves. We then convert the
simulated stratigraphic models into impedance models by
using the velocity–porosity relationship. We further simu-
late synthetic seismic data by convolving reflectivity mod-
els (converted from impedance models) with Ricker wavelets
(with various peak frequencies) and adding real noise ex-
tracted from field seismic data. In this way, we automatically
generate a total of 3000 diverse synthetic seismic datasets
and the corresponding stratigraphic labels such as relative
geologic time models and facies of clinoforms, which are all
made publicly available. We use these synthetic datasets to
train a modified encoder–decoder deep neural network for
clinoform delineation in seismic data. Within the network,
we apply a preconditioning process of structure-oriented
smoothing to the feature maps of the decoder neural layers,
which is helpful to avoid generating holes or outliers in the
final output of clinoform delineation. Multiple 2D and 3D
synthetic and field examples demonstrate that the network,
trained with only synthetic datasets, works well to delineate
clinoforms in seismic data with high accuracy and efficiency.
Our workflow can be easily extended for other seismic strati-

graphic interpretation tasks such as sequence boundary iden-
tification, synchronous horizon extraction, and shoreline tra-
jectory identification.

1 Introduction

Seismic stratigraphic interpretation is a crucial step for un-
derstanding the evolutionary history information of the sedi-
mentary basin based on seismic data and is particularly appli-
cable to the sedimentary basin where well data are lacking or
unavailable (Nanda, 2021). With the development of seismic
data from 2D to 3D and the dramatic increase in the amount
of data, the automatic realization of seismic stratigraphic in-
terpretation is the trend. Currently, deep learning has been
successfully applied in geophysical interpretation tasks such
as fault detection (Huang et al., 2017; Di et al., 2018; Zhao
and Mukhopadhyay, 2018; Wu et al., 2019), horizon inter-
pretation (Lowell and Paton, 2018; Wu and Zhang, 2018),
and salt body delineation (Shi et al., 2019). However, deep-
learning-based automatic seismic stratigraphic interpretation
is not discussed much due to the lack of the corresponding
training labels. In this work, we take the seismic clinoform
delineation task as an example to discuss how to solve the
problem of a lack of training datasets by stratigraphic for-
ward modeling and further train a deep neural network for
efficient and accurate seismic stratigraphic interpretation.

The clinoform and the clinothem are widely studied as im-
portant sedimentary archives and underpin sequence stratig-
raphy (Patruno and Helland-Hansen, 2018; Pellegrini et al.,
2020). Rich (1951) first introduced the concepts of clino-
form and clinothem and proposed the partitioning of de-
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posited surfaces into undaform, clinoform, and fondoform.
Steel and Olsen (2002) redefined clinoform as a deposition
surface containing undaform and fondoform and divided the
clinoform into topset, foreset, and bottomset. In this work,
we use the term clinoform to describe a surface with a sig-
moidal shape, inclined and dipping toward the basin over
a wide range of spatial and temporal scales (Rich, 1951;
Bates, 1953; Asquith, 1970; Pirmez et al., 1998; Adams and
Schlager, 2000; Steel and Olsen, 2002; Patruno and Helland-
Hansen, 2018; Ramon-Duenas et al., 2018), and the term
clinothem to describe the clinoform-bounded sedimentary
body that records the incremental filling of a sedimentary
basin (Patruno and Helland-Hansen, 2018; Ramon-Duenas
et al., 2018). In addition, in the field of oil and gas explo-
ration, clinoforms have attracted the attention of oil and gas
companies in recent years because most of them are low-
permeability mudstones or cement, making them potential
reservoir units for hydrocarbon resources (Cummings and
Arnott, 2005; Sydow et al., 2013; Holgate et al., 2013, 2014;
Patruno et al., 2018).

The geometry of the clinoform can provide information
about paleodepth, shoreline changes, and the changes in sed-
iment supply and accommodation (Pellegrini et al., 2020).
Clinoform can be divided into three components according to
geometry. The topset is characterized by low-gradient strata
(typically< 0.1◦) at the top and is dominated by muddy silt-
stone and fine to medium-grained sandstone. The foreset is
characterized by the steepest slope in the middle and is dom-
inated by muddy siltstone and fine sandstone. The bottom-
set is characterized by a low gradient toward the basin and
is dominated by turbidite sandstone (Patruno and Helland-
Hansen, 2018; Ramon-Duenas et al., 2018; Pellegrini et al.,
2020).

Currently, the delineation of the three components of the
clinoform (topset, foreset, and bottomset) in seismic data is
still mainly based on human interpretation by experienced
geologists and therefore remains a labor-intensive task, espe-
cially in 3D seismic volumes. With the recent development of
artificial intelligence, deep learning methods have been suc-
cessfully applied to automate data interpretation tasks in var-
ious fields. The convolutional neural network (CNN) method
has been proven to be the most powerful method in seman-
tic segmentation (Ronneberger et al., 2015; He et al., 2016;
Badrinarayanan et al., 2017; Chen et al., 2018). Recently,
the mainstream networks for semantic segmentation are U-
net proposed by Ronneberger et al. (2015) and DeepLabV3+
proposed by Chen et al. (2018). However, it is challenging
to apply the CNN method in solving geoscience problems
including the seismic stratigraphic interpretation because of
the lack of a large number of training datasets and the related
labels (Karpatne et al., 2018; Bergen et al., 2019; Di et al.,
2020).

To solve this problem, using synthetic labeled datasets for
training a CNN model is considered an effective method-
ology (Araya-Polo et al., 2018; Wu et al., 2020; Guo et

al., 2021; Puzyrev et al., 2022; Jessell et al., 2022). In
this work, we consider performing numerical stratigraphic
forward modeling (SFM) to generate numerous synthetic
datasets with labels. SFM has been widely used in the study
of sequence stratigraphy over the last decades (Martin et al.,
2009; Burgess et al., 2012; Sylvester et al., 2015; Harris et al.,
2016). Many mathematical and physical models have been
proposed to simulate the evolution of sedimentary basins by
using various numerical algorithms to obtain synthetic strati-
graphic states in full consideration of thermal subsidence, up-
lift, changes in sediment supply, and various sediment trans-
port and deposition processes (Warrlich et al., 2008; Shafie
and Madon, 2008; Burgess et al., 2012; Hawie et al., 2015;
Salles et al., 2018). While most of the previous work per-
forms SFM to fit the stratigraphic model of a specific basin
by carefully choosing a set of modeling parameters, we per-
form stochastic SFM to generate numerous models by ran-
domly choosing various sets of parameters.

In this paper, we develop a workflow (Fig. 1) to automat-
ically generate synthetic seismic data and corresponding la-
bels and use the synthetic datasets to train a CNN for seis-
mic clinoform delineation. We first use a numerical SFM
method, modified from pyBadlands (Salles et al., 2018) to
generate a synthetic porosity model (Fig. 1d) and relative ge-
ologic time model (Fig. 1e) of clinoform layers with inputs
of a randomly but properly chosen initial topography sur-
face (Fig. 1a), sea level changes (Fig. 1b), and thermal subsi-
dence curve (Fig. 1c). Then we use an interpolation method
and a velocity–porosity relationship proposed by Krief et al.
(1990) to build an impedance model (Fig. 1f) and at the
same time calculate a slope volume (Fig. 1g) from the cor-
responding depth model of clinoform layers. Finally, we per-
form depth-to-time conversion to the impedance model, con-
volve it with a Ricker wavelet with a random peak frequency
(Fig. 1j), and add real noise to generate a synthetic seismic
image (Fig. 1h). At the same time as generating the synthetic
seismic data, we also automatically obtain the corresponding
stratigraphic labels of relative geologic time and clinoform
delineation (Fig. 1i). After generating various clinoform seis-
mic data and corresponding labels, we use them to train a
CNN modified from DeepLabv3+ for automatic clinoform
delineation in seismic data. We demonstrate the performance
of the trained network on both synthetic and field seismic
data.

2 Training data generation

In this section, we implement a workflow of geological and
geophysical forward modeling processes (Fig. 2) to automat-
ically generate diverse synthetic clinoform seismic data and
corresponding labels to train a CNN for seismic stratigraphic
interpretation. The black boxes in Fig. 2 contain the SFM
process based on pyBadlands (Salles et al., 2018), and the
blue boxes in Fig. 2 contain the geophysical forward model-
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Figure 1. Workflow of generating the synthetic clinoform seismic data and corresponding label. We first use a randomly generated (a) initial
topography, (b) sea level curve, and (c) thermal subsidence curve to obtain (d) a porosity model and (e) relative geologic time by stratigraphic
forward modeling. Then we use an interpolation method and velocity–porosity relationship to obtain the corresponding (f) P wave impedance
model and (g) slope model. Finally, we obtain the (h) synthetic seismic data and (i) the corresponding segmentation label by depth–time
conversion, convolving with (j) a Ricker wavelet with a random peak frequency and adding real noise.

ing processes of generating synthetic seismic data and cor-
responding segmentation labels. In this workflow, we first
randomly generate diverse SFM inputs, such as initial to-
pography, sea level curve, rainfall patterns, uplift, and sub-
sidence. We then simulate numerous stratigraphic models
of clinoform layers using stratigraphic forward modeling
with these diverse model inputs. After obtaining these strati-
graphic models of clinoform layers, we perform an interpo-
lation method and a velocity–porosity relationship to build
the velocity and impedance models. We further use the ve-
locity model generated in the previous step to convert the
stratigraphic models from the depth domain to the time do-
main. Finally, we convolve the reflectivity model (converted
from the impedance model) with a Ricker wavelet to gener-
ate the synthetic seismic data and add real noise to improve
the realism of the synthetic seismic data.

2.1 Stratigraphic forward modeling

Many SFM methods have been proposed to simulate the evo-
lution of sedimentary basins by using various numerical al-
gorithms to obtain synthetic clinoform layers in full consider-
ation of thermal subsidence, uplift, changes in sediment sup-
ply, and various sediment transport and deposition processes
(Warrlich et al., 2008; Shafie and Madon, 2008; Burgess et
al., 2012; Hawie et al., 2015; Salles et al., 2018). In this study,
we use the SFM method implemented in pyBadlands (Salles
et al., 2018) to simulate numerous stratigraphic models of

clinoform layers. PyBadlands is a long-term surface evolu-
tion model that simulates sediment transport and deposition
from source to sink (Salles and Hardiman, 2016; Salles et al.,
2018; Ding et al., 2019).

At each time step of the simulation, the sedimentary struc-
ture of the clinoform layers is mainly controlled by the rate
of accommodation change (δA) and the rate of sediment-
supply change (δS). The rate of accommodation change (δA)
reflects the spatial capacity for accommodating sediments
and is mainly related to thermal subsidence, sea level fluc-
tuations, etc. The rate of sediment-supply change (δS) is
mainly related to the erosion of source domain determined by
rainfall patterns, topography, rock erodibility, etc. (Schlager,
1993; Muto and Steel, 1997; Hawie et al., 2015; Neal et al.,
2016). When δS ≥ δA, clinothem typically accumulates and
moves toward the sedimentary basin, and when δS ≤ δA,
clinothem typically moves and retrogrades toward the con-
tinental shelf (Patruno and Helland-Hansen, 2018; Pellegrini
et al., 2020).

The whole workflow of simulating numerous stratigraphic
models of clinoform layers is summarized in the black boxes
in Fig. 2. In this simulation process, we generate 200 clino-
form layers for each model and set the grid size and time step
as 100m×100 m and 0.1 Myr, respectively. Moreover, in or-
der to obtain diverse geometric clinoform layers, the initial
topography, sea level curve, thermal subsidence, and rainfall
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Figure 2. Workflow of generating diverse synthetic clinoform seis-
mic data and corresponding segmentation labels. The black boxes
contain the steps of the stratigraphic simulation process in pyBad-
lands (Salles et al., 2018). X and Y represent the length of inline
and crossline directions, respectively. N represents the number of
clinoform layers generated in the simulation. The blue boxes con-
tain the process of generating synthetic clinoform seismic data and
corresponding segmentation labels. Z represents the vertical mag-
nitude of the interpolated formation attributes in the depth domain,
and T represents the vertical magnitude of the interpolated forma-
tion attributes in the time domain.

patterns are randomly chosen from some predefined ranges
in Table 1.

As shown in Fig. 3a, the initial topography for simulation
has a spatial scale of 100 km (x direction) by 40 km (y di-
rection) and a grid size of 100 m by 100 m. The mountain
range (erosion region) is 55 km (x direction) by 40 km (y di-
rection), while the sedimentary basin (sedimentary region)
is 45 km (x direction) by 40 km (y direction). We randomly
set the highest altitude of the mountain range within 1000–
1200 m and set the average slope in the range between 1.0
and 1.3◦. The sedimentary basin is divided into two parts: an

inclined basin margin region and a relatively flat basin center
region. The average slope of the inclined basin margin area
and the flat basin center area is set to 1.2–1.5◦ and 0.03◦,
respectively. In this paper, we perform 3D stratigraphic for-
ward modeling to build 3D stratigraphic models from which
we extract 2D profiles in the middle of the y dimension to
build a large training dataset. Therefore, we set a relatively
narrow width in the y direction to save computational time
and memory in the stochastic simulation of many models.

However, the width of the initial topography should not
be too narrow compared to its significantly long extension
(100 km) in the x direction. Otherwise, a large amount of sed-
iment, produced in the mountain range (erosion region), will
spill out of the simulation zone during long-distance trans-
portation to the sedimentary basin, which may result in an
unstable simulation and yield unreasonable depositional hia-
tus in the sedimentary basin. With these considerations, we
set the width of the initial topography to 40 km (y direction)
to speed up the simulation process and save computational
costs while ensuring the stability of the deposition simula-
tion. By randomly choosing the parameters of the mountain
range and sedimentary basin as discussed above, we generate
200 unique initial topographies, and we display one of them
in Fig. 3a.

The change in sea level is a major control on the accommo-
dation of the sedimentary basin. We randomly generate 1000
different eustatic sea level curves with a period of 20 Myr
starting from 0 m, and each curve consists of multiple sets
of sinusoids. The periods and amplitudes of their sinusoids
are randomly set from 4–20 Myr and −200–50 m, respec-
tively. These randomly generated sea level curves (Fig. 3b)
help simulate diverse stratigraphic models with various sedi-
mentary geometries.

Thermal subsidence can also affect the accommodation of
the sedimentary basin. We use a simple subsidence model
and set its corresponding parameters based on McKenzie
(1978) to simulate the thermal subsidence of sedimentary
basins. We also assume that the stretching factor in the model
is distance-dependent (Ding et al., 2019), and we randomly
set the slope of the linear relationship between the stretching
factor and distance. Finally, the thermal deposition rate in
the sedimentary basin is set to be about 2.48–15.0 mMyr−1

(Fig. 3c).
Rainfall patterns can affect sediment-supply changes (δS)

by changing the power of river streams regarding erosion
and transporting sediments to sedimentary basins. We first
randomly divide the entire simulated cycle into several parts
and then randomly set a spatially uniform precipitation rate
(about 0.5–4 myr−1) for each part. Moreover, in order to
guarantee a stable sediment supply within the mountain
range during the long-period erosion, we keep uplifting the
mountain range while the simulation processes. We also pre-
defined an initial surface porosity and then calculated the
porosity distribution for each stratigraphic layer during the
simulation according to the porosity–depth relationship sug-
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Table 1. Summary of initial parameter ranges for stratigraphic forward modeling.

Initial topography Mountain range Height 1000–1200 m
Average slope 1.0–1.3◦

Sedimentary basin Depth 200–300 m
Average slope 1.2–1.5◦ and 0.03◦

Sea level curve Period 4–20 Myr
Amplitude −200–50 m

Subsidence 2.48–15.0 mMyr−1

Rainfall patterns 0.5–4 myr−1

Figure 3. Some examples of (a) initial topography, (b) eustatic sea level curves, and (c) thermal subsidence curves. Initial topography
consists of a 55 km (x direction) by 40 km (y direction) mountain range (erosion region) and a 45 km (x direction) by 40 km (y direction)
sedimentary basins (sedimentary region). The average slope of the mountain range varies from 1.0–1.3◦. Sedimentary basins contain a slope
with an average slope of 1.2–1.5◦ and a basin with an average slope of about 0.03◦. The sea level curve consists of multiple sets of sinusoids
whose periods are randomly set, and depths vary randomly between 50 and −200 m. The thermal subsidence curve of the sedimentary basin
is determined by a distance-dependent stretching factor (McKenzie, 1978; Salles et al., 2018; Ding et al., 2019), which is randomly set to
vary from 1.20–1.58.
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gested by Athy (1930). The porosity–depth relationship takes
into account the mechanical compaction of the sediment, i.e.,
porosity gradually decreases with increasing overburden.

By using various combinations of the 200 initial topogra-
phies, 1000 eustatic sea level curves, 30 thermal subsidence
curves, different rainfall patterns, etc., we simulate 1000 di-
verse stratigraphic models, each with multiple clinoform at-
tribute layers such as depth, relative geologic time, poros-
ity, and paleodepth (related to the depositional environment).
Figure 4 shows 2D slices that are extracted from three of the
simulated 3D models. By using the SFM discussed above, we
actually simulate only the stratigraphic layers denoted by the
black curves in Fig. 4 and corresponding attributes. We fur-
ther use the attributes of relative geologic time, paleodepth,
and porosity in conjunction with the depth curves to interpo-
late the corresponding full models as shown in color in each
column of Fig. 4. In the following section, we discuss in de-
tail how to build such property models and perform geophys-
ical forward modeling to construct training datasets of seis-
mic images and the corresponding stratigraphic labels. With
the geological forward modeling process discussed above,
we obtain 1000 numerous stratigraphic models of clinoform
layers.

2.2 Building impedance model

Before generating numerous synthetic seismic data and
corresponding segmentation labels, we need to compute
impedance and slope models from the porosity and depth
models of clinoform layers, respectively. In this study, we use
the velocity–porosity relationship model proposed by Krief
et al. (1990) to build impedance models, which assumes that
the velocities of P and S waves in porous fluid-saturated
rocks obey Gassmann equations with the Biot compliance
coefficient (Krief et al., 1990; Gassmann, 1951; Biot, 1941;
Goldberg and Gurevich, 2008). To obtain an impedance
model, we first calculate the formation density ρfm, shear
modulus µfm, and bulk modulus Kfm by using the follow-
ing equations suggested by Krief et al. (1990), Lee (2005),
and Gassmann (1951):

ρfm = (1−φ)ρma+φρfl, (1)
µfm = µma(1−β), (2)

Kfm =Kma(1−β)+β2M. (3)

In the formation density equation (Eq. 1), φ is porosity
values, ρma = 2.65 kgm−3 is the density of matrix material,
and ρfl = 1.04 kgm−3 is the density of fluid. In the forma-
tion shear modulus equation (Eq. 2), µma = 13.48 GPa is the
matrix material shear modulus and β is the Biot coefficient,
and it is assumed that the presence of fluid has no or little
influence on the shear modulus of the formation (Krief et
al., 1990; Lee, 2005). The Biot coefficient β is related to the
porosity and can be calculated by the following empirical re-

lationship equations suggested by Krief et al. (1990):

(1−β)= (1−φ)m(φ), (4)

m(φ)=
3

(1−φ)
. (5)

In the empirical relationship equations (Eqs. 4 and 5),
m(φ) is a function of the porosity. In the formation bulk mod-
ulus equation (Eq. 3), Kma = 15.45 GPa is the matrix mate-
rial bulk modulus, Kfl = 2.25 GPa is the fluid bulk modulus,
and M is a modulus which is dependent on the Biot coeffi-
cient and can be calculated by the following equation sug-
gested by Gassmann (1951):

1
M
=
(β −φ)

Kma
+
φ

Kfl
. (6)

In these equations (Eqs. 1–6), some predefined parameters
are taken from Carcione et al. (2002). After calculating the
Kfm, ρfm, and µfm, we can calculate the velocity of P and S
waves and the impedance models of P and S waves by the
following equations:

VP =

√√√√√Kfm+
4
3
µfm

ρfm
, (7)

VS =

√
µfm

ρfm
, (8)

ZP = ρfm ·VP, (9)
ZS = ρfm ·VS, (10)

where VP is the P wave velocity, VS is the S wave velocity,ZP
is the P wave impedance, and ZS is the S wave impedance.
At the same time, we further use the depth model of clino-
form layers to calculate the slope model used to generate the
segmentation label.

After calculating these stratigraphic and seismic attribute
models of clinoform layers, we also need to perform the in-
terpolation method to build corresponding 2D attribute mod-
els because the dimensions of these stratigraphic and seismic
attribute models of clinoform layers are not length (x direc-
tion) and depth (z direction) but length (x direction) and the
number of stratigraphic clinoform lines (n). Moreover, the
resolution of the inline (x direction) direction is generally
25 m in field seismic data, but the resolution of each strati-
graphic clinoform line in the inline direction (x direction) is
100 m. We first interpolate these stratigraphic and seismic at-
tribute models of clinoform layers in inline directions (x di-
rection) to match the resolution of field seismic data. Then
we convert them (X, N) into corresponding 2D attribute mod-
els of dimension (X, Z) by interpolation in the depth direction
(z direction) (see Fig. 5).
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Figure 4. Three 2D examples of stratigraphic models with clinoform attribute layers from stratigraphic forward modeling. (a) The relative
geologic time model. (b) Paleodepth model. (c) Porosity model. The dimensions of the outputs are (X, Y, Z, N), where X and Y denote
the length and width of the initial topography with a resolution of 100 m, Z represents the vertical magnitude of the stratigraphic layers
in the depth direction, and N indicates the number of stratigraphic layers generated during the simulation. The black curves in the figure
represent the positions of each clinoform attribute layer displayed at 4 Myr intervals. The colors in the figures represent the simulation time,
paleodepth, and porosity.

Figure 5. Examples of 2D clinoform attribute models obtained by an interpolation method and velocity–porosity relationship. (a) Relative
geologic time (RGT). (b) Slope. (c) Porosity. (d) Density. (e) P wave velocity. (f) S wave velocity. (g) P wave impedance. (h) S wave
impedance. The dimension of the outputs is (X, Z), where X is the length of the 2D clinoform attribute model with a resolution of 25 m, and
Z is the depth of the 2D clinoform attribute model with a resolution of 1 m.
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2.3 Building synthetic seismic data and corresponding
segmentation labels

In practice, the field seismic data are usually in the time do-
main. In this case, to be consistent with the field seismic data,
we need to convert these 2D clinoform attribute models from
the depth domain to the time domain by the depth-to-time
relationship as follows:

t[i] = t[i− 1] + 2 ·
dz
vp[i]

, (11)

where t[i] and t[i− 1] represent two-way travel time, dz is
the vertical sampling rate in the depth domain (i.e., the dis-
tance between the (i−1)th and ith samples), and vp[i] is the
velocity of the P wave at the ith sample. By performing the
iterative operation on each column of the 2D velocity model
and resampling according to a predefined time sampling rate,
we can obtain the mapping relationship from the depth do-
main to the time domain. Then we generate the stratigraphic
and seismic attribute models of dimensions (X, T) by apply-
ing this calculated mapping relationship.

To generate the synthetic seismic data, we convolve the re-
flectivity model (converted from the impedance model) with
a Ricker wavelet with a random peak frequency shown in
Fig. 1j. The peak frequency of the Ricker wavelet is ran-
domly chosen from a predefined range (40–60 Hz) with ref-
erence to the peak frequency extracted in the field seismic
data (Tetyukhina et al., 2010). Figure 6a shows a synthetic
clinoform seismic profile simulated in this way.

To further improve the realism of the synthetic seismic
data, we first extract the real noise from the filtered seismic
data of the F3 block in the North Sea, Australia Poseidon,
and Alaska North Slope data. Then we perform data aug-
mentation on different noise data by flipping and synthesiz-
ing all the enhanced real noise data into a 3D noise volume.
Finally, we add 2D real noise (with a randomly chosen slice
from 3D noise volume) to the 2D seismic data according to
a randomly selected signal-to-noise ratio, and we display the
synthetic seismic data with real noise in Fig. 6b.

Finally, we generate the corresponding segmentation label
using the slope model in the time domain. We set the region
with a slope greater than 0.0175 (slope angle> 1◦) as the
foreset areas of the clinoform and other regions as the topset
and bottomset areas of the clinoform. The threshold value of
the slope refers to Pellegrini et al. (2020). The corresponding
clinoform label and relative geologic time label are shown in
Fig. 6c and d, respectively.

In addition, we can automatically generate numerous and
diverse synthetic seismic data and the corresponding clino-
form attribute models (e.g., slope model, sea level curve,
relative geologic time model, and paleodepth model) based
on these geological and geophysical forward modeling pro-
cesses. This indicates that our workflow can be easily ex-
tended for other seismic stratigraphic interpretation tasks
such as clinoform delineation, sequence boundary identifi-

cation, synchronous horizon extraction, shoreline trajectory
identification, and sedimentary facies analysis. In this work,
we take the seismic clinoform delineation task as an exam-
ple to demonstrate the effectiveness of using the synthetic
dataset for training.

3 Deep learning for clinoform delineation

We consider clinoform delineation as an image segmentation
problem with the goal to label ones on the foreset part of the
clinoform but zeros on the topset and bottomset parts of the
clinoform in 2D seismic data. In this study, we use a modified
encoder–decoder deep neural network to implement the cli-
noform delineation. We first train the network with synthetic
seismic data and corresponding segmentation labels and then
use the trained network to delineate clinoform in both syn-
thetic and field seismic data.

3.1 Network architecture

As shown in Fig. 7, the architecture of our encoder–decoder
deep neural network used in this work is modified from
DeepLabv3+, which was proposed by Chen et al. (2018). It
has achieved state-of-the-art performance in the natural im-
age semantic segmentation field (PASCAL VOC 2012 and
Cityscapes datasets). The backbone of the DeepLabv3+ is an
encoder–decoder architecture, which downscales the input
images and extracts low-level semantic features and high-
level semantic features in the encoder module and gradu-
ally recovers sharp boundaries in the decoder module (Ron-
neberger et al., 2015; Badrinarayanan et al., 2017; Chen et
al., 2018). However, compared to the original DeepLabv3+,
we remove the skip connections between the encoder and
decoder layers because we found that the low-level features
from the encoder layers lead to some artifacts in the predicted
results.

In the modified network, the encoder module (see left
dashed gray box in Fig. 7) consists of a deep convolu-
tional neural network (DCNN) and an atrous spatial pyramid
pooling (ASPP) module. The DCNN module consists of a
ResNet-101 (He et al., 2016) and is used to progressively re-
duce the resolution of feature maps and capture high-level se-
mantic features. ResNet-101 consists of a 7×7 convolutional
layer with a stride of 2, a 3×3 max pooling with a stride of 2,
and four ResBlocks. These four ResBlocks are composed of
bottleneck blocks with numbers of 3, 4, 23, and 4 and strides
of 1, 2, 1, and 1, respectively. The bottleneck block consists
of a 1× 1 convolutional layer, a 3× 3 convolutional layer,
a 1× 1 convolutional layer, and a skip connection (see blue
box in Fig. 7). The ASPP module can capture the contex-
tual information at multiple scales, which are composed of
a 1× 1 convolutional layer; three 3× 3 atrous convolutional
layers with sampling strides of 6, 12, and 18; and an average
pooling module (see the orange box in Fig. 7).
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Figure 6. Example of (a) synthetic seismic image without noise, (b) synthetic seismic image with noise extracted from field seismic data, (c)
corresponding clinoform segmentation label, and (d) relative geologic time label. The foreset part of the clinoform is filled in red, whereas
the topset and bottomset parts of the clinoform are filled in blue. The dimension of the profiles is (X, T), where X is the length of the 2D
profiles with a resolution of 25 m, and T is the two-way travel time of the 2D profiles with a resolution of 2 ms.

Figure 7. The architecture of the network for clinoform delineation. The left dashed gray box is the encoder module which consists of a
ResNet-101 and an ASPP module. The blue box in the middle is the module of ResBlocks in the encoder, which contains a 1×1 convolutional
layer, a 3×3 convolutional layer, a 1×1 convolutional layer, and a skip connection. The orange box in the middle is the module of ASPP in
the encoder, which contains a 1×1 convolutional layer; three 3×3 atrous convolutional layers with sampling strides of 6, 12, and 18; and an
average pooling module. The right dashed gray box is the encoder module which consists of an upsampling layer, two 3× 3 convolutional
layers, a 1× 1 convolutional layer, and an upsampling layer.

The decoder module in the modified networks (see right
dashed gray box in Fig. 7) first uses a bilinear upsampling
layer to upsample the high-level semantic features by a fac-
tor of 4, and then the upsampled features are fed to two 3×3
convolutional layers and a 1× 1 convolutional layer which
obtains the probabilities of each class and reduces the chan-
nels of features to the number of classes. Finally, the same

bilinear upsampling layer is applied to obtain the final fea-
ture maps of the same size as the input image. These final
feature maps are fed to a softmax layer and an argmax layer
to obtain the final clinoform segmentation result.
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3.2 Training and validation

After automatically generating 1000 pairs of synthetic seis-
mic data (Fig. 6b) and corresponding clinoform labels
(Fig. 6c), we train and validate our CNN model by using 800
and 200 pairs of them, respectively. Considering the ampli-
tude values of field seismic data can vary widely, we perform
a normalization process to each seismic dataset before feed-
ing it into the CNN model by subtracting its mean value and
then dividing by its standard deviation.

Considering clinoform delineation in the 2D seismic im-
age is a binary segmentation problem, we use the following
binary cross entropy loss function L to train our network:

L=−
N∑
i=1

yi log(xi)−
N∑
i=1
(1− yi) log(1− xi), (12)

where N denotes the number of pixels in the input 2D seis-
mic data, and xi and yi represent the prediction and label at
the ith pixel, respectively.

In the training of the network, the size of each syn-
thetic seismic dataset and corresponding segmentation la-
bel is 1600× 256 pixels. Considering the computation time
and memory, we feed the normalized synthetic seismic im-
ages and corresponding segmentation labels to the CNN in
batches and set the batch size to 16. We use the Adam op-
timizer (Kingma and Ba, 2014) to optimize the network pa-
rameters. In the training process, we start the learning rate at
0.01 and adaptively reduce it based on the validation loss.
Specifically, we automatically reduce the learning rate by
half when the validation metric stagnates within 2 epochs. In
total, we use 800 and 200 pairs of synthetic training datasets
to train and validate our CNN model. As shown in Fig. 8, the
curves for both training (blue curve) and validation (orange
curve) losses converge to 0.02 and 0.08, while the learning
rate decreases to 0.00001 after 200 epochs.

To demonstrate the performance of the trained network,
we first apply it to six synthetic seismic images with clas-
sic clinoforms (Fig. 9c) that are generated by six classic sea
level curves with 1, 1.5, and 2 sinusoidal periods as shown in
Fig. 9a. Note that real noise extracted from field seismic data
has been added to the synthetic seismic data (Fig. 9c). By
feeding the synthetic seismic data to our trained network, we
obtain the clinoform segmentation results shown in Fig. 9e.
We observe that the segmentation results are consistent with
the ground truth labels shown in Fig. 9d. It is not surprising
that the trained network works well in these synthetic seismic
data simulated by using the same workflow of generating the
training dataset. We therefore further validate our network in
multiple field seismic data in the following sections.

3.3 Eliminating outliers by smoothing feature maps

We further verify the performance of our trained network on
a field seismic data with more complex features as shown in

Fig. 10a. Figure 10b shows the predicted result, where red
and blue represent the foreset part and topset or bottomset
parts of the clinoform, respectively. We observe that most
of the foreset areas are correctly predicted, but the areas in-
dicated by the cyan arrows are incorrectly predicted as the
topset or bottomset of the clinoform, and the area indicated
by the green arrow is incorrectly predicted as the foreset part
of the clinoform.

To better understand the feature extraction and prediction
process of the network in segmenting a clinoform, we display
the feature maps of each layer in the network in Fig. 11. The
encoder module in the networks (see the left part in Fig. 11)
focuses on extracting features of the foreset part of the clino-
form, topset or bottomset parts of the clinoform, and bound-
aries. The decoder module in the network (see the right part
in Fig. 11) focuses on gradually recovering the specific areas
of the foreset part of the clinoform and topset or bottomset
parts of the clinoform according to the features extracted by
the encoder module. We expect that the foreset part of the
clinoform should be a complete and continuous block; how-
ever, the predicted result shown in Fig. 10b obviously does
not conform to such a priori geological understanding.

In order to make the segmentation results of the trained
network on the field seismic data more clean and complete,
we incorporate a preconditioning layer (Wu et al., 2023) of
structure-oriented smoothing into the network. This smooth-
ing layer enhances the structural features along the seismic
structural orientations, thus filling holes and eliminating out-
liers in the final segmentation results. We first estimate the
structural orientation at each pixel of the input seismic image
by using the method of structure tensor (Van Vliet and Ver-
beek, 1995; Fehmers and Höcker, 2003; Hale, 2009). Then
we construct the corresponding smooth convolution kernels
along the seismic structures based on the estimated orienta-
tions. Finally, we apply these structure-oriented smoothing
kernels to the feature maps at the scales of 1/4 and 1/16 in
the network, as denoted by pink arrows in Fig. 11.

After introducing the structural smoothing layer into the
network, the predicted results shown in Fig. 10c are more
complete and continuous. To visually demonstrate the func-
tion of the introduced structural smoothing layers, we display
the feature maps of the decoder module after introducing the
structure-oriented smoothing layers in the dashed red box
in Fig. 11. Compared to the original decoder module in the
dashed green box, the feature maps with the smoothing lay-
ers become cleaner and more continuous for the features of
topset, foreset, and bottomset of the clinoform, and the pre-
dicted result based on these feature maps is therefore cleaner
and more complete.

4 Field data applications

In addition to the synthetic seismic data, we also use three
different field seismic datasets to verify the performance
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Figure 8. (a) The loss curves of training (blue) and validation (orange). (b) The learning rate is adaptively adjusted in the training process.
The curves for both training (blue curve) and validation (orange curve) losses converge to 0.02 and 0.06, whereas the learning rate decreases
to 0.00001 after 200 epochs.

Figure 9. Examples of (a) classic sea level curves with 1, 1.5, and 2 cycles; (b) relative geologic time (RGT) model; (c) synthetic seismic
image with real noise; (d) corresponding segmentation labels; and (e) predicted results using the trained network. The foreset part of the
clinoform is filled in red, whereas the topset and bottomset parts of the clinoform are filled in blue. From the predicted results, we can find
that (e) the predicted results are consistent with (d) the labels, which means the network has successfully learned to extract the structural
features for clinoform segmentation in the seismic images.

of the network trained with only synthetic seismic data. In
our simulated synthetic training datasets, the seismic images
(like the one in Fig. 6b) contain only the simulated processes
of the clinoform deposition with dramatic changes in sea
level but do not contain the non-clinoform part with horizon-
tal deposition. However, the field seismic images typically
contain a large number of horizontal deposits, and the cli-
noform deposits are only a small part of them. In order to be
consistent with the training datasets, we first use an automatic
horizon-picking method proposed by Wu and Fomel (2018)
to extract the top and bottom layers of the part of the clino-
form deposition in the field seismic data. Then we cut out

the sub-volume with the clinoform deposits from the whole
seismic volume by using the two computed boundary layers.
To avoid the uncertainty of the seismic amplitude variation
range of the field survey seismic data, each of them is first
subtracted by its mean and then divided by its standard devi-
ation to obtain a normalized seismic dataset.

4.1 Case study one: Netherlands offshore F3 Block

The first field example is the Netherlands offshore F3 Block
(Dutch sector) seismic data acquired in the northeastern part
of the North Sea. In this survey, a large fluvio-deltaic sys-
tem dominated the basin resulting in a massive clinoform de-
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Figure 10. We input (a) a field seismic profile into the trained network and get (b) the corresponding predicted result, where red represents
the foreset part of the clinoform and blue represents the topset and bottomset parts of the clinoform. The clinoform segmentation result is
mostly correct, but we also observe some holes and outliers as indicated by cyan and green arrows in (b), respectively. To further fill the
holes and eliminate the outliers, we introduce structural smoothing layers into the network to enhance the feature maps of the network and
therefore obtain a cleaner and more complete result in (c).

Figure 11. The feature maps of the encoder–decoder networks. The red arrow denotes an input layer containing a 7× 7 convolutional layer
with ReLU and a max-pooling layer. The navy blue arrow denotes four different ResBlocks modules consisting of bottleneck blocks with
numbers of 3, 4, 23, and 4 and strides of 1, 2, 1, and 1, respectively. The yellow arrow denotes the ASPP modules. The light blue arrow
denotes a 1× 1 convolution layer with ReLU and dropout. The pink arrow denotes structural smoothing layers at 1/4 or 1/16 scale. The
green arrow denotes a bilinear upsampling layer. The light purple arrow denotes a 3×3 convolution layer with ReLU and dropout. The navy
purple arrow denotes an output layer consisting of a softmax layer and an argmax layer. The upper right dashed green box and lower right
dashed red box refer to the feature maps and predicted results before and after the introduction of the structural smoothing layer, respectively.

position during the Cenozoic era (Tetyukhina et al., 2010).
The survey area of this seismic volume is 24 km in the in-
line direction, 16 km in the crossline direction, and 1848 ms
in the two-way travel time direction. In this work, we select a
3D subset (951 (inline) × 460 (crossline) × 320 (time) sam-
ples) of F3 Block seismic data as the study seismic volume
(Fig. 12a).

We first use the method proposed by Wu and Fomel (2018)
to extract the top and bottom surfaces of the part of the cli-
noform deposition in this seismic volume and then cut the
sub-volume (Fig. 12a) between the two surfaces. We then
apply the trained network to delineate the clinoform in the
3D sub-volume slice by slice in the crossline direction. Each
2D slice (951 (inline) × 320 (time) samples) is normalized
by its mean and standard deviation before being fed into the
network. In these seismic images, some complex geological
structures, such as faults with large fault throws and uplifts
of salt bodies, bring challenges for the clinoform delineation.
We further introduce the structural smoothing layer at 1/4
scale on the decoder module to enhance the structural fea-

tures along the seismic structural orientations, thus filling
holes and eliminating outliers in the final segmentation re-
sults.

Figure 12c shows some 2D seismic slices that are ex-
tracted from the 3D seismic volume, and Fig. 12d displays
the corresponding clinoform segmentation results. The red
regions represent the foreset areas of the clinoform predicted
by the trained network, whereas the blue regions represent
the topset or bottomset areas of the clinoform. In order to
intuitively evaluate the predicted results, we also display the
results by overlaying the predicted results with the seismic
images shown in Fig. 12e. To visualize the predicted results
for the entire 3D volume, we also use the classic marching
cubes algorithm proposed by Lorensen and Cline (1987) to
extract a 3D foreset equivalence surface as shown in Fig. 12b,
where the foreset areas of the clinoform are displayed as a 3D
geobody with cyan color.

As is shown in Fig. 12b, d, and e, the prediction segmen-
tation results can maintain high integrity and continuity and
separate the foreset, topset, and bottomset of the clinoform in
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Figure 12. Case study one: Netherlands offshore F3 Block seismic data. (a) The 3D subset of the F3 Block seismic data, (b) 3D body of the
foreset area of the predicted clinoform, (c) four 2D seismic profiles extracted from the 3D seismic volume, (d) the predicted results using
the network trained with only synthetic clinoform seismic data, and (e) the results overlaid with the seismic profiles. The foreset areas of the
clinoform in 2D profiles are filled with red, whereas the topset and bottomset areas of the clinoform are filled with blue. From the predicted
results, the topset, foreset, and bottomset parts of the clinoform can remain clean and complete, and the boundaries between the topset and
foreset and between the foreset and bottomset can maintain continuity.

seismic profiles, which demonstrates the reliable generaliza-
tion of the trained network in this field data example. From
the seismic images (Fig. 12c), they are complicated by some
special structural features, such as faults with large fault
throws, uplifts of salt bodies, and fold deformation, which
are not included in the training datasets. However, our pre-
diction results are generally not affected by these special fea-
tures. This indicates that the trained network has successfully
learned to analyze the geological structure information of the
topset, foreset, and bottomset parts of the clinoform from a
global perspective, not just from the local characteristics of
seismic data. Moreover, it shows that the trained network has
certain anti-noise ability and generalization for some com-
plex structures.

4.2 Case study two: Australia Poseidon seismic data

The second field example is the Poseidon 3D seismic volume
acquired in the Browse Basin’s shelf margin, northwestern
Australia (Liu, 2018; Dixit and Mandal, 2020). The survey
area of this seismic volume is 64 km in the inline direction,
63 km in the crossline direction, and 6000 ms in the two-way
travel time direction. The grid size of this 3D seismic volume

is 18.75 m (inline) × 12.5 m (crossline) × 4 ms (time). We
first resample this 3D seismic volume and then select a 3D
subset (618 (inline) × 288 (crossline)× 192 (time) samples)
of the Australia Poseidon 3D seismic volume as the study
seismic volume.

We first extract the top and bottom surfaces of the part
of the clinoform deposition in the 3D seismic volume. Then
we flatten the 3D seismic volume with the top surface as a
horizontal datum to eliminate the tectonic influence of the
overlying strata. After flattening the 3D seismic volume, we
cut the flattened seismic volume (Fig. 13a) between the two
surfaces to preserve the clinoform deposits and remove the
non-clinoform deposits. After these processes, we fed the 3D
sub-volume slice by slice in the y direction into the trained
network to delineate the clinoform. To be consistent with the
synthetic seismic data, each 2D slice (618 (inline) × 192
(time) samples) is normalized before being fed into the net-
work. Similar to study case one, we also introduce the struc-
tural smoothing layer in the decoder module of the network
to enhance the features maps along the seismic structural ori-
entations.
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Figure 13. Case study two: Australia Poseidon 3D seismic data. (a) The flattened 3D subset of Australia Poseidon seismic data, (b) the 3D
body of the foreset area of the predicted clinoform, (c) four randomly selected 2D seismic images, (d) the predicted results using the trained
network, and (e) the results overlaid with the seismic images. The foreset areas of the clinoform in 2D profiles are filled with red, whereas
the topset and bottomset areas of the clinoform in 2D profiles are filled with blue.

We randomly select four 2D seismic slices (Fig. 13c) from
the 3D seismic sub-volume and display the corresponding
clinoform segmentation results in Fig. 13d. The red and blue
regions represent the foreset areas of the clinoform and topset
or bottomset areas of the clinoform predicted by the trained
network, respectively. We also overlay the predicted results
with seismic images shown in Fig. 13e and display a 3D view
of the segmented clinoform body in Fig. 13b. As shown in
Fig. 13b, d, and e, the predicted results are clean and com-
plete, where the topset, foreset, and bottomset areas of the
clinoform are mostly reasonably segmented.

4.3 Case study three: Alaska North Slope

Data for the third field seismic case study are acquired at
the Alaska North Slope, which is a well-known Lower Cre-
taceous clinoform depositional sequence. It is also a large
depositional-scale (600–1000 m depositional thickness in the
north and 1700–2000 m depositional thickness in the south)
constructional siliciclastic clinoform (Bird and Molenaar,
1992; Houseknecht et al., 2009; Ramon-Duenas et al., 2018).
This study includes three publicly available 2D seismic pro-
files (from 1974–1981) from the United States Geological
Survey (USGS), which are 58-75 trackline, 28-81 trackline,
and 39-81 trackline, respectively. We select 110 km (inline)

× 1800 ms (time), 55 km (inline)× 800 ms (time), and 50 km
(inline) × 800 ms (time) 2D seismic sub-profiles, respec-
tively.

We extract the top and bottom layers of the part of the cli-
noform deposition and another top layer of the part of a hor-
izontal deposition in each seismic profile. Then we cut out
each sub-profile between the exacted top and bottom layers
and flatten it based on another top layer. We further perform
gain and filtering operations on the flattened seismic images
to enhance the seismic features, and the processed images are
shown in the left column of Fig. 14. In segmenting clinoform
in these seismic profiles, the low signal-to-noise ratio of the
data and the existence of complex geological structures such
as faults with large fault throws and fold deformation bring
great challenges to the network trained with only synthetic
data. To reduce the impact of these complex structures on
clinoform delineation, we introduce the structural smooth-
ing layer to enhance the structural features along the seismic
structural orientations.

As shown in the right column of Fig. 14, the segmenta-
tion results predicted by our modified network are clean and
complete. Comparing the predicted result (Fig. 14a) with the
human interpretation result (Ramon-Duenas et al., 2018), we
find that the predicted result is roughly close to the human in-
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Figure 14. Case study three: Alaska North Slope 2D seismic data. (a) The 58-75 trackline sub-profile and predicted result. (b) The 28-81
trackline sub-profile and predicted result. (c) The 39-81 trackline sub-profile and predicted result. The survey area of these three seismic
profiles are 110, 55, and 50 km in the inline direction and 1000, 800, and 800 ms in the two-way travel time direction, respectively. The
seismic profiles shown in the left column are processed by flattening, gain, filtering, and normalization operations, and the segmentation
results are displayed in the right column, where the foreset areas of clinoform are filled with red and the topset and bottomset areas of
clinoform are filled with blue. We also display two synchronous horizons extracted in each seismic profile with orange lines.

terpretation result, particularly in the boundary between the
topset and foreset. To further validate the segmentation re-
sults, we extract two synchronous horizons in each seismic
profile and display them with orange lines in the right column
of Fig. 14. Combining synchronous horizon distribution and
segmentation results, our network can successfully segment
regions with sharp slope angles on the synchronous horizons.
It is indicated that our network can learn to analyze the struc-
tural features of the clinoform and can automatically segment
regions with sharp slope angles (foreset regions). Moreover,
the introduction of the smoothing structural layer enables the
network to enhance the features and reduce the generation of
holes or outliers caused by the complex structures and low
signal-to-noise ratio of the data.

5 Discussion

Applications on the synthetic data and three different field
seismic data points indicate that our training datasets gener-
ated by geological and geophysical forward modeling are ge-
ologically reasonable to train our network for accurate clino-
form delineation. The introduction of the structural smooth-
ing layer at different scales enables the trained network to
enhance the structural features along the seismic structural

orientations in complex field seismic data applications, thus
filling holes and eliminating outliers in the final segmentation
results. From the segmentation results of field seismic data,
the topset, foreset, and bottomset areas of the clinoform are
accurately segmented into different classes, and each class
maintains high integrity and continuity.

Although the segmentation results are visually reasonable
in general, some artifacts or inaccurate predictions still ap-
pear in some local areas of the results, which indicates some
limitations of our method. The main limitation remains in
the workflow of generating synthetic training datasets by ge-
ological and geophysical forward modeling. We use a spe-
cific modeling engine (pyBadlands) for stratigraphic forward
modeling, which offers several advantages over alternative
models. Specifically, pyBadlands is open-source, source-to-
sink, and comprehensive in its consideration of influenc-
ing factors, and it can effectively simulate diverse datasets
(Salles and Hardiman, 2016; Salles et al., 2018; Ding et
al., 2019). However, it is important to note that pyBadlands
is only capable of numerical simulation and cannot fully
replicate natural surface processes. For instance, the porosity
model generated by SFM models only considers the mechan-
ical compaction of the sediment, which may result in less re-
alism in the synthetic seismic data. Moreover, we have not
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yet included any folding and faulting structures, salt bodies,
or channels in generating the stratigraphic layers and the cor-
responding seismic data. These structure features, however,
may significantly affect the seismic stratigraphic interpreta-
tion tasks. In this paper, we have flattened the seismic data to
remove the folding and faulting structures before the clino-
form segmentation, which makes the data structurally more
consistent with the training seismic data and therefore re-
duces the segmentation challenges due to various structures.
In the future, we need to build more realistic stratigraphic
models with various structural patterns and geobodies to bet-
ter train a network for interpreting more complex seismic
data. Additionally, note that here we only consider the slope
information when generating the clinoform segmentation la-
bels, which could lead to some inaccuracies in the labeling
process.

In terms of network selection, we select U-net,
DeeplabV3+, and DeeplabV3+ without a skip connection
for the comparison test. We train these networks using the
cross entropy (CE), mean squared error (MSE), binary cross
entropy (BCE), and binary cross entropy with log (BCE-
WithLogits) loss functions, respectively. These network tests
show that the DeeplabV3+ network without skip connection
using cross-entropy loss function is the most stable and accu-
rate in both synthetic and field seismic data applications. In
addition to the network architectures and loss functions, the
size of the seismic data or the scale of the clinoform is an-
other important aspect affecting the segmentation results. For
example, the training dataset with a scale size of 1600× 256
pixels performed well on the large-scale Alaska North Slope
data but performed poorly on the small-scale F3 Block and
Australia Poseidon seismic data. Therefore, we also simu-
lated small-scale clinoform training datasets with a scale size
of 900×256 pixels for F3 Block and Australia Poseidon seis-
mic data and obtained stable and accurate segmentation re-
sults by the trained network.

In practice, the quality of the field seismic data may not be
as high as synthetic data because of noise, seismic migration
artifacts, and unclearly imaged reflections. We have added
noise, extracted from field seismic data, to the synthetic data
to train our network. However, the network may still gener-
ate holes and outliers in delineating clinoform in poor-quality
seismic data. Based on the prior geologic knowledge that
each part (topset, foreset, and bottomset) of the clinoform
segmentation should be a complete and continuous block,
we introduce the structural smoothing layer to our network.
The structure-oriented convolution kernels in the smooth-
ing layer smooth the feature maps computed in the network
along the seismic structure orientations to suppress noisy fea-
tures while enhancing the continuity of effective features in
the maps, thus filling holes and eliminating outliers in the fi-
nal segmentation results. Moreover, the structural smoothing
layer can be integrated into the network at different scales.
This means that the structural smoothing layer is highly scal-
able and can be introduced at any depth of the network.

Considering the computational cost, the synthetic training
datasets used for network training are 2D, and the initial to-
pography used for the stratigraphic forward modeling is a
simple slope surface with lateral consistency. In the future,
we can upgrade our workflow from 2D to 3D by designing
more complex and extensive initial topographies to generate
diverse 3D clinoform seismic datasets. Additionally, we can
take into account some other factors in building the poros-
ity model to enhance its diversity and realism. For example,
we can introduce the constraints of the paleodepth model
based on the sorting effect of the ocean on sediments, and
we can also introduce the constraints of the natural variabil-
ity in rock properties according to the initial variations in
provenance. The introduction of these multiple constraints
can improve the diversity of the porosity model, enhance the
realism of the synthetic data, and improve the process of the
stratigraphic forward modeling. Additionally, for the gener-
ation of the slope model, we can calculate the slope model
using real-time stratigraphic depth layers instead of the final
depth model, which can better reflect the actual slope when
sediments are deposited. In the validation stage of the field
seismic data, we can further introduce some other geophysi-
cal data information (e.g., log data) to better validate the seg-
mentation results of field seismic data. Moreover, although
we only use such a workflow to solve the clinoform delin-
eation problem at present, we can easily extend this workflow
for more geological and geophysical scenarios in the future,
such as sequence boundary identification, synchronous hori-
zon extraction, relative geologic time estimation, sedimen-
tary facies analysis, unconformity, and identification.

6 Conclusions

We propose a workflow to automatically generate synthetic
seismic data of clinoform and corresponding clinoform la-
bels. In this workflow, we employ stratigraphic forward mod-
eling to obtain numerous stratigraphic models with clinoform
layers by randomly but properly choosing initial topogra-
phies, sea level curves, thermal subsidences, and rainfall pat-
terns. Then we convert the simulated stratigraphic model
into the impedance model by using a velocity–porosity re-
lationship while calculating the slope model from the corre-
sponding depth model of clinoform layers. We further per-
form depth-to-time conversion to the impedance model, con-
volve it with a Ricker wavelet with a random peak frequency,
and add real noise to generate a synthetic seismic image. Fi-
nally, we obtain the corresponding clinoform label according
to a slope threshold. In this way, we automatically generate
1000 large-scale and 2000 small-scale synthetic seismic data
and corresponding stratigraphic labels, and we make these
datasets available to the public.

We use an encoder–decoder network modified from
DeepLabV3+ to perform clinoform delineation. In the mod-
ified network, the encoder module consists of DCNN and
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ASPP modules, which are mainly used to extract features at
different resolutions, and the decoder module consists of a
few simple convolutional and upsampling layers, which are
mainly used to refine the segmentation results. Considering
the complex geological structures of the field seismic data,
we introduce the structural smoothing layer in the decoder
module to enhance the structural features along the seismic
structural orientations, thus filling holes and eliminating out-
liers in the final segmentation results.

We train the modified network with only synthetic seis-
mic datasets and then validate its performance on both syn-
thetic and field seismic data. The segmentation results are
clean, continuous, and visually reasonable. This indicates
that the proposed workflow of using synthetic seismic data
to train the network and using the trained network for auto-
matic and fast clinoform delineation is plausible. Moreover,
our workflow can obtain other stratigraphic labels (in addi-
tion to clinoform labels) during the geological and geophysi-
cal forward modeling. Therefore, our workflow can be easily
extended for other seismic stratigraphic interpretation tasks
such as sequence boundary identification, synchronous hori-
zon extraction, shoreline trajectory identification, and sedi-
mentary facies analysis.

Code and data availability. The synthetic seismic datasets used for
training and validating our network have been uploaded to Zenodo
and are freely available at https://doi.org/10.5281/zenodo.7122471
(Gao et al., 2022b). The source codes for the geological
and geophysical forward modeling and the neural network
have been uploaded to Zenodo and are freely available at
https://doi.org/10.5281/zenodo.7123934 (Gao et al., 2022a).
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