Articles | Volume 15, issue 17
Geosci. Model Dev., 15, 6841–6861, 2022
https://doi.org/10.5194/gmd-15-6841-2022
Geosci. Model Dev., 15, 6841–6861, 2022
https://doi.org/10.5194/gmd-15-6841-2022
Development and technical paper
08 Sep 2022
Development and technical paper | 08 Sep 2022

DeepISMNet: three-dimensional implicit structural modeling with convolutional neural network

Zhengfa Bi et al.

Related authors

ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-245,https://doi.org/10.5194/gmd-2022-245, 2023
Preprint under review for GMD
Short summary

Related subject area

Solid Earth
Towards automatic finite-element methods for geodynamics via Firedrake
D. Rhodri Davies, Stephan C. Kramer, Sia Ghelichkhan, and Angus Gibson
Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022,https://doi.org/10.5194/gmd-15-5127-2022, 2022
Short summary
MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems
Federico Brogi, Simone Colucci, Jacopo Matrone, Chiara Paola Montagna, Mattia De' Michieli Vitturi, and Paolo Papale
Geosci. Model Dev., 15, 3773–3796, https://doi.org/10.5194/gmd-15-3773-2022,https://doi.org/10.5194/gmd-15-3773-2022, 2022
Short summary
A global, spherical finite-element model for post-seismic deformation using Abaqus
Grace A. Nield, Matt A. King, Rebekka Steffen, and Bas Blank
Geosci. Model Dev., 15, 2489–2503, https://doi.org/10.5194/gmd-15-2489-2022,https://doi.org/10.5194/gmd-15-2489-2022, 2022
Short summary
SMAUG v1.0 – a user-friendly muon simulator for the imaging of geological objects in 3-D
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022,https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
CliffDelineaTool v1.2.0: an algorithm for identifying coastal cliff base and top positions
Zuzanna M. Swirad and Adam P. Young
Geosci. Model Dev., 15, 1499–1512, https://doi.org/10.5194/gmd-15-1499-2022,https://doi.org/10.5194/gmd-15-1499-2022, 2022
Short summary

Cited articles

Alon, U. and Yahav, E.: On the bottleneck of graph neural networks and its practical implications, arXiv [preprint], https://doi.org/10.48550/arXiv.2006.05205, 9 June 2020. a
Bi, Z., Wu, X., Geng, Z., and Li, H.: Deep relative geologic time: a deep learning method for simultaneously interpreting 3-D seismic horizons and faults, J. Geophys. Res.-Sol. Ea., 126, e2021JB021882, https://doi.org/10.1029/2021JB021882, 2021. a
Bi, Z., Wu, X., Li, Z., Chang, D., and Yong, X.: Training and validation datasets for “Three-Dimensional Implicit Structural Modeling Using Convolutional Neural Network”, Zenodo [data set], https://doi.org/10.5281/zenodo.6480165, 2022a. a
Bi, Z., Wu, X., Li, Z., Chang, D., and Yong, X.: zfbi/DeepISMNet: DeepISMNet: Three-Dimensional Implicit Structural Modeling with Convolutional Neural Network, Zenodo [code], https://doi.org/10.5281/zenodo.6684269, 2022b. a
Calcagno, P., Chilès, J.-P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules, Phys. Earth Planet. In., 171, 147–157, 2008. a, b, c
Download
Short summary
We present an implicit modeling method based on deep learning to produce a geologically valid and structurally compatible model from unevenly sampled structural data. Trained with automatically generated synthetic data with realistic features, our network can efficiently model geological structures without the need to solve large systems of mathematical equations, opening new opportunities for further leveraging deep learning to improve modeling capacity in many Earth science applications.